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Abstract. We study disordered systems at and near quantum phase transitions, which
are transitions at zero temperature that are driven by quantum instead of thermal ÿuctu-
ations. Special emphasis is put on the so-called Griþths-McCoy regions surrounding these
transitions in magnetic systems, where various susceptibilities are found to be divergent for
T ! 0 without the system being critical. We present a phenomenological picture for uncor-
related and weakly or strongly correlated disorder and check it for various models. In higher
dimensions the phenomena seem to be connected to a percolation transition.
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1 Introduction

Quantum phase transitions are phase transitions at zero temperature driven by quan-
tum ÿuctuations rather than thermal ÿuctuations. If disorder is involved, as in ran-
dom magnets, in amorphous bosonic systems or at the Mott-Anderson transition,
one encounters new features that are usually absent in pure systems. In particular
at a quantum critical point one observes new universality classes with an strongly
anisotropic scaling of space and (imaginary) time. Moreover one þnds regions in the
phase diagram, where various susceptibilities diverge without the system being criti-
cal, commonly referred to as quantum Griýths-McCoy phases [1, 2, 3]. The latter is
most prominent in the context of random transverse Ising models, being realized by
e.g. the dipolar Ising system LiHoxY1ÿxF4 [4], however also occur as Bose glass phase
of localized bosons in amorphous superconducting þlms [5], Helium-4 in or on aerogels
[6], or disordered Josephson junction arrays. Moreover, it has been argued that ex-
perimentally observed non-Fermi liquid behavior in f -electron compounds featuring
continuously varying exponents are a manifestation of a Griýths phase [8].
These quantum Griýths singularities can be parameterized by a single dynamical
exponent z(ÿ), varying continuously with the distance ÿ from the critical point. One
of the most intriguing questions is whether, although describing diüerent physics,
z(ÿ) merges with the critical dynamical exponent zcrit when approaching the critical
point ÿ ! 0. Another is, whether typical and averaged quantities scale diüerently
at the critical point. In one space dimension considerable progress has been made in
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understanding these issues [9, 10, 11]. However, in higher dimensions one has to rely
on quantum Monte-Carlo methods and progress can only be made by a signiþcant
computational eüort [13, 15, 16].

2 The random transverse Ising model and its critical point

In this paper we describe the phenomenology of the Griýths-McCoy phase in a general
framework including the eüects of correlated disorder in disordered transverse Ising
models. The reason for considering correlated disorder, besides academic interest, is
that it has been argued [8] that the non-fermi liquid behavior observed in rare earth
alloys might be the manifestation of the Griýths-McCoy singularities occurring in an
eüective model, a transverse þeld spin-1/2 model Ising model with correlated disorder.
To be speciþc we consider here model for a disordered quantum magnet with a strong
Ising anisotropy and transverse þelds:

H = ÿ
X
hiji

Jijþ
z
i þ

z
j +

X
i

ûiþ
x
i (1)

in which þi are spin-
1
2 operators located on a d-dimensional lattice, hiji indicate all

nearest neighbor pairs on this particular lattice, Jij þ 0 ferromagnetic interactions (a
mixture of ferro- and antiferromagnetic interactions causes frustration and leads to a
quantum spin glass, which has been studied in [13, 3]) and ûi transverse þelds that
are randomly distributed modeling a quenched (i.e. time-independent) disorder.
For uncorrelated disorder one takes all random variables to be independently dis-
tributed. Here we discriminate diüerent types of distribution:

pure case ûi = û, Jij = J : no disorder

bond-dilution ûi = û, Jij = J w. prob. p, Jij = 0 w. prob. 1ÿ p,
site-dilution ûi = "iû, Jij = "i"jJ , "i = 1 w. prob. p, "i = 0 w. prob. 1ÿ p
binary ûi = û, Jij = J1 or J2, (J1 < J2) w. prob. 1/2
uniform ûi 2 [0;û], Jij 2 [0; J ], both uniformly distributed

In one dimension bond or site dilution leads to a fragmentation of the system into
þnite, homogeneous chain segments. This is a nice toy model, which does not, however
have a phase transition and therefore we consider dilution only for d þ 2. In general,
for p above the percolation threshold p > pc in the diluted case (p = 1 in d = 1),
the quantum system described by eq. (1) has a second order phase transition at zero
temperature that manifests itself in speciþc macroscopic properties of the ground
state and low lying excitations. A critical value ûc for the transverse þeld strength
separates a disordered or paramagnetic phase for û > ûc from an ordered phase for
û < ûc. In 1d this point is exactly know due to the fact that the model is self-dual
here, the critical point being simply given implicitly by the equation [ln Ji;i+1]av =
[ln ûi]av, where [: : :]av indicated the average over the distribution of the disorder
distributions, i.e. the bonds and þelds (note that for the pure case this yields ûc = J).
In higher dimensions the critical point is generally not known and has to be determined
numerically. The transition is characterized by a diverging length scale ý ý jûÿûcj

ÿÿ

and a vanishing characteristic frequency ! ý úE ý ýÿz. The latter is the quantum
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analog of \critical slowing down" in the critical dynamics of classical, thermally driven
transitions. Together with a third critical exponent, deþning the anomalous dimension
of the order parameter þeld (the magnetization), the thermal exponent ü and the
dynamical exponent z give a complete description of the transition via a set of scaling
relations.
In 1d it is by now well established [9, 10, 11] that various physical quantities have a
logarithmically broad distribution, which forces one to discriminate between average
and typical properties. For instance the typical correlation length diverges with an
exponent ütyp = 1, whereas the average diverges with üav = 2. It turns out that
it is not the energy gap but its logarithm that scales with system size and distance
from the critical point, giving rise to an exponential rather than algebraic decrease
of the energy gap with system size: úE ý exp(ÿaL1=2). This means that z = 1
and since the inverse gap corresponds to a characteristic relaxation or tunneling time
it is reminiscent of an activated dynamics scenario in conventional spin glasses or
random þeld systems. Moreover, away from the critical point the time dependent
correlations still decay algebraically although the spatial correlation length is þnite.
In this so-called Griýths-McCoy region [1, 2] near the QPT various susceptibilities
are still divergent depending on a particular parameter z(ÿ), the dynamical exponent
in the Griýths-McCoy phase, which characterizes the strengths of the singularities
encountered in a distance ÿ away from the QPT [3].
Again, in 1d this scenario, QPT and Griýths-McCoy region, has been worked out
in much detail [9, 10]. Various powerful analytical and numerical tools, which are
speciþc for one space dimension, facilitate the thorough study of this paradigmatic
system. To obtain an understanding for the underlying physics responsible for such
an unusual behavior and to get an intuitive idea of what to expect in higher dimension
it is useful to have the phenomenological picture in mind that we are going to present
now.

3 The Griÿths-McCoy phase: Oþ-critical singularities

The origin of the Griýths-McCoy singularities emerging in the paramagnetic (and
also in the ferromagnetic) phase well away from the critical point are strongly cou-
pled clusters (SCC) of arbitrary size (which occur with a probability that decreases
monotonically, and often very fast, with increasing cluster size. What a SCC is be-
comes most evident in the diluted case: here they are simply the connected compact
clusters occurring for concentrations below the percolation threshold p < pc. For
the binary distribution these are analogously clusters that contain dominantly spins
interacting via the strong coupling constant J2. For a continuous distribution like the
uniform case it is more diýcult to deþne a SCC, however, it is straightforward in a
more general framework [9, 10].
Thus one ingredient for estimating the anomalous behavior of the system (anomalous
with respect to the normal behavior of the pure system in the oü-critical region) is the
probability PSCC(V ) with which such a SCC of volume V occurs (more precisely it is
the probability with which a spin belongs to s SCC of volume V ). For uncorrelated
disorder this is simply exponentially small in the volume (e.g. for the diluted case
it is PSCC(V ) = pV , or PSCC(V ) = exp(ÿcV ), with c being a positive constant.
For correlated disorder, which might be important for the above mentioned eüective
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models for the non-fermi liquid behavior PSCC(V ) is enhanced:

uncorrelated disorder PSCC(V ) ý exp(ÿcV )
weakly correlated PSCC(V ) ý exp(ÿcV þ) with û < 1
strongly correlated PSCC(V ) ý (cV )ÿý with ú > 1

Obviously in a SCC the spins have the tendency to order (ferromagnetically) when
one is close enough to the critical point. This local order manifests itself in a very
long relaxation time, in the classical case [12] as well as in the quantum mechanical
case we are considering here. An estimate for the zero temperature relaxation, or
tunneling, time ù of a SCC of volume V is, via þrst order perturbation theory,

ù(V ) ý exp(þV ) ; (2)

where þ is a constant. It is the fact that ù(V ) is exponentially large in the volume
(and not the surface of the SCC as in the classical case [12]) which leads to drastic
consequences, singularities and even divergences in physical observables in the oü-
critical region near a QPT.
The cluster distribution PSCC(V ) translates via (2) in a probability distribution for
relaxation times (more precisely the probability for a spin to relax with a characteristic
relaxation time ù):

P (ù) = PSCC

ÿ
V (ù)

þ
ü
dV (ù)

dù
ý

8<
:

ùÿ1ÿc=ü for uncorr: dis:
ùÿ1 expfÿc=þ ü (ln ù)þg for weakly corr: dis:
ùÿ1fc=þ ü ln(ù)gÿý for strongly corr: dis:

(3)
The constant constant c=þ, which depends on the distance ÿ from the critical point
through the geometric constant c and/or the stiüness constant þ, is related to a dy-

namical exponent z(ÿ), since it occurs naturally in a dimensionless scaling combination
of length and time scale: In a þnite system of linear dimension L the probability for
a spin to belong to a SCC of a particular volume V is proportional to the system size
Ld, thus, for uncorrelated disorder, in a þnite system

ùPL(ù) / Ld ü ùÿc=ü = (Lù1=z(û))d with d=z(ÿ) = c=þ : (4)

As we will see, the dynamical exponent z(ÿ) parameterizes all oü-critical singularities
in of the Griýths-McCoy phase.
To make contact with a physical observable one considers the spin-spin autocorrelation-
function C(t) = [hþzi (t)þ

z
i (0)i]av, which is usually expressed in terms of the distribu-

tion of local relaxation times by

[C(t)]av =

Z 1

ú0

dù P (ù) eÿt=ú û tÿd=z(û) (5)

where ù0 is a microscopic lower cut-oü-time and the last equality is for uncorrelated
disorder, which yields an algebraic decay. For weakly correlated one gets a decay that
is slower than algebraic and for strongly correlated disorder a logarithmically slow
decay, similar to the ultra-slow relaxation at the critical point in 1d [11, 14].
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Also static quantities are aüected by these singularities: for instance the local zero-
frequency susceptibility

[øloc(! = 0)]av =

Z þ

0

dt [C(t)]av =

Z 1

ú0

dù (1ÿ eÿþ=ú ) ü ùP (ù) (6)

has an algebraic singularity at zero temperature for uncorrelated disorder [øloc(! =
0)]av ý T d=z(û)ÿ1 with a continuously varying exponent, which is reminiscent of the
non-Fermi liquid behavior observed in rare earth alloys [8]. Similarly the local non-
linear susceptibility has an even stronger divergence, [ønl(! = 0)]av ý T d=z(û)ÿ3,
analogously for higher derivatives of the magnetization. The linear susceptibility di-

verges for z(ÿ) > d, the nonlinear susceptibility diverges for z(ÿ) > d=3, etc. Moreover,
the speciþc heat has also a singular behavior c(T ) ý T d=z(û). For correlated disorder,
these algebraic singularities become even stronger.
Before we present the results that support the above phenomenological picture, let
us emphasis that the dynamical exponent z(ÿ) is not a critical exponent, at least not
in the usual sense. As we have pointed out above, the spatial correlations are short
ranged in the oü-critical region ÿ 6= 0, only correlations in (imaginary) time are, on
average, long ranged. One might call the region, where this happens a semi-critical

line, since the system is only \half" critical, namely in the (imaginary) time direction.
One of the most important question here is, how do these oü-critical singularities in-
ÿuence the critical behavior at ÿ = 0? In particular, is there a relation between
the dynamical critical exponent zcrit and the limit limû!0 z(ÿ)? The Griýths-McCoy
singularities are completely induced by the disorder and its local, time-independent
(quenched) ÿuctuations, whereas critical behavior is usually of totally diüerent ori-
gin. In particular one might imagine that the collective critical behavior involving
length scales overrules the disorder eüects. To make the story short: in 1d disorder
completely determines the critical behavior of the system (e.g. zcrit = limû!0 z(ÿ)),
and there are strong indications that this holds in higher dimensions, too.

3.1 The one-dimensional case: Analytical and numerical results

Let us now proceed with the presentation of results conþrming the above picture. First
we consider the 1d case, in which various analytically exact predictions exist and which
can serve us also as a test for the numerical methods for higher dimensions. In 1d
a connection with Siani's model for anomalous diüusion in a disordered environment
yields an exact result for the dynamical exponent in the Griýths-McCoy phase [14].
It is given by the implicit equation"ý

J

h

ü1=z(û)
#
av

= 1 : (7)

For any distribution of J and h one obtains immediately the result 1=z = 2ÿ+O(ÿ2),
with ÿ = ([lnh]avÿ [ln J ]av)=(var[ln h] + var[ln J])ú 1 being an appropriately normal-
ized distance from the critical point. For the uniform distribution the dynamical ex-
ponent z(ÿ) is given by the solution of the equation z log(1ÿzÿ2) = ÿ ln û (= ÿ2ÿ),
which we depict in Fig. 1.
On the other hand, z(ÿ) can be obtained via the analysis of various quantities in the
system, as we have discussed above. The easiest way seems to be to determine the gap
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Fig. 1 Left: Exact result for the dynamical exponent 1=z(ÿ) in 1d for the uniform distri-
bution, see text (ÿ = 1=2 ln ý). Note the asymptotic behavior at for approaching the critical
point ÿ ! 0, namely 1=z(ÿ) = 2ÿ + O(ÿ2) and the asymptotic value limÿ!1 z(ÿ) = 1. The
thick points are the numerical estimates obtained via the analysis of the probability distribu-
tion of the gap as it is exempliüed in the right ügure. Right: The integrated gap probability

distribution ûL(ln þ1) in the disordered phase (ý > 1) for ý = 2. The dynamical exponent
z(ÿ) is extracted from the expected asymptotic form lnûL(ln þ1) = 1=z(ÿ) ln þ1+const which
is a straight line when using a logarithmic scale on the y-axis. Thus 1=z(ý = 2) ÿ 0:62.
Note that for large ý, i.e. far away from the critical point, there is essentially no system size
dependence, since the spatial correlation length is expected to be small.

÷1 (i.e. the energy diüerence between the ground state and the þrst excited state) for
þnite systems, since this is related to the longest relaxation time ùmax ý 1=÷1. From
sampling many (e.g. 105) disorder conþguration one then generates the integrated
probability distribution

ùL(ln ÷1) =

Z ln ù1

ÿ1

dyPL(y) : (8)

for the logarithm (which is more convenient) of the gaps. In Fig. 1 one can see that
the integrated probability distribution for low energies is approximately a straight
line on a log-log plot and from the slope one can estimate 1=z(ÿ) quite accurately. A
comparison with the exact data in Fig. 1 shows a good agreement.
By approaching the critical point the numerical estimate of z(ÿ) becomes diýcult: now
þnite size eüects become harder to control since the correlation length ý diverges and
an estimate of the slope of ùL is only possible if L > ý. The fact that limû!1 z(ÿ) =1
implies that the distribution of gaps becomes logarithmically broad [10].

3.2 The diluted model: The percolation transition as a QPT

Next let us consider higher dimensions d > 1, and here we focus on uncorrelated
disorder exclusively. We start with the diluted case, which is special, since here a
percolation transition determines the critical and oü-critical singularities. We focus
on the region around the percolation threshold p = pc at small enough transverse
þelds û, where the transition line in a p-û phase diagram is vertical [16], see Fig. 2.
Close to pc the system consists of non-percolating clusters with a size distribution

P (V ) ý V ÿú exp

ý
ÿ
aV

ýD

ü
with ý ý jpÿ pcj

ÿÿp ; (9)
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where üp is the correlation length exponent and D is the fractal dimension of the
percolating cluster. Hence, one obtains for the dynamical exponent z(ÿ)

d=z =

û
ÿ ln(1ÿ p)=þ for pú pc

a=þýD for p! pc :
(10)

From (10) one concludes that z diverges algebraically at pc [16]

z / jpÿ pcj
ÿDÿp for p! pc and û ù ûM : (11)

This prediction can again be checked numerically, this time via quantum Monte-
Carlo simulations [16] (using a continuous imaginary time cluster algorithm [15]) of
the site-diluted transverse Ising model in 2d. The gap, that we considered in the
1d case, remains inaccessible here, therefore we considered the integrated probability
distribution of the local susceptibility øloc(! = 0) given by (6), which is related to the
inverse gap øloc(! = 0) ý 1=÷1, i.e. proportional to the relaxation time ù [3, 10]. The
analysis of the asymptotic slope of this distribution yields the numerical estimates for
the dynamical exponent z(ÿ) and the agreement with the prediction (11) is good, as
can be seen from Fig. 2.
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Γ

Γ
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M

0 1

quantum
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ferromagnetic phase

c
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0.1

1

0.1 1
∆p

d / z

Γ=1.0
(slope=2.53)

Γ=0.7
(slope=2.51)

Fig. 2 Left: The phase diagram of the diluted transverse Ising ferromagnet. Tc is the
transition temperature of the pure Ising ferromagnet (e.g. Tc = 2:26 in 2d, Tc = 4:51 in 3d),
ýc is the critical transverse üeld of the pure transverse Ising model at T=0 (e.g. ýc = 1 in
1d in which case Tc = 0, ýc = 3:04 in 2d), and pc is the percolation threshold (e.g. pc = 0:5
for bond dilution and pc = 0:41 for site dilution in 2d). Note the vertical line in the (p,ý){
plane at pc. Right: The estimate of the exponent d=z obtained by analyzing the probability

distribution of the local susceptibility. The x-axis is úp = jp þ pcj with pc = 0:59, the
percolation threshold for site dilution in 2d. The value of Dýp obtained from the percolation
theory is known to be Dýp ' 2:57. The agreement with the prediction (11) is good.

3.3 The random ferromagnet in d > 1

Thus for the diluted case in higher dimension d > 1 we encounter a situation that is
very similar to d = 1. However, the underlying physics in the diluted case is a geo-
metric phenomenon, the percolation transition, which is absent for other generic dis-
tributions like the uniform distribution, which we study next. Via extensive quantum
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Fig. 3 Left: The integrated probability distribution of the local susceptibility üi(ln! = 0)
of the 2d random TIFM in the Griþths-McCoy region at ý = 6:0. The systems sizes
L are larger than the spatial correlation lengths, which is small that far away from the
critical point (ý > ýc ÿ 4:2). There is, however, a dependency on the system size in the
imaginary time direction, which is û, the inverse temperature, since here the system has
long ranged correlations. Therefore û has to be chosen large enough to read où the correct
slope of the tail of the probability distribution. Right: The value of d=z(ý) obtained from

analyzing the integrated probability distribution of üloc(ln! = 0). The vertical line indicates
the (approximate) region of the critical point at ýc ý 4:2, the open circle corresponds to
z(ýc) =1 and the horizontal line at d=z = 1 indicates the expected limit limÿ!1 z(ý) = d.

Monte-Carlo simulations that utilize a continuous imaginary time cluster algorithm
[15], which is very much in the spirit of other continuous time quantum Monte-Carlo
algorithms [17, 18], the phase diagram of this system has been estimated recently
[15]. The QPT of this system turns out to be located at ûc û 4:2 [15], so that for
û larger than this value spatial correlations should be short ranged. However, due
to the presence of strongly coupled regions in the system the probability distribution
of excitation energies (essentially inverse tunneling times for these ferromagnetically
ordered clusters) becomes extremely broad. Consequently we expect the probability
distribution of local susceptibilities to have an algebraic tail at T = 0 [10, 3]

ù(lnøloc) û ÿ
d

z(û)
lnøloc (12)

where ù(lnøloc) is the probability for the logarithm of the local susceptibility øi at
site i to be larger than lnøloc. The dynamical exponent z(û) varies continuously with
the distance from the critical point and parameterizes the strengths of the Griýths-
McCoy singularities also present in other observables. At þnite temperatures ù is
chopped oü at û, and close to the critical point one expects þnite size corrections as
long as L or û are smaller than the spatial correlation length or imaginary correlation
time, respectively. We used û ù 1000 and averaged over at least 512 samples. In Fig. 3
we show as an example data for ù(lnøloc) at û = 6:0. From the asymptotic slopes 0:39
one derives via (12) the estimates z(û = 6) = 5:1. Collecting the estimates for z(û)
for other values of û one gets strong indications for a divergence limÿ!ÿc z(û) = 1,
as already observed in the one-dimensional case. This concurs with investigations at

the critical point, where zcrit is also found to be inþnite [21].
One is confronted with the intriguing question, why the one-dimensional and the two-
dimensional random bond ferromagnet in a random transverse þeld behave very simi-
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lar, at the quantum critical point as well as in the Griýths-McCoy phase. One might
speculate, from the viewpoint of the real space renormalization group treatment car-
ried through for the one-dimensional case [9], that the disorder in the two-dimensional
case renormalizes via the decimation of bonds and sites to a kind of randomness that
is reminiscent of bond or site dilution, for which a percolation transition occurs where
z can be shown to diverge [16]. Thus, bearing such a RG picture in mind, also in the
fully connected random bond ferromagnet the critical point is governed by a percola-
tion þx-point as the diluted case and the physics emerging here (quantum activated
dynamics at the critical point, z(ÿ ! 1) etc.) should be identical. Work in this
direction is actually in progress [22].

4 The Bose glass: The Griÿths-McCoy phase of localized bosons

Concluding we should mention that similar phenomena are observed in another sys-
tem: the disordered boson-Hubbard model for the superconductor-to-insulator tran-
sition in amorphous superconducting þlms [5] deþned by the Hamiltonian

H = ÿt
X
hiji

(a+i aj + aia
+
j ) +

U

2

X
i

n2i ÿ
X
i

öini (13)

where hiji are nearest neighbor pairs on a square lattice, a+i (ai) are boson creation
(annihilation) operators, ni = a+i ai counts the number of bosons at site i, U is the
strength of an on-site repulsion and öi is a random chemical potential. The model (13)
is usually considered in the \phase-only" approximation [23], where amplitude ÿuctu-
ations in (13) are integrated out. Assuming that the complex þeld ø has the simple

form øi = jø0je
iø̂i , where õ̂i is the phase operator conjugate to the number operator

n̂i with commutation relation [õi; nj ] = iÿij , one gets the quantum-phase Hamiltonian

HQPH = ÿK
X
hi;ji

cos(õ̂i ÿ õ̂j) +
U

2

X
i

n̂2i ÿ
X
i

(ö+ vi)n̂i ; (14)

where n̂i now measures the deviation from a mean density. Fig. 4 shows a schematic
phase diagram of this quantum phase model (14) in the case of weak disorder vi 2
[ÿú;+ú] with ú < 0:5.
A phase very similar to the Griýths-McCoy phase in magnetic systems occurs here,
it is the Bose glass phase that is not superÿuid/superconducting any more due to
disorder induced localization of the bosons but still compressible (in contrast to
the Mott-insulator). The one-particle Greens-function Gloc(ù) = [hai(ù)a

+
i (0)i]av ý

[hei[ø̂r(ú
0)ÿø̂r(ú)]i]av is actually also singular in this phase. The probability distribu-

tion of the local (zero-frequency) superÿuid susceptibility øloc =
R þ
0
dùGi(ù) has an

algebraic tail, as can be demonstrated via quantum Monte-Carlo simulations, see
Fig. 4. This is completely equivalent to the power-law distributions encountered in
the Griýths-McCoy phase in the magnetic systems, however, the exponent does not
change here: z(K) = 2 = zcrit throughout the Bose glass phase.

I would like to express my sincerest gratitude to my collaborators F. Igløoi, N. Kawashima, J.
Kisker, T. Ikegami, S. Miyashita and A. P. Young. This work was supported by the German
research foundation (DFG).
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actually a localization transition. At point 2 the gap closes when entering the Bose glass
phase due to local low-energy excitations. Right: The probability distribution P (lnüloc)
of the local susceptibility for various values of K < KC = 0:247 in the Bose glass phase
(ú = 0:5; ú = 0:5). The system size is L = 6 and û = 200. For K = 0:19, also data for
L = 4 and L = 10 are shown, which is indistinguishable from L = 6. The dashed line has
slope þ1, which implies d=z(K) = 1, i.e. z(K) = d(= zcrit) = 2.
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