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Abstract

We discuss various applications of exact combinatorial optimization methods in the
statistical physics of disordered systems. The physical systems we consider are elastic
manifolds and elastic media with and without periodic potential. The algorithms
we use find the exact ground states of these systems in polynomial time and allow
for a thorough finite size scaling analysis that give accurate results for the universal
properties, i.e. in particular critical exponents, of these systems.
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1 Introduction

The physical properties of solid materials which contain a substantial degree
of quenched disorder, so called disordered systems, have been an experimental
and a theoretical challenge for many decades. The different thermodynamic
phases emerging in random magnets, the aging properties and memory ef-
fects of spin glasses, the disorder induced conductor-to-insulator transition in
electronic or bosonic systems, the collective behavior of magnetic flux lines in
amorphous high temperature superconductors, and the roughening transition
of a disordered charge density wave systems are only a few examples for these
fascinating phenomena that occur due to the presence of quenched disorder.

Analytic studies of models for these systems are usually based on perturbation
theories valid for weak disorder, on phenomenological scaling pictures or on
mean-field approximations. Therefore the demand for efficient numerical tech-
niques that allow the investigation of the model Hamiltonians of disordered
systems has always been high. Three facts make life difficult here: 1) The
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regime, where disorder effects are most clearly seen, are at low temperatures
— and are even best visible at zero temperature; 2) the presence of disorder
slows the dynamics of theses systems down, they become glassy, such that
for instance conventional Monte-Carlo or molecular dynamics simulations en-
counter enormous equilibration problems; 3) any numerical computation of
disordered systems has to incorporate an extensive disorder average.

In recent years more and more model systems with quenched disorder were
found that can be investigated numerically 1) at zero temperature, 2) without
equilibration problems, 3) extremely fast, in polynomial time (for a review on
these developments see [1,2] and [3] for an introduction to the non-expert).
This is indeed progress, which became possible by the application of ezact
combinatorial optimization algorithms developed by mathematicians and com-
puter scientists over the last few decades. This gift is not for free: first a map-
ping of the problem of finding the ezact ground state of the model Hamiltonian
under consideration onto a standard combinatorial optimization problem has
to be found. If one is lucky, this problem falls into the class of P-problems,
for which polynomial algorithms exist. If not, the intellectual challenge for the
theoretical physicist remains to reformulate the model Hamiltonian in such a
way that its universality class is not changed but a mapping on a P-problem
becomes feasible. In this paper we review some of the recent progress that has
been made in this direction.

2 Elastic manifolds

A system of strongly interaction (classical) particles or other objects, like mag-
netic flux lines in a type-II superconductor, or a charge density wave system
in a solid, will order at low temperatures into a regular arrangement a lattice
(crystal lattice or flux line lattice). Fluctuations either induced by thermal
noise (temperature) or by disorder (impurities, pinning centers) induce devi-
ations of the individual particles from their equilibrium positions, see Fig. 1.
As long as these fluctuations are not too strong an expansion of the poten-
tial energy around these equilibrium configuration might be appropriate. An
expansion up to 2nd order is called the elastic description or elastic approx-
imation, which in a coarse grained form (where the individual particles that
undergo displacements from their equilibrium positions do not occur any more
and are replaced by a continuum) reads then

Hopy = / dr(Vu)? " S [u(r) — u(r)] (1)
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Fig. 1. Left: Sketch of a crystal lattice of particle that is slightly distorted by
fluctuations. Right: A one-dimensional example, which is equivalent to a directed
polymer in a random 2d environment or the KPZ equation in 1+41d.

where u(r) is the displacement field. The right part of this equation is the
lattice version of the continuum description on the left, which is most conve-
niently studied in numerical approaches.

The effect of impurities, i.e. frozen in or quenched disorder, is described by a
random potential

Hmdz/mvmmny 2)

Usually one takes V to be a Gaussian, uncorrelated random variable. The
lattice version of the resulting Hamiltonian

Hzgw_wf+zmw) (3)

and the resulting configuration space for the 1d case is shown in Fig. 1 (this
case is actually in the same universality class as the Kardar-Parisi-Zhang
(KPZ) equation describing surface growth).

At low temperatures the physics of the systems described by Hamiltonian (3)
is dominated by the disorder so that their universal geometrical properties
can directly be studied at zero temperature. At T = 0 the elastic manifold in
a random environment (3) is in the state of lowest energy and its universal
properties can be deduced by studying the average transverse fluctuations
in the ground state, the roughness: w? = ¥;(u; — u)? o LS. The universal
roughness exponent is ( = 2/3 in d = 1 (exact) and ( = 0.41 in d = 2 and
¢ =0.22 in d = 3 (numerical, [4]).

How to solve the problem of finding the exact minimum energy configuration
of (3)? The displacement configuration {u} forms actually an interface in d+1
dimension and one can therefore map (3) onto an interface Hamiltonian for a
random bond Ising ferromagnet (RBIM) with anti-periodic boundary condi-
tions (see Fig. 2). For this problem one can apply the minimum-cut/maximum-
flow algorithm from combinatorial optimization which has a polynomial com-
plexity and is therefore superior to any stochastic method like Monte-Carlo
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Fig. 2. Left: Sketch of a 2d (RBIM) with anti-periodic boundary conditions. Broken
lines represent weak bonds, full lines strong bonds, the spin configuration with
lowest energy defines an interface, as indicated, and corresponds to the minimum
cut in the corresponding network flow problem. Right: An optimal interface in the
111-direction of a 3d RBIM corresponding to the ground state configuration of a 2d
elastic media with scalar displacement field (from [4]).

or simulated annealing. The aforementioned exponents are then estimated by
performing a finite size scaling analysis of roughness data averaged over typi-
cally 10* different disorder configurations.

3 Periodic elastic media

Flux line arrays like the Abrikosov flux line lattice or charge density wave
systems have an important symmetry: The Hamiltonian has, for instance, to
be invariant under a global shift of the displacement field by multiples of the
lattice constant (see Fig. 3), since this gives, up to boundary term which can
be neglected in the infinite systems size limit, the same flux line configuration:
H{u} = H{u + a}. The elastic energy (1) definitely has this symmetry, but
the random potential Vigngom in (2) has to be modified. Keeping only the
first harmonics the most commonly studied case is (one can show that higher
harmonics are indeed irrelevant in the RG sense)

Vr,u(r)] = cos[2m u(r)/a — O(r)], O(r) € [0,27r] random. (4)

The complete lattice Hamiltonian then reads

— H= / dr{(Vu)? + cos[2r u(r) — O(x)]} (5)



Fig. 3. A 2d flux line array. The straight vertical lines indicate the equilibrium
position of the individual flux lines without fluctuations.

A naive Flory argument yields for the mean transverse fluctuations (at 7' = 0)
(u?)y < In(L/L¢) in d < 4, but in 2d more accurate functional renormalization
group calculations yield (u?) o< In®(L/L¢), where L¢ is the Larkin length.

Again the ground state of the Hamiltonian (5) can computed in polynomial
time by realizing that the 7" = 0 configuration of displacement field corre-
sponds to the optimal interface in a RBIM, but now with periodic disorder
due to the symmetry requirement (4), which is then again a Min-cut/max-flow
problem [5]. Alternatively in 2d the interface problem is also equivalent to a
solid-on-solid model on a disordered substrate, which amounts to a minimum-
cost-flow-problem (also solvable in polynomial time [6]) or to a dimer covering
model on a hexagonal lattice with random weights, which amounts to a min-
imum weighted matching problem [7]. The aforementioned predictions, i.e.
logarithmic roughness in 3d and log-square roughness in 2d, have been con-
firmed with extensive studies using these mappings and algorithms.

A further enrichment of the physics in these elastic media is provided by the
presence of a periodic potential, like a lattice potential, whose periodicity,
say p, is commensurate with the periodicity a of the elastic medium. The
periodic potential favors the flat state (u = 0) of the elastic medium whereas
the random potential tries to push it into a rough state. These competition
of pinning forces leads to roughening transition for strong enough disorder in
dimensions d > 2 [8]. This new phase transition can be investigated via ground
state calculations by incorporating the periodic potential into the Hamiltonian
for an elastic medium:

H= /ddr [%|Vu\2 — vcos(pu) + ncos(u — ) (6)

On a coarse-grained level, the medium can be described by an integer height
variable {hy} representing a (3 + 1)-dimensional surface on a simple cubic
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Fig. 4. Scaling plots of the magnetization for p = 2 (a), p = 3 (c), p = 4 (d), and
the susceptibility for p = 2 with v/v = 2.90 (b). Parameters used in the plots are
mentioned in the text.

lattice with sites x € {1,...,L}3. Creating steps costs elastic energy and
the surface is subjected to a random pinning potential. These effects plus the
periodic potential are incorporated in the following solid-on-solid (SOS) model
Hamiltonian

H= Z J(hx,X);(hy,y)|hx - hy| - Z"?x COS[(QW/p)hx - (PX] ) (7)

(%,¥)

where the first sum runs over nearest neighbor pairs (x,y) on a simple cubic
lattice. The Hamiltonian has to be be invariant under a global shift h — h+p,
which is inherited from the symmetry under ¢ — ¢ + 27 of the continuum
Hamiltonian (6). Hence one imposes a periodicity in the step energies J by
J(htpx);(W+py) = J(hx)i(w,y)- Convenient choices for the disorder are a uniform
distribution for 0 < ¢y < 27 and 0 < 1y < V and an exponential distribution,
P(J) = Jy e '/% for .J > 0. The ground state of this Hamiltonian finds again
its analogue in an optimal interface in a 4d RBIM with the appropriate bond
strengths taken from (7).

The numerical study of the 2d case [9] shows indeed that the interface, and
therefore the elastic medium is always asymptotically rough, independent of
disorder strength and periodicity. In 3d a roughening transition appears at
a critical ratio A = V/J; [10]. The order parameter is m,(L, A) = (|e*™=|)
and the corresponding susceptibility x, = L3({|e?™h=/P|2) — (|e2rth=/P|)2) A
thorough finite size scaling analysis [10] yields the critical exponents v ~
1.3 (correlation length exponent), 8 = 0.05 (order parameter exponent), and
v/v =~ 2.9 (susceptibility exponent), see Fig. 4, which deviate significantly
from the functional renormalization group predictions [8].



4 Conclusion

We have shown how ground state calculations can reveal a lot of the physics
contained in elastic glass models at zero temperature. In this context an in-
triguing question is: in how far is the elastic approximation justified? Would
topological defects like dislocations occurring in the physical system at hand
but not contained in the elastic description actually proliferate and destroy the
elastic glass phase? In 2d this question has been answered in the affirmative
[11], but a numerical study in 3d of this important, if not crucial question, is
still lacking. We hope to have demonstrated that combinatorial optimization
methods are an extremely valuable tool in studying the statistical physics of
disordered systems — exemplified by the field of elastic glass models.
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