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Abstract – We study the active 4-state Potts model (APM) on the square lattice in which active
particles have four internal states corresponding to the four directions of motion. A local alignment
rule inspired by the ferromagnetic 4-state Potts model and self-propulsion via biased diffusion
according to the internal particle states leads to flocking at high densities and low noise. We
compute the phase diagram of the APM and explore the flocking dynamics in the region, in which
the high-density (liquid) phase coexists with the low-density (gas) phase and forms a fluctuating
band of coherently moving particles. As a function of the particle self-propulsion velocity, a
novel reorientation transition of the phase-separated profiles from transversal to longitudinal band
motion is revealed, which is absent in the Vicsek model and the active Ising model. We further
construct a coarse-grained hydrodynamic description of the model which validates the results for
the microscopic model.
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Introduction. – Active matter systems, natural or ar-
tificial, consist of a large number of active particles that
consume energy to self-propel or exert mechanical forces
on the surroundings. While the consumption of energy
from the surroundings happens at a single particle level,
the interactions between individual particles either occur
directly or are mediated by a surrounding medium. The
particles exhibit collective motion leading to the sponta-
neous emergence of synchronized motion of large clusters
of self-propelled individuals denoted as flocks, where the
typical size of the clusters is significantly larger than the
size of an individual [1–4].

The flocking transition is an out-of-equilibrium phe-
nomenon and abundant in nature [5]: from human
crowds [6,7], mammalian herds [8], bird flocks [9], fish
schools [10,11] to unicellular organisms such as amoebae,
bacteria [12,13], collective cell migration in dense tis-
sues [14], and sub-cellular structures including cytoskele-
tal filaments and molecular motors [15–17], they all show
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a remarkable active self-organization. The physics of
flocking is also prevalent in nonliving substances such as
rods on a horizontal surface agitated vertically [18], self-
propelled liquid droplets [19], liquid crystal hydrodynam-
ics, and rolling colloids [20].

A widely studied computational model capturing the
essential physics of the flocking phenomenon in an active
matter system is due to Vicsek and coworkers [21]. It
consists of many self-propelled particles that tend to align
with the average direction of the particles in the neigh-
borhood and displays a flocking transition from a strong
noise, low-density homogeneous phase to a weak noise,
high-density ordered phase. After the landmark emer-
gence of the Vicsek Model (VM), Toner and Tu [22] re-
vealed the nature of the order emerging through flocking
via a continuum theory and found that the coherent mo-
tion of a flock is a spontaneous broken-symmetry phase
without a preferred motion direction. The rich physics of
the VM [23] motivated numerous analytical and compu-
tational studies that contributed significantly to the un-
derstanding of the principles of the flocking transition.
They form a wide class of Vicsek-like models, belong-
ing to the active XY universality class, for polar particles
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aligning with ferromagnetic interactions [24–32]. Other
kinds of particles have also been studied in the litera-
ture [33,34] aligning with nematic interactions such as the
self-propelled rods model [35–38] for polar particles and
active nematics [39–41] for nematic particles.

Recently, in the context of the active Ising model (AIM),
Solon and collaborators [42–44] argued that the flocking
transition can be seen as a liquid-gas phase transition sim-
ilar to the VM [28]. The flocking transition reveals itself as
a transition from a disordered gas to a polar ordered liquid
through a liquid-gas coexisting phase where polar ordered
bands travel in a disordered background. The continuous
symmetry of the VM is replaced in the AIM by the dis-
crete symmetry which allows understanding the flocking
transition in a simpler and more tractable manner.

The 4-state active Potts model (APM) addressed in this
letter has four internal states corresponding to four motion
directions and is defined on a two-dimensional lattice with
coordination number 4. Its two main ingredients leading
to flocking are the local alignment interactions and self-
propulsion via biased hopping to neighboring sites with-
out repulsive interactions. A 4-state model with hard-core
interactions and different transition rules was considered
in [45], displaying a rich but very different scenario of self-
organized patterns. In this letter, we ask how much of the
features of the flocking transition of the AIM can also be
observed in the APM when particles can move in more
than two directions. Consequently, besides a transverse
band movement observed in the AIM, are longitudinal
band velocities possible in the APM? Is the nature of the
transition in the 4-state APM in the universality class of
the equilibrium 4-state Potts model? We address these
issues by analyzing the flocking transition of the 4-state
APM on a square lattice via Monte Carlo simulations, fol-
lowed by a hydrodynamic theory supporting the numerical
results.

The model. – We consider an ensemble of N parti-
cles defined on a two-dimensional lattice with coordination
number q (square lattice for q = 4 and triangular lattice
for q = 6). Each particle is in one of q discrete internal
states corresponding to a movement in one of the q lattice
directions. Each site can be occupied by multiple particles
and each particle can either flip to a different spin state
or hop to the nearest neighbor site. The alignment (i.e.,
flip) probability for particles on site i are defined by the
local Hamiltonian

Hi = − J

2ρi

ρi∑

k=1

∑

l ̸=k

(qδσk,σl − 1), (1)

where the double sum runs over all particle pairs (k, l) in
site i, σk denotes the state of the k-th particle on site
i: σk ∈ {1, . . . , q}, and J is the strength of the cou-
pling between different particles on the same site. The
number of particles on site i is ρi =

∑q
σ=1 nσ

i with
nσ

i =
∑ρi

k=1 δσk,σ, the number of particles in state σ. The

local magnetization in the direction σ on site i is

mσ
i =

ρi∑

k=1

(qδσ,σk − 1)
q − 1

=
qnσ

i − ρi

q − 1
. (2)

For q = 2, we retrieve the expression of local Hamiltonian
and magnetization for the AIM [43]. A particle on site i in
state σ changes its state to σ′ with the rate Wflip(σ, σ′) ∝
exp(−β∆Hi), where ∆Hi = qJ(nσ

i − nσ′

i − 1)/ρi. More-
over, the particle performs a biased diffusion and jumps
to the neighboring site in the direction p ∈ {1, . . . , q} with
the rate Whop(σ, p) = D[1 + ϵ(qδσ,p − 1)/(q − 1)] where ϵ
is the self-propulsion parameter.

A Monte Carlo (MC) simulation of the stochastic pro-
cess defined in this way evolves in unit Monte Carlo
steps (MCS) ∆t resulting from a microscopic time
∆t/N , N being the total number of particles. Dur-
ing ∆t/N , a randomly chosen particle either updates
its spin state with probability pflip = Wflip(σ, σ′)∆t or
hops to one of the q neighboring sites with probability
phop =

∑q
p=1 Whop(σ, p)∆t = qD∆t. The probability

that nothing happens during this time is represented by
pwait = 1 − pflip − phop. An expression for ∆t can be ob-
tained by minimizing pwait: ∆t = [qD + exp(qβJ)]− 1.

Results. – The 4-state APM is studied on a square lat-
tice of linear dimensions L = 200 with periodic boundary
conditions, where individual particle states σ = {1, 2, 3, 4}
correspond to the movement directions right, up, left and
down, respectively. In the following, we set the diffusion
constant D = 1 and the coupling constant J = 1. Re-
maining parameters β = 1/T regulates the strength of the
noise, ρ0= N/L2 defines the average particle density (i.e.,
average number of particles at a given site), and ϵ controls
the self-propulsion velocity of the particles.

In fig. 1, snapshots demonstrate the evolution of the
flocking in the 4-state APM starting from a random ini-
tial configuration. One sees that, first, many clusters of
particles move in all 4 directions. Upon collision, these
clusters coalesce and grow in size, until a single band is
formed, in which all particles move in the same direc-
tion. Interestingly, a spontaneous longitudinal motion of
the band is observed, in contrast to the transverse mo-
tion of the AIM [42–44], which will be analyzed further
below.

Figure 2 shows snapshots from the stationary states and
characterizes the three different phases. The snapshots
shown in (a), (b), and (c) correspond to the magnetiza-
tion and density profiles shown in (d), (e), and (f) with
ϵ = 0.9. A disordered gaseous phase appears in (d) at
a relatively high temperature (β = 0.7) and low density
(ρ0 = 1) with average local magnetization ⟨mσ=1

i ⟩ ∼ 0.
Characteristics of a polar ordered liquid phase (f), ob-
served at a relatively low temperature (β = 0.9) and high
density (ρ0 = 4), where the equilibrated average magne-
tization (⟨mσ=1

i ⟩ ̸= 0) nearly equals the average density.
The transition from a gas to a polar liquid phase occurs
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Fig. 1: Flocking process in the 4-state APM: snapshots of the
evolution for ϵ = 2.2, β = 0.8 and ρ0 = 4 at times t = 24 MCS,
t = 28 MCS, and t = 216 MCS (from left to right). (a)–(c)
Particle density, color coded according to the color bar on the
right. (d)–(f) Particles move in 4 directions corresponding to
the snapshots (a)–(c). Legend: red: right; green: up; blue:
left; black: down; white: empty.
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Fig. 2: Three different phases of APM for ϵ = 0.9. Instanta-
neous snapshots at t = 104 MCS display gas, coexisting liquid-
gas and liquid phases in (a), (b), and (c), respectively. The
disordered gaseous state of (d) at high temperature and low
density (β = 0.7, ρ0 = 1), passes through a stable liquid-gas
coexistence phase (e) at intermediate temperature and den-
sity (ρ0 = 3 and β = 0.8) and becomes a polar ordered liq-
uid phase (f) at low temperature and high density (β = 0.9,
ρ0 = 4).

through a liquid-gas coexistence phase (e) at intermedi-
ate density (ρ0 = 3) and temperature (β = 0.8), where
the density and magnetization of the liquid phase can be
significantly large depending on the average particle den-
sity ρ0. In this phase, the band of polar liquid propagates
transversely on a disordered gaseous background.

Segregated density and magnetization profiles of the
liquid-gas coexistence phase in fig. 3(a) and fig. 3(b), re-
spectively, suggest that the width of the polar liquid band
increases with the initial average density ρ0 and behaves
as in the AIM [42–44]. Interestingly, the broadening of
the band does not affect the equilibrium densities of the
liquid (ρliq) and the gaseous (ρgas) phases. Notice, the
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Fig. 3: Phase-separated average density (a) and σ = 3 state
magnetization (b) profiles of liquid (ρliq) and gaseous (ρgas)
phases with increasing initial ρ0 are shown. A complete gaseous
and liquid phases correspond to ρ0 = 1 and 6, respectively,
keeping ϵ = 0.9 and β = 0.7 fixed.

nonvanishing magnetization of the liquid band (mliq ̸= 0)
in fig. 3(b) approaches the density of the liquid phase indi-
cating the dominance of a single internal state within the
band. In the low-density gaseous phase, magnetization
vanishes completely (mgas = 0) due to the mixing of all
states with equal probability. Figure 3 also demonstrates
the phase transition from the gas to the co-existence phase
to the liquid phase for constant thermal noise and increas-
ing ρ0. Keeping β = 0.9 and ϵ = 0.6 constant, one sees
that ρ0= 1 falls into the gaseous phase whereas ρ0= 6 is
in the liquid phase.

A novel feature of the flocking phenomenon in the APM
is documented in fig. 4: The snapshots in (a)–(c) show the
orientation of the band formed in the stationary state for
increasing values of the effective velocity. For ϵ = 0.9,
the particles in the band move in the transverse direction
(implying that the whole band moves), whereas for ϵ = 1.8
and 2.7 the particles move in the longitudinal direction
(implying that the band is immobile up to fluctuations).

To ensure that our findings are not artifacts of any al-
gorithmic implementation, we studied the q = 6 of the
q-state APM [46]. The 6-state APM lives on a triangu-
lar lattice with periodic boundary conditions to make the
number of states and biased hopping directions equiva-
lent, without altering the expressions of Wflip and Whop.
In complete analogy to the q = 4 scenario, we observe
a reorientation transition from transversal motion of co-
existence band at small ϵ to longitudinal motion at large ϵ
for a fixed β. An extensive study of the 6-state APM will
be presented elsewhere [46].

We further emphasize that in the simulations of the
4-state APM, irrespective of the initial conditions (e.g.,
completely random or a vertical band or a horizontal band
or a square bubble of liquid on a gaseous background),
for large ϵ (greater than a threshold ϵ = ϵr, representing
the reorientation transition), we always get a longitudi-
nal motion of the self-propelled band. To quantify this
transition we introduce the orientational order parameter,
∆θ = ⟨cos(θ − φk)⟩, where the angle θ measures the band
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Fig. 4: (a)–(c) Snapshots of the stationary bands for β = 0.8
and ρ0 = 3 at t = 105 MCS for (a) ϵ = 0.9, (b) ϵ = 1.8, and
(c) ϵ = 2.7. Colorbar represents the local particle density and
arrows indicate the direction of motion of the particles. For
ϵ = 0.9, the particle moves transversal to the band orientation,
whereas for ϵ = 1.8 and 2.7, the particle movement direction is
longitudinal. (d) Orientational order parameter ∆θ, measuring
the average difference between the band orientation and parti-
cle movement direction, as a function of the effective velocity
ϵ for β = 0.7 and 0.8, and ρ0 = 3. (e)–(f) Phase diagrams of
the APM. (e) Phase diagram in the (ϵ, ρ0 ) plane for β = 0.7.
The reorientation transition line from transverse to longitu-
dinal particle motion in the stationary bands, indicated by a
black dotted line, is independent of ρ0 . (f) In the (T, ρ0 ) plane
the solid curves with circles (ρgas) and squares (ρliq) at ϵ = 2.7,
separate three phases: gas (G), gas-liquid coexistence (G+L)
and liquid (L) as ρ0 increases. The dotted line indicates the
transition density ρ∗ for ϵ = 0.

orientation, φk the movement direction of individual par-
ticles k inside the band and ⟨. . .⟩ is the average over time
and particles. The data shown in fig. 4(d) as a function
of the effective velocity ϵ for fixed β and ρ0 demonstrate
a discontinuous transition that occurs at larger values for
ϵ with increasing β.

Based on the orientational order parameter we deter-
mined the threshold values of ϵr where the reorientation
transition happens and inserted them into the (ϵ, ρ0)-
phase diagram shown in fig. 4(e). At a fixed ρ0, the bin-
odals ρgas and ρliq are computed from the time-averaged
phase-separated density profiles. It turns out to be a hor-
izontal line for fixed β, i.e., independent of ρ0. Two bin-
odals separate the three phases, gas, liquid and gas-liquid
coexistence region, and merges at the density ρ∗ (e.g.,
ρ∗ ≃ 3.10 when ϵ = 0 at β = 0.7). For completeness,
fig. 4(f) shows the temperature-density (T, ρ0) phase dia-
gram for ϵ = 2.7 where ρgas and ρliq are the coexistence
lines. The dashed line represents ρ∗ at ϵ = 0 which mani-
fests a direct order-disorder phase transition without going
through a co-existence regime.

Next, we checked whether the flocking and reorientation
transition observed in the APM can also be predicted by
a hydrodynamic continuum theory. From the microscopic

hopping and flipping rules, we obtain the Master equation

∂t⟨nσ
i ⟩ = D

(
1 − ϵ

3

) 4∑

p=1

[⟨nσ
i− p⟩ − ⟨nσ

i ⟩]

+
4Dϵ

3
[⟨nσ

i− σ⟩ − ⟨nσ
i ⟩]

+
∑

σ′ ̸=σ

⟨nσ′

i Wflip(σ′, σ) − nσ
i Wflip(σ, σ′)⟩. (3)

For small lattice spacing a ≃ 1/L, the hydrodynamic equa-
tion in the large system size limit L → ∞ can be de-
rived for the average density of particle in the state σ:
ρσ(x, t) = ⟨nσ

i (t)⟩, where the position x corresponds to
the site i [46]. We only keep the first-order terms in the
mσ ≪ ρ expansion, where mσ = (4ρσ −ρ)/3 is the magne-
tization of the state σ from eq. (2). Assuming all magneti-
zations mσ are identically distributed Gaussian variables
with variance αmρ proportional to the local mean popu-
lation (which we verified by MC simulations of the micro-
scopic model), we obtain up to order O(m3

σ) [46]

∂tρσ = D∥∂
2
∥ρσ + D⊥ ∂2

⊥ ρσ − v∂∥ρσ

+
∑

σ′ ̸=σ

[
4βJ

ρ
(ρσ + ρσ′) − 1 − r

ρ
− α

(ρσ−ρσ′)2

ρ2

]
(ρσ − ρσ′),

(4)

where α = (4βJ)2(1 − 2βJ/3)/2 depends on the tem-
perature and r = 27αmα/8 is a new positive parameter.
D∥ = D(1 + ϵ/3) and D⊥ = D(1 − ϵ/3) are the diffusion
constants in the parallel direction e∥ = (cosφ, sin φ) and
orthogonal direction e⊥ = (sin φ, − cosφ), respectively,
with φ = (σ − 1)π/2 the angle of the direction of mo-
tion in state σ. v = 4Dϵ/3 represents the self-propulsion
velocity along the direction e∥. Correspondingly ∂∥ and
∂⊥ are the derivatives in the parallel and orthogonal direc-
tion, respectively, ∂∥ = e∥ · ∇ and ∂⊥ = e⊥ · ∇. Note that
the simple mean-field theory, neglecting fluctuations (i.e.,
setting r = 0), does not predict stable phase-separated
profiles and only gives the trivial homogeneous solution,
as in the AIM [42,43]. In the following, we analyze the
refined mean-field theory (4) and set D = 1, J = 1 and
r = 1 defining a scaling for the time, temperature and
density.

We solve eq. (4) numerically using FreeFem++ [47], a
software based on the finite element method [48], for dis-
crete time and on a regular triangular mesh grid. We
obtain the disordered gas, polar ordered liquid, and liquid-
gas coexisting phase as for the microscopic model, together
with transversely and longitudinally moving bands (data
not presented here). The reorientation transition observed
above in the microscopic model is also predicted by our hy-
drodynamic theory, as is shown in fig. 5 for β = 0.75. Sev-
eral phase-separated density profiles averaged along the
y-axis and along the x-axis are shown in fig. 5(a) and
fig. 5(c), respectively, for increasing values of ρ0. For a
density ρ0 = 1.33, fig. 5(b) shows the transversal band
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Fig. 5: Reorientation transition from hydrodynamics.
(a)–(b) Phase-separated density profiles for ϵ = 0.3 and β =
0.75 exhibiting a transverse band motion where the gas den-
sity is ρgas = 1.16 and the liquid density is ρliq = 1.60. (c)–(d)
Phase-separated density profiles for ϵ = 2.5 and β = 0.75 ex-
hibiting a longitudinal band motion with ρgas = 0.805 and
ρliq = 2.32. (a) and (c) represent the marginal density ρ(x)
and ρ(y), respectively, for several values of ρ0 . (b) and (d)
demonstrate the reorientation transition for ρ0 = 1.33 as we
increase the value of ϵ. Red denotes liquid phase and blue
denotes gas phase.

motion for ϵ = 0.3, where band orientation and band
propulsion are mutually orthogonal, whereas the longitu-
dinal motion is seen in fig. 5(d) for ϵ = 2.5. Note that
the colorbars in fig. 5(b) and fig. 5(d) represent particle
density where red denotes high-density liquid and blue
denotes low-density gas. The origin of the reorientation
transition lies in the decrease of the orthogonal diffusivity
D⊥ for increasing self-propulsion velocity ϵ that vanishes
at the maximum value of ϵ = 3, leading to the longitudinal
band motion for large ϵ (corresponding stability analysis
will be presented in [46]). At small velocities, parallel and
orthogonal diffusivities do not differ much and transverse
band motion emerges as in the AIM.

In fig. 6(a) and fig. 6(b), the temperature-density and
velocity-density phase diagrams are represented, respec-
tively, for ϵ = 2.5 and β = 0.75 with binodals and corre-
sponding band motions obtained using FreeFem++ [47].
The gas and liquid densities depend on the temperature
T = 1/β and the self-propulsion velocity ϵ and a phase-
separated profile can exist for ϵ > 0 and β > 1 −

√
22/8 ≃

0.413. Note that the limit Tc ≃ 2.417 is close to the one
observed for the microscopic system shown in fig. 4(f) and
is analogous to a liquid-gas critical point at infinite density
(ρc = +∞) since the disordered phase could not transform
continuously into the ordered phase due to the Z4symme-
try breaking. The AIM [43] and VM [28] break, respec-
tively, the Z2 and rotational symmetries, not the Z4 one,
explaining the absence of the supercritical region. This
behavior is given by the ordered-disordered transition line

0 5 10 15
ρ0

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

T
=

1/
β

G
G+L

L

(a)

ρgas
ρliq
ρ∗

trans
long

0 .5 1.0 1.5 2.0 2.5 3.0
ρ0

0 .0
0 .5
1.0
1.5
2.0
2.5
3.0

ϵ

G

transverse

longitudinal

G+L L

(b)

ρgas
ρliq

3.4 3.8 4 .2 4 .6
ρ0

0 .0

0 .2

0 .4

0 .6

0 .8

m
m

ax

(c)
L = 32
L = 64
L = 96
L = 128

0 .5 1.0 1.5 2.0 2.5
ρ0

0 .0

0 .2

0 .4

0 .6

0 .8

m
0/

ρ 0

(d)
stable
unstable
numerics

Fig. 6: (a), (b): phase diagrams for the hydrodynamic
equations of the APM. The solid lines represent the coex-
istence densities ρgas and ρliq of the gas and liquid phases.
(a) Temperature-density phase diagram for the physical param-
eters ϵ = 2.5 and L = 100. Reorientation transition happens
at T = 1.9 from longitudinal motion at low T to a transverse
motion at high T . The dotted line represents the ordered-
disordered transition density ρ∗ at ϵ = 0 and the critical point
is reached for Tc ≃ 2.417 and ρc = +∞. (b) Velocity-density
phase diagram for β = 0.75 and L = 100 where the reorienta-
tion transition happens at ϵ = 2.0. A first-order phase transi-
tion takes place at ϵ = 0 between ordered and disordered phases
at density ρ∗ = 4/3. (c), (d): characterization of disordered-
ordered phase transition in the purely diffusive 4-state APM.
(c) Normalized maximal magnetization mmax vs. ρ0 for lattice
size L = 32, 64, 96, and 128 is shown for β = 0.6 and ϵ = 0. The
sudden jump in the magnetization signals a possible first-order
phase transition. (d) Steady-state magnetization m0/ρ0 vs. ρ0

for β = 0.75 and ϵ = 0. A first-order phase transition takes
place when the ordered phase appears at ρ0 = ρ∗ = 4/3. The
numerical values of m0 obtained with FreeFem++ are shown
with squares for an inhomogeneous initial condition.

ρ∗ at ϵ = 0, defined by the existence of ordered solutions
of eq. (4). Two different inhomogeneous profiles are stable
for the APM: a transverse band of polar liquid at small ϵ
and large T and a longitudinal band of polar liquid at large
ϵ and small T . The values of the binodals are not contin-
uous at the reorientation transition which takes place for
T = 1.33 (β = 0.75) at ϵ = 2.0 in fig. 6(b) and for ϵ = 2.5
at T = 1.9 in fig. 6(a).

The data presented in fig. 6(c) shows the normalized
maximal magnetization among the four internal states,
denoted mmax, against density ρ0 for β = 0.6 and ϵ = 0,
where a jump in the magnetization occurs around the
transition point at ρ0 = ρ∗. Among the four different
magnetizations corresponding to four internal states, we
consider the maximum: mmax = maxσ⟨mσ

i /ρi⟩ and plot-
ted against ρ0. This discontinuity becomes sharper with
increasing system sizes and this discontinuous change of a
large mmax at a high-density ordered phase to a small
mmax ≃ 0 at a relatively lower density indicates the
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possibility of a first-order transition. Ideally, a fully or-
dered state should acquire magnetization mmax ≃ 1, how-
ever, mmax (ρ0 = 4.8) ≃ 0.77 in the ordered liquid phase
suggests that all the particles on a lattice site may not
belong to the same σ and therefore one realizes that from
eq. (2), mmax < 1.

An important observation here is that the ϵ = 0 order-
disorder transition of the APM does not appear to be in
the same universality class as the (passive) 4-state Potts
model, whereas the ϵ = 0 critical point of the AIM was
found to be in the Ising universality class [43]. Both mod-
els, AIM and APM differ from their conventional (passive)
counterparts in so far as only particles on the same site
interact ferromagnetically in the AIM and APM, whereas
in the passive Ising and Potts model spins on neighboring
sites interact ferromagnetically. For the conventional (pas-
sive) q-state Potts model, the temperature-driven transi-
tion is continuous for q ! qc and first-order for q > qc, with
qc = 4 for the square-lattice with nearest-neighbor inter-
actions and qc ≃ 2.8 for the simple-cubic lattice [49–51].
Figure 6(d) shows a discontinuous jump in the magne-
tization between the ordered and the disordered phases
at ϵ = 0, characteristic of a first-order phase transition.
From eq. (4), two ordered solutions can be extracted when
ρ0> ρ∗:

m±
0

ρ0
=

βJ

α

(
1 ±

√

1 +
(2βJ − 1 − r/ρ0)α

(βJ)2

)
, (5)

and only the solution m+
0 is linearly stable at ϵ = 0 [46].

Discussion. – In conclusion, we analyzed the flocking
transition in the two-dimensional 4-state APM. We found
a novel reorientation transition where the orientation of
the liquid bands emerging in the gas-liquid coexistence re-
gion switches from transversal (with respect to the average
particle movement direction) for small effective velocities
to longitudinal for large effective velocities. This reorien-
tation transition is a novel feature of the APM which is
absent in the AIM [43] and in the VM [28] where bands
always move in the transverse direction.

The transition of the band orientation from transverse
to longitudinal is caused by the large difference of the par-
ticle hopping rates for large values of ϵ, the velocity pa-
rameter, leading to a large difference in the orthogonal
and parallel diffusion constants, D⊥ = D(1 − ϵ/3) and
D∥ = D(1+ ϵ/3), respectively. For large ϵ (i.e., close to 3)
the characteristic time scale for longitudinal transport and
diffusion τ∥ ∼ 1/ϵ becomes therefore much smaller than
the one for transverse diffusion, τ⊥ = 1/D⊥ = (1−ϵ/3)− 1,
which destabilizes a transverse band by causing the col-
lapse of particles longitudinally and a subsequent longitu-
dinal reorientation of the the band. On the other hand,
for small velocities, the transverse band is stable due to
the dominant diffusive processes, as in the AIM. A corre-
sponding stability analysis within the hydrodynamic the-
ory confirms this scenario [46].

It has been shown [28] that in the AIM the inho-
mogeneous polar liquid bands are fully phase-separated,
whereas in the VM a smectic microphase separation
emerges in the coexistence region, which means that the
width of the polar band has a maximal size leading to a
succession of several bands. The transverse orientation of
the bands emerging in the VM has been understood within
a hydrodynamic theory [36], which predicts that the long-
wavelength instability is stronger in the broken symme-
try direction. On the other hand, in a system with self-
propelled rods and in active nematics the long-wavelength
instability is stronger in the perpendicular direction with
respect to the collective motion and this eventually gives
rise to longitudinal bands [37,38,40,41]. There is also a
theoretical understanding of the relation between band
orientation and broken symmetry direction of the three
main classes of active matter, namely the Vicsek-like mod-
els, active nematics, and self-propelled rods [33].

In contrast to the VM and AIM and active nematics, the
APM exhibits both types of collective motion: transverse
and longitudinal motion of the ordered band. It should be
emphasized that active Brownian particles with repulsive
interactions and Vicsek-like alignment rules [45,52,53] also
display both longitudinal and transverse band motions, for
small Péclet numbers (small velocities) and large Péclet
numbers, respectively, which is exactly opposite to what
happens in the APM, see fig. 4.

The reorientation transition is discontinuous and does
not depend on the average particle density. Moreover, the
zero-velocity transition of the APM is a first-order transi-
tion and thus does not fall in the same universality class
as the passive 4-state Potts model, in contrast to the q = 2
case, the AIM. Preliminary results for the 6-state APM on
the triangular lattice bears the signature of q = 4, includ-
ing the reorientation transition (details will be reported
in [46], where the limit q → ∞ will also be explored). Fur-
thermore, a generalization to repulsive interactions among
particles on the same site bears the potential for an even
larger variety of self-organization patterns.
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