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Flocking of two unfriendly species: The two-species Vicsek model
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We consider the two-species Vicsek model (TSVM) consisting of two kinds of self-propelled particles, A
and B, that tend to align with particles from the same species and to antialign with the other. The model
shows a flocking transition that is reminiscent of the original Vicsek model: it has a liquid-gas phase transition
and displays micro-phase-separation in the coexistence region where multiple dense liquid bands propagate
in a gaseous background. The interesting features of the TSVM are the existence of two kinds of bands, one
composed of mainly A particles and one mainly of B particles, the appearance of two dynamical states in
the coexistence region: the PF (parallel flocking) state in which all bands of the two species propagate in the
same direction, and the APF (antiparallel flocking) state in which the bands of species A and species B move
in opposite directions. When PF and APF states exist in the low-density part of the coexistence region they
perform stochastic transitions from one to the other. The system size dependence of the transition frequency and
dwell times show a pronounced crossover that is determined by the ratio of the band width and the longitudinal
system size. Our work paves the way for studying multispecies flocking models with heterogeneous alignment
interactions.
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I. INTRODUCTION

Active matter is a class of natural or synthetic nonequi-
librium systems composed of a large number of agents that
consume energy in order to move or to exert mechanical forces
[1–4]. An assembly of active particles behaves in complex
ways and shows collective effects such as the emergence of
coherent motion of large clusters or flocks. Flocking is observ-
able on a wide range of scales, from mammalian herds, fish
schools, and sterling flocks to amoeba and bacteria colonies,
to the cooperative behavior of molecular motors in living cells
or in vitro environments. Physical flocking of self-propelled
particles is equivalent to the appearance of long-range order
and thus related to a spontaneous breaking of a symmetry of
the system [5–8].

The Vicsek model (VM) [5] was introduced as the simplest
and prototypical model that shows a flocking transition, where
point particles with an O(2) rotational symmetry tend to align
with the average direction of motion of their neighbors while
moving at a fixed speed and being submitted to some noise.
The VM has a phase transition to a kinetic, swarmlike phase
when it approaches a critical value of the noise parameter.
By varying the noise level in the system, the density of the
individuals, and the individual radius, the Vicsek model can be
switched from a gaslike phase, in which the individuals move
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almost independently of each other, to a swarming phase, in
which individuals self-organize in clusters. Although the VM
displays a transition from a disordered low-density, high-noise
to a high-density, low-noise phase, it was shown by Solon
and collaborators [9] that the VM is best understood in terms
of a liquid-gas transition with micro-phase-separation in the
coexistence region.

Complex systems are typically heterogeneous as individ-
uals vary in their properties, their response to the external
environment and to each other [10,11]. In particular, many
biological systems that show flocking involve self-propelled
particles with heterogeneous interactions (e.g., bacterial col-
lectives typically consist of multiple species), which motivates
the study of populations with multiple species.

In Ref. [12], the collective dynamics of mixed swarming
bacterial populations composed of cells of one species but
different phenotype, specifically with different aspect ratios
(length) was experimentally studied. In contrast to the homo-
geneous system the mixture did not show macroscopic phase
separation, but locally long cells acted as nucleation cites,
around which aggregates of short, rapidly moving cells can
form, resulting in enhanced swarming speeds.

Similarly in Ref. [13], a population of single-species bacte-
ria, Escherichia coli, with antibiotics-induced heterogeneous
motility was studied, which was found to promote the spatial
segregation of subpopulations via a dynamic motility selec-
tion process. Contrastingly, in Ref. [14] a mixture of two
different swarming bacterial species was studied and it was
found that the mixed population swarms together well and
that the fraction between the species determines all dynamical
scales from the microscopic (e.g., speed distribution), to the
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mesoscopic (vortex size), and macroscopic (colony structure
and size).

Theoretically various aspects of heterogeneous systems
of self-propelled agents have been investigated. Examples
include particles and agents with varying velocities [15],
noise sensitivity [11,16], sensitivity to external cues [17], and
particle-to-particle interactions [18]. Different self-propelled
particle species were also analyzed in predator-prey scenarios
[19,20] and in the context of a nonreciprocal interaction [21].

One step further one could, for instance, ask, what happens
when two unfriendly species, each of which tries to avoid the
other one, are forced to encounter in a confined environment:
(i) Does a collective behavior emerge in this multispecies
system? (ii) If then, how do the two different species move?
(iii) What is the impact of heterogeneity on the order-disorder
phase transition? (iv) What is the spatial structure of the
ordered phase?, etc. Here we try to address these questions
by focusing on the effect of alignment interactions between
different particle species, similar to what has been done in
Ref. [22]. The latter work considered a binary mixture of
self-propelled particles described by Langevin equations and
specific interaction potentials leading to parallel, antiparal-
lel, or perpendicular alignment and a variety of collective
motion patterns was found. To allow for a detailed quantita-
tive analysis of all the emerging phases and phase diagrams,
including dynamical phenomena, we focus here on a more
simplified model, closely related to the original Vicsek model
but equipped with two particle species: the two-species Vicsek
model (TSVM) with intraspecies alignment and interspecies
antialignment.

We will show that the TSVM has a flocking transition
reminiscent of the original VM, but shows different dynamical
states (parallel and antiparallel flocking, PF and APF) in parts
of the coexistence region plus size-dependent transitions be-
tween them, and a liquid phase in which the two species move
in opposite directions. The paper is organized as follows. The
model is introduced in Sec. II. The emerging collective motion
and the phase diagrams are presented in Sec. III. The dynam-
ics of the stochastic transition between the PF and APF states
is analyzed in Sec. IV. Section V summarizes and discusses
our findings.

II. MODEL

The two-species flocking model (TSVM) that we consider
here is based on the original VM, consisting of self-propelled
pointlike particles moving in two dimensions with alignment
interactions, and comprises two different kinds of particles,
two species A and B. As a first step in studying multispecies
flocking, we assume that each particle tends to align with
particles of the same species and antialigns with particles of
the other species.

Formally there are NA (NB) active particles of species A
(B) in a two-dimensional (2D) rectangular geometry of size
Lx × Ly with periodic boundary conditions. Each one carries
an off-lattice position vector ri = (xi, yi ), a unit orientation
vector σ i = (cos θi, sin θi ) with an orientation angle θi rep-
resenting its self-propulsion direction, and a static Ising-like
spin variable si = ±1 signifying the species it belongs to
(si = +1 for an A particle and si = −1 for a B particle).

Particles are self-propelled and move at a constant speed v0 in
the direction of the orientation vector. In this paper we focus
on the equal population case NA = NB, if not stated otherwise.
The total number of particles is denoted as N .

At each discrete time step �t , a particle i interacts with
neighboring particles within a distance R0, denoted as Ni, and
evolves its orientation and position in the following way:

θ t+�t
i = θ̄ t

i + ηξ t
i , (1)

rt+�t
i = rt

i + v0σ
t+�t
i �t, (2)

where θ̄ t
i is the orientation angle of a spin-weighted sum

σ̄t
i =

∑

j∈Ni

sis jσ
t
j (3)

of orientation vectors of neighboring particles, and ξ t
i is a

scalar noise distributed uniformly in [−π, π ] satisfying
〈
ξ t

i

〉 = 0,
〈
ξ t

i ξ
s
j

〉 ∼ δtsδi j . (4)

The noise strength is controlled by the parameter η. Due to the
spin-dependent factor sis j , a particle tends to flock together
with particles of the same species (sis j = 1) and antiflock
with those of the other species (sis j = −1). The model can be
generalized to a multispecies model by introducing a general
spin variable s other than the Ising variable and a suitable
interaction factor f (si, s j ), but we restrict ourselves to the
simplest case here.

Model parameters are the particle number density ρ =
N/LxLy, noise strength η, and velocity modulus v0. The unit
of space R0 and time �t is set to be unity, R0 = �t = 1. The
particle number density of each species, which will be denoted
by ρ0, is given by ρ0 = ρ/2.

We performed numerical simulations of the stochastic
process with parallel update. We consider random initial con-
ditions by assigning random position and orientation to each
particle. After the initialization, we let the system evolve
under various control parameters for teq ∼ 105 to reach the
steady state and measure various quantities until the max-
imum simulation time tmax ∼ 106. Figure 1 shows typical
steady-state configurations at various model parameter values.
These snapshots suggest that the system exists in distinct
phases, which will be characterized in the following section.

III. COLLECTIVE MOTION AND PHASE DIAGRAMS

We find that the TSVM undergoes a liquid-gas phase tran-
sition with an intermediate phase coexistence region. In the
gas phase (low density and high noise), particles are dis-
tributed uniformly and move incoherently [cf. Fig. 1(a)]. In
the liquid phase (high density and low noise), each parti-
cle species performs collective flocking with giant density
fluctuations [cf. Fig. 1(d)]. In the coexistence region each
species forms an array of liquid bands traveling coherently
in a gaseous background [see Figs. 1(b) and 1(c)]. These
phenomena are reminiscent of the liquid-gas phase transition
in the original VM [5]. However, the species-dependent inter-
action leads to two distinct types of ordering as exemplified in
Figs. 1(b) and 1(c).
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FIG. 1. Typical configurations of the TSVM (a) in a gas state at
(ρ, η) = (0.5, 0.3), (b) in a parallel flocking (PF) state at (ρ, η) =
(0.5, 0.24), (c) in an antiparallel (APF) flocking state at (ρ, η) =
(0.5, 0.2), and (d) in a liquid state at (ρ, η) = (2.0, 0.2) (always
APF). Configurations are for a square domain of size 2048 × 2048
with v0 = 0.5. Coarse-grained local densities of A and B particles
are represented with red and blue pixels, respectively, color coded
according to the color bar. In (b), (c), (d) particle species moves
collectively in the direction indicated by an arrow.

Hereafter, we consider a rectangular geometry of large
aspect ratio Lx/Ly = 8, if not stated otherwise, to force pu-
tative bands to move in either +x or −x direction. Figure 2
shows detailed snapshots of the time evolution of the TSVM

in the phase coexistence region. Each species is micro-phase-
separated forming traveling bands, A bands and B bands, and
there are two types of dynamic states: (i) A and B bands move
in the same direction, which we will denote as a “parallel
flocking” (PF) and (ii) A and B bands move in the opposite
direction, which we will denote as an “antiparallel flocking”
(APF). We will investigate the dynamical properties of the PF
and APF states to understand the global phase diagram of the
system.

Order parameter. For a quantitative analysis, we introduce
an order parameter for the collective motion. The instanta-
neous order parameters for the collective motion of the A and
B species are given by

v+(t ) = 1

NA

∑

i∈A

σt
i , v−(t ) = 1

NB

∑

i∈B

σt
i . (5)

The flocking order parameters are defined as V± = 〈|v±(t )|〉
where 〈(. . . )〉 denotes the time average in the steady state and
the ensemble average over independent runs. These order pa-
rameters should be the same (V+ = V−) and become nonzero
when the collective motion sets in. The PF and APF states are
distinguished with

vs(t ) = 1

N

N∑

i=1

σt
i = v+(t ) + v−(t ),

va(t ) = 1

N

N∑

i=1

st
iσ

t
i = v+(t ) − v−(t ), (6)

from which we define the order parameters Vs = 〈|vs(t )|〉 for
the PF state and Va = 〈|va(t )|〉 for the APF state. We expect
that Vs > 0 and Va = 0 in the PF state while Vs = 0 and Va > 0
in the APF state in the thermodynamic limit.

The probability distribution P(va, vs) constructed from
the steady-state time series of vs = |vs| and va = |va| from
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FIG. 2. Snapshots of the time evolution of the TSVM (Lx = 800, Ly = 100, v0 = 0.5). A (B) particles are represented with red (blue) dots,
and a local particle density is color coded according to the color bar. (a)–(b) Time evolution of a PF state (η = 0.3, ρ = 1). Bands of A and
B species move in the same direction indicated by the arrows. (c)–(d) Comparison of a PF state at two different densities (η = 0.4). There are
two bands for ρ = 1.5 and three bands for ρ = 2. (e)–(h) Time evolution of an APF state (η = 0.3, ρ = 1.4). The two central bands approach
each other (t = 10 and t = 220), collide (t = 300), and pass by (t = 500), as indicated by the arrows.
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FIG. 3. Probability distribution P(vs, va ) at fixed ρ = 0.5 with
varying η (top row) and at fixed η = 0.25 with varying ρ (bottom
row). The velocity modulus is fixed to v0 = 0.5. A single peak in
(d) signifies the disordered gas phase while two peaks in (a), (b), (c),
and (e) indicate stochastic switching between the PF and APF states.
The ordered liquid phase is described in (f), which is characterized
with a single peak with finite APF order parameter.

independent runs is presented in Fig. 3. When the noise is
large or the density is small, the probability distribution has a
single peak near va = vs = 0, which represents the disordered
gas phase. Interestingly, the probability distribution in the
intermediate parameter regime has two peaks, which mani-
fests the existence of the PF and APF states. The two-peaks
structure also indicates stochastic switches between the two
dynamic states in the steady state. The switch dynamics will
be studied in detail below.

The order parameter time series may include the contribu-
tions from both dynamic states. In order to characterize the PF
and APF states separately, we measure the order parameters
V± and Vs,a using a restricted ensemble average. The system
is assigned to be in a PF ensemble when |vs(t )| > |va(t )| or
in an APF ensemble otherwise. Order parameters averaged
within the restricted ensemble are plotted in Fig. 4. These
plots show that collective motion sets in below a certain noise

FIG. 4. Order parameters in the restricted APF (square symbols)
and PF (circular symbols) ensembles versus η for v0 = 0.5, ρ = 0.5,
Lx = 200, and Ly = 25.

FIG. 5. Phase-separated (a) instantaneous and (b) time-averaged
density profiles of species A for two values of ρ with fixed η = 0.4
and v0 = 0.5. Black arrows indicate the direction of propagation.

strength and above a certain density. They also show that the
APF order is stronger than the PF order in the sense that the
order parameter in the APF ensemble takes a larger value than
that in the PF ensemble. Va in the PF ensemble is larger than
Vs in the APF ensemble, which indicates that fluctuations are
stronger in the PF state. The PF ensemble data are missing for
η � 0.2, which will be addressed later.

The APF order is stronger than the PF order since the
ordering can be enhanced by exploiting the interspecies an-
tialignment interactions. In terms of a variable αi ≡ siσ i, the
alignment rule in Eq. (3) can be rewritten as

ᾱt
i =

∑

j∈Ni

αt
j . (7)

Namely, each particle aligns its α variable with those of its
neighboring particles regardless of the particle species. This
representation demonstrates that the PF state is stable only
when condensates of different species, having opposite α vec-
tors, are spatially separated (see Fig. 2). On the other hand,
in the APF state, condensates of different species, having
parallel α vectors, are not mutually exclusive (see Fig. 2).
Thus, particles in the APF state see more correctly aligned
neighbors (from its own and the other species), which de-
creases fluctuations.

The PF and APF ordering reveals the mechanism to
achieve flocking in a two-species population with frustrating
interactions: the two species may be separated spatially to
avoid the antialignment interaction and move in the same
direction (PF), or two species may move in the opposite di-
rection to satisfy the antialignment interaction (APF).

Moving bands. As seen in Fig. 2, particles in the coexis-
tence regime are organized into an array of randomly spaced
ordered bands propagating in the +x or −x direction and span-
ning the system along the y direction. This arrangement of
finite-width bands is known as microphase separation [9,23],
which differs from the conventional liquid-gas phase separa-
tion observed in the flocking model with discrete symmetry
[23–25].

The bands appear as a density wave in the time-dependent
density profiles ρ̄A,B(x, t ) as shown in Fig. 5(a), where the
overbar refers to an average along the y direction. The sta-
tionary average shape is obtained from a running average of
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the time-dependent profile:

〈ρ̄A(x)〉t = 1

np

np∑

k=1

ρ̄A(x + xk, tk ), (8)

where np is the number of instantaneous profiles and xk de-
notes the peak position at time tk . Figure 5(b) shows that
the density wave has an asymmetric shape signifying its
propagating direction. The density wave moves on a uniform
background, whose density will be denoted as ρgas. The peak
density will be denoted as ρliq.

The average shape of the band helps us decipher the global
phase diagram. For given value of η and v0 the average shape
of the band shown in Fig. 5(b) does not change as one varies
the overall density. Instead only the number of bands increases
[see Figs. 2(c)–2(d)]. It indicates that ρgas and ρliq are the
binodal densities separating the two homogeneous phases,
liquid (at low noise and high density) and gas (at high noise
and low density), from the microphase-separated coexistence
phase.

Phase diagram. We summarize our findings with the noise-
density (η − ρ0) and speed-density (v0 − ρ0) phase diagrams
in Fig. 6. Note that ρ0 = ρ/2 is the density of either A or B
species. In the gas phase, particles are distributed uniformly
and the flocking order parameters vanish.

In the coexistence phase (ρgas � ρ0 � ρliq ), the area frac-
tion φ of the liquid bands of each species satisfies the relation
ρgas(1 − φ) + cρliqφ = ρ0, where cρliq is the average density
of a band with a positive constant c � 1. It leads to

φ = ρ0 − ρgas

cρliq − ρgas
. (9)

Since the coexistence phase bands are not perfectly rect-
angular, we introduce an O(1) parameter c (unknown but
measurable) to express the total area of a band. c = 1 signi-
fies an ideal rectangular band but due to the fluctuation and
off-lattice geometry, obtaining a perfectly rectangular band is
impossible and therefore, c < 1 but close to 1.

The A bands and B bands repel each other in the PF state.
If the repulsion is perfect, the PF state is constrained by the
condition 2φ � 1, or equivalently,

ρgas � ρ0 � 1
2 (ρgas + cρliq ). (10)

From Eq. (10), the boundary between the regions where the
PF state still exists and where it does not is somewhere be-
tween ρgas and ρliq. For c = 1, the boundary is approximately
in the middle of ρgas and ρliq, whereas for c < 1, it is slightly
shifted to the left towards ρgas. In contrast, the microseparated
APF state can be observed in the entire coexistence phase with
ρgas � ρ0 � ρliq. Therefore, the coexistence region is further
separated into the PF+APF region where the system stochas-
tically switches between the two states and the APF region
where only the APF state is stable. The boundary between the
two regions is drawn with the dotted line in the phase diagram.
In Fig. 4, we have already observed that the PF state is not
stable when the noise strength is low enough. Numerically,
the boundary is obtained by estimating the density beyond
which the PF ensemble is absent. Note that the PF state is
observed beyond the approximate limit in Eq. (10). Neverthe-
less, the mutual repulsion between A and B bands successfully

FIG. 6. (a) η − ρ0 phase diagram for fixed v0 = 0.5 and (b) v0 −
ρ0 phase diagram for fixed η = 0.4 of the TSVM. The binodals ρliq

and ρgas are the boundaries of the coexistence phase in the thermo-
dynamic limit, obtained by extrapolating the finite-size boundaries
to an infinite system size. The black dotted lines in the coexistence
demarcates the boundary for the PF state and is also independent
of system size: it indicates the boundary between the region of the
coexistence phase where one observes PF-APF transition for any
finite system size and the region where one does not.

explains that the PF state is stable only in the low-density part
of the coexistence region.

In the liquid phase, the continuous orientational symmetry
is spontaneously broken and the system exhibits a long-range
orientational order [see Fig. 11(a) of Appendix A]. As men-
tioned earlier only the APF state is stable in the liquid phase.
The gas phase and the liquid phase have a different sym-
metry for which reason the two binodals cannot merge in a
single critical point as in discrete flocking models [23–25].
The liquid phase is further characterized by giant number
fluctuations [see Fig. 11(b) of Appendix A] as in the original
Vicsek model [9]. As conjectured in Ref. [9], the giant number
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FIG. 7. Comparison of the time series of vs − va at two system
sizes (with η = 0.2) in (a), (b), and at two noise strengths (with
Lx = 512, Ly = 32) in (c), (d). The thick solid line segments rep-
resent the time intervals during which the system dwells in the PF or
APF states. v0 = 0.5 and ρ = 0.5.

fluctuations in the liquid phase are believed to be responsi-
ble for the instability of a single macroscopic liquid cluster
in the coexistence region leading to micro-phase-separation
instead [9].

IV. PF-APF TRANSITIONS

In the PF+APF region, the system switches back and forth
between PF and APF states. The time series of (vs − va)
shown in Fig. 7 demonstrates the stochastic transitions. We
characterize the stochastic transitions with the dwell time
distribution and observe that the dwell time distribution has
an exponential tail with a characteristic time almost equal to
the mean dwell time. The quantity (vs − va) fluctuates around
a positive value p in the PF state and a negative value −q
in the APF state. We identify an APF-to-PF transition by the
moment when (vs − va) exceeds a threshold value r p, and
a PF-to-APF transition by the moment when (vs − va) falls
below −rq with a constant 0 < r < 1. Then, the time series
leads to a sequence of alternating dwell times · · · → tPF →
tAPF → t ′

PF → t ′
APF → · · · . It is useful to introduce the thresh-

olds with a positive constant r since for r = 0, microscopic
fluctuations during a transition would be regarded as multiple
transitions whose time scale is much shorter than the macro-
scopic dwell time. Here we choose r = 0.7 and demonstrate
the obtained transition sequences between the PF and APF
states in Fig. 7.

Any transition requires the velocity reversal of all bands
of one species, which is expected to take longer as the system
size increases. Figure 8 confirms this expectation by analyzing
the finite-size dependence of the transition frequency f and
the PF state dwell time τPF by varying Lx with fixed aspect
ratio Lx/Ly = 8. The transition frequency f is defined as the
number of transitions per unit time and the dwell times (τPF

or τAPF) are the average time spent by the system in either
of the states. After the system reaches the steady state, the
number of PF-to-APF and APF-to-PF transitions are identi-
fied and recorded for a long time (tm ∼ 107) using the method
mentioned above. f is then computed by dividing the total
number of transitions by tm and the ratio of the total time the
system spent in the PF (APF) state and the number of PF-to-
APF transitions (APF-to-PF transitions) produce τPF (τAPF).

FIG. 8. (a) Average frequency f of transitions between the APF
and PF states and (b) average time τPF spent by the system in the
PF state as a function of linear system size Lx (on a log-log scale),
where Ly = Lx/8. The dashed lines with different slopes indicate a
crossover in the scaling law at a crossover length Lx,c depending of
η and ρ. Parameters: v0 = 0.5, ρ = 0.35 (η = 0.2), ρ = 0.5 (η =
0.22), ρ = 0.6 (η = 0.25), and ρ = 1 (η = 0.3).

Interestingly, both the transition frequency and the dwell time
exhibit a sharp crossover at a crossover length scale Lx,c:
for Lx 	 Lx,c, the average dwell time increases algebraically
as τPF ∝ Lz1

x with z1 � 1.7. For Lx � Lx,c it increases much
faster as τPF ∼ Lz2

x with z2 � 10.0, which is so large that we
cannot exclude an exponential scaling.

To shed light on the origin of the observed crossover we
studied the dependence of the dwell time as a function of the
system height Ly. Figure 9(a) compares the dwell times of the
PF and APF states with fixed Lx/Ly = 8. Both quantities show
the crossover at the same length scale. We also determined the
dwell times for a large but fixed value of Lx = 512 as a func-
tion of Ly. Figure 9(b) demonstrates that a similar crossover
occurs at a height Ly,c � 10. On the other hand, the dwell time
does not have a crossover as Lx is varied with fixed Ly = 24
[see Fig. 9(c)].

The width W of the bands also depends on the system
height Ly, as shown in Fig. 10, and is larger than Ly for
small Ly and smaller for large Ly. Remarkably, the value of Ly

where it equals W agrees roughly with the value of Ly, where
the crossover in dwell time occurs. These results coherently

FIG. 9. System-size dependence of the average dwell time of the
APF state (empty symbols) and the PF state (filled symbols) with
fixed aspect ratio Lx/Ly = 8 in (a), fixed width Lx = 512 in (b), and
fixed height Ly = 24 in (c). All measurements are done with v0 =
0.5, ρ = 0.35, and η = 0.2.

024607-6



FLOCKING OF TWO UNFRIENDLY SPECIES: THE … PHYSICAL REVIEW E 107, 024607 (2023)

FIG. 10. Band width W versus Ly for various (η, ρ ) combina-
tions. In (a) Lx is fixed to 400, and in (b) it is Lx = 8Ly. In (a), the
points (black cross) where W ≈ Ly [for each set of (η, ρ )] are for
20 < Ly < 32 whereas in (b) the W ≈ Ly points are around Ly ≈ 20.
The black dashed line represents W = Ly and the shaded region is
a guide to the eyes. The width is computed from the time- and
ensemble-averaged density profile of bands and is defined as the
distance between the two points in the density profile [cf. Fig. 5(b)]
where the density is equal to (ρgas + ρliq )/2.

suggest that the crossover occurs when the system height Ly

is comparable to the band width W , which appears plausible
due to the following reason.

We observe that in PF-to-APF transition a single band can
spontaneously reverse its direction of motion, by first dissolv-
ing via fluctuations and then rebuilding with opposite velocity.
The subsequent inevitable collision with the other bands of the
same species then reverses them, too. A fluctuation-induced
transition of a whole band from one metastable configuration
(e.g., right moving) to another (then left moving) is a rare
event whose probability decreases with the size of the band,
i.e., with increasing Ly, as can be seen in Fig. 8 and Fig. 9, but
faster for Ly > W than for Ly < W . We think that this is due
to a change in the characteristics of the necessary fluctuation
reverting a band: for Ly < W , these fluctuations have to be
predominantly correlated in the longitudinal direction, i.e., in
the direction of motion of the band, whereas for Ly > W , they
have to be correlated in the transverse direction, i.e., perpen-
dicular to the direction of the band motion (see Appendix B
for a demonstration). Probably one could quantify this picture
by a detailed study of the density-density correlation functions
in x and y direction inside the band, which we leave for future
investigations. We also want to point out that for Ly 	 W ,
the band looks like a piston moving longitudinally within a
pipe, but this longitudinal movement is different from the
formation of longitudinal bands or lanes observed in other
flocking models [25,26].

V. DISCUSSION

To summarize, we have shown that the flocking transition
in the two-species Vicsek model (TSVM) is in many aspects
analogous to the original Vicsek model: it has a liquid-gas
phase transition and displays micro-phase-separation in the
coexistence region where multiple dense liquid bands prop-
agate in a gaseous background. The interesting feature of
the TSVM is the appearance of two dynamical states in the
coexistence region: the PF (parallel flocking) state in which

all bands of the two species propagate in the same direction,
and the APF (antiparallel flocking) state in which the bands of
species A and species B move in opposite directions.

Due to the antialignment rule between different species, A
and B bands (or clusters) moving in opposite directions do
not disturb each other upon collision, on the contrary they
even stabilize each other. This is markedly different in the
PF state: here the antialignment rule destabilizes the bands
(or clusters) of different species moving in the same direction
upon contact, for which reason they are only stable when they
move in some distance to each other in the same direction.
Consequently, PF states only occur in the low-density part of
the coexistence region; at higher densities and in particular in
the liquid phase, only the APF state occurs.

When PF and APF states exist in the low-density part of the
coexistence region they perform stochastic transitions from
one to the other. Their frequency decreases with increasing
system size as the dwell times in the two states increase. The
system-size dependence shows a crossover from a power law
with a dynamical exponent z1 to a much steeper power law
with a much larger dynamical exponent z2 (or exponential
dependence). The crossover is related to a change in the
nature of the fluctuations when the system size in y direc-
tion increases beyond the width of the bands moving in x
direction.

Here we presented only results for the basic version of the
TSVM, but it would be interesting to study some variations
such as the TSVM with different species densities (NA �= NB)
or different species speeds (vA

0 �= vB
0 ). One could also consider

the TSVM with spatial heterogeneity where in one region,
vA

0 > vB
0 whereas vB

0 > vA
0 in the other region (cf. Ref. [27]

and references therein). Preliminary investigations of these
variants of the TSVM show interesting collective dynam-
ics such as increasing the number density of one species
(NA �= NB, NA + NB = N) destroys the APF state and the
system converts to the original VM and a change in band
formation due to different species velocities in different re-
gion. Another interesting prospect would be to investigate
the multispecies effect on the well-known discrete flocking
models, such as the active Ising model [24] or the active clock
model [23].

Whereas the alignment rule of the original Vicsek model is
directly motivated by the collective behavior of animal flocks,
it is hard to think of biological entities that tend to interact
via antialignment. However, synthetic active matter could be
designed to have such interactions. Unfriendly species could
for instance be realized by the experimental setup used in Ref.
[28], where colloids are activated individually by a laser. The
activation strength of each particle was set by a computer
that analyzes its current neighborhood. One could also label
the particles as A or B particle as in our model and instruct
the computer for instance to ignore or weight negatively
the neighboring B particles when computing the activation
strength of an A particle, realizing unfriendly species in this
way. It would certainly be worthwhile to think about ways
to manipulate not only the self-propulsion strength of each
particle, but also its direction, and thus realizing alignment
or antialignment as has been done in Ref. [21] with pro-
grammable robots.

024607-7



SWARNAJIT CHATTERJEE et al. PHYSICAL REVIEW E 107, 024607 (2023)

FIG. 11. (a) Va against L for the ordered liquid phase: η = 0.1
and ρ = 6. For v0 = 0.5, Va is constant over L whereas for v0 = 0,
we expect Va decays to zero for L → ∞. (b) Number fluctuations
�n2 = 〈n2〉 − 〈n〉2 versus average particle number 〈n〉 in a 200 ×
200 domain.

ACKNOWLEDGMENTS

S.C., M.M., and H.R. were financially supported by the
German Research Foundation (DFG) within the Collaborative
Research Center SFB 1027. J.D.N. acknowledges the comput-
ing resources of Urban Big data and AI Institute (UBAI) at the
University of Seoul.

APPENDIX A: NATURE OF THE ORDERED PHASE
AND NUMBER FLUCTUATION

In Vicsek-like models, where particles propel with a con-
stant speed, the ordered state exhibits a true long-range order
(LRO) in two dimensions [6–8] because the continuous U (1)
symmetry is broken spontaneously due to the nonequilib-
rium activeness of the particles. This spontaneous symmetry
breaking is forbidden in equilibrium systems according to
the Mermin-Wagner theorem. To understand the nature of
ordering of the TSVM liquid phase, we show the APF order
parameter (the liquid phase of the TSVM is an APF state)
Va versus L in Fig. 11(a) (simulations are done on a square
domain of linear length L). The data presented is averaged
over time and several initial configurations. We note that, Va

remains independent of the system size L for v0 = 0.5, there-
fore, one can safely conclude that the system is in the LRO
state [29–31] for the constant-speed version of the model. For
v0 = 0, however, Va decays to zero for L → ∞, probably ex-
ponentially since one would expect the TSVM to behave like a
XY spin glass model on a random 2D graph (note that the for
v0 = 0 the particles can not move and are frozen in random
positions in two dimensions, the neighboring particles define
the interaction graph and the alignment interactions produce a
mixture of ferromagnetic and antiferromagnetic interactions).

FIG. 12. Zoomed in snapshots (keeping Ly fixed) showing prop-
agation of a single band of a particular species for (a) Ly = 10
(longitudinal density wave) and (b) Ly = 50 (transverse density
wave). The red arrows represent the orientation vector of the particles
and the black arrows signify the direction of propulsion. Parameters:
Lx = 400, η = 0.3, ρ = 1, and v0 = 0.5.

Figure 11(b) shows the number fluctuation �n2 = 〈n2〉 −
〈n〉2 in the liquid phase of the TSVM against the average
particle number 〈n〉 where n is the number of particles in
boxes of different sizes � included in a 200 × 200 domain
(for � � 100), with 〈n〉 = ρ�2. The fluctuation behaves like
〈n〉ξ with a fluctuation exponent ξ � 1.7 and this value of the
fluctuation exponent is close to the exponents extracted for the
VM [9] and the large q limit of the active clock model [23]
and signifies giant fluctuation. This giant number fluctuation
is responsible for the microphase in TSVM as hypothesized in
Ref. [9].

APPENDIX B: LONGITUDINAL
AND TRANSVERSE DENSITY WAVES

Figure 12 demonstrates the longitudinal and transverse
motion directions of a high-density liquid band in the coex-
istence regime. In Fig. 10(a), we have seen that for η = 0.3
and ρ = 1, with Ly = 10, band width W > Ly whereas with
Ly = 50, W < Ly. When W > Ly, the band is both elongated
(the width of the band moving in the x direction is larger than
its height Ly) and moving along the horizontal x direction
[Fig. 12(a)] and this is a longitudinal density wave but for
W < Ly, the band is elongated along the vertical y direction
but propels along the horizontal x direction [Fig. 12(b)] and
this is a transverse density wave.
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