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Summary. A theoretical model based on the molecular interactions between a
growing tumor and a dynamically evolving blood vessel network describes the trans-
formation of the regular vasculature in normal tissues into a highly inhomogeneous
tumor specific capillary network. The emerging morphology, characterized by the
compartmentalization of the tumor into several regions differing in vessel density,
diameter and degree of tumor necrosis, is in accordance with experimental data for
human melanoma. Vessel collapse due to a combination of severely reduced blood
flow and solid stress exerted by the tumor, leads to a correlated percolation pro-
cess that is driven towards criticality by the mechanism of hydrodynamic vessel
stabilization.
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1.1 Introduction

Tumor vasculature, the network of blood vessels in and around a growing
tumor, is in many respects different from the regular vasculature in normal
tissues. Hypoxia, the lack of oxygen, that prevents a small tumor nucleus from
further growth, induces the expression of various diffusible growth factors
(GF) by the tumor cells that trigger a coordinated response of angiogenesis
- the formation of irregular blood vessels [1, 2]. The expected increase in mi-
crovasular density (MVD) is usually observed in the periphery of the tumor,
whereas the morphology of the vasculature in the central part of the tumor
is characterized by a decreased MVD, dilated vessels and regions of necrotic
tumor tissue [3, 4]. The resulting tumor specific capillary network is very het-
erogeneous, composed of dense and void regions, and has a fractal dimension
different from normal arterio-venous or normal capillary networks [5].

Although on the molecular level the main actors in the angiogenic game
are rapidly identified, the physical principles that determine the global mor-
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phology of the vascular network in tumor tissues are not known. Since for
instance MVD is used as a diagnostic tool in cancer therapy [6] a quantita-
tive understanding of the mechanism that leads to the compartmentalization
of the tumor vasculature into various regions differing substantially in ves-
sel density appears mandatory. Moreover, scale-invariant aspects like fractal
dimension are used as hints towards the nature of the growth process under-
lying the formation of the tumor vasculature [7]. In this paper we propose a
theoretical model for the evolution of tumor vasculature that illuminates the
physical principles leading to its global morphology [8]. The experimentally
observed increase in MVD at the tumor perimeter and periphery and decrease
in MVD and vessel dilation in the tumor center in human melanoma [4] ap-
pear as the general scenario in our theoretical model. Furthermore, we will
argue that vessel collapses in the interior of the tumor lead to a percolation
process which is driven towards criticality, the percolation threshold, via a
mechanism of vessel stabilization by increased blood flow in the remaining
vessels.

1.2 Model

There is a large amount of work on the mathematical modeling of tumor-
induced angiogenesis (for reviews see e.g. [9, 10]), which can be classified into
two groups: Either they concentrate on blood vessel densities rather than
vessel morphology (as in continuum partial differential equation [11, 12] or in
locally-coupled map lattice [13] approaches), or they represent vessels as inter-
connected lattice patterns, line segments, or continuous curves [14, 15, 16, 17]
and assume a static tumor. A growing tumor in the vascular phase, however,
remodels the blood vessel network via cooption, regression and growth - and
the emerging morphology is determined by the interaction of the two dynami-
cally evolving systems: The growing tumor and the remodeling vessel network.

Vessel network
We describe the vessel network by a graph G = (V, E), in which edges e ∈ E
represent tubular vessel segments of diameter d(e) and nodes v ∈ V represent
vessel junctions, where two or more vessel segments join. For the moment
we restrict to capillary networks and do not discriminate between arteries
and veins, but a hierarchical structure of the original vessel network is easily
incorporated into our model [18]. The network is fixed in an initial configura-
tion representing features of the normal tissue vasculature like homogeneous
microvascular density, typical vessel diameters etc., but it can dynamically
change over time: new vessels can be inserted, others can be removed, vessel
diameter can change. For computational simplicity we allow only discrete lo-
cations of the nodes, i.e. the occupy certain sites on a square lattice of grid
size 10µm, by which each node gets a Cartesian coordinate r(v) = (x, y).
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Blood flow
Blood flow through this interconnected network of tubes is assumed to be an
ideal pipe flow with flow conservation at all junctions v:

∑

e∈E(v) q(e) = 0,

which is Kirchhoff’s law. E(v) is here the set of all edges attached to the node
v, and q(e) the flow rate through vessel e. q(e) and f(e), the the shear force
f(e) acting upon the vessel wall, then follow Hagen-Poiseuille’s law:

q(e) = (π/128)η−1
d(e) · d

4(e) ∇P (e) and f(e) = (1/4) · d(e)∇P (e), (1.1)

where ∇P (e) is the pressure gradient in e, which is ∇P (e) = P (v1(e)) −
P (v2(e))/l(e), with P (v) the pressure at node v, v1(e) and v2(e) the start
and end points of the edges e, and l(e) the length of vessel e. In principle
the viscosity ηd(e) depends on the tube diameter d(e), since blood is a non-
Newtonian fluid, but for simplicity we set it to a constant, as it is correct
initially, when all vessels have the same diameter.

Together with fixed boundary condition for the blood pressure P (v) the
flow conservation equations establish an inhomogeneous system of linear equa-
tions for the blood pressures P (e), which is solved numerically for the vessel
network at hand. We choose boundary conditions that produces a homoge-
neous blood flow and shear stress in all capillaries in the initial network: P (v)
is fixed on all nodes v on the boundaries of the system such that it decreases
linearly from Pmax at the node at r = (x, y) = (L, L) along the boundary nodes
at r = (L, y) and r = (x, L) to (Pmax − Pmin)/2 at r = (L, 0) and r = (0, L);
and from here further linearly along the boundary nodes at r = (x, 0) and
r = (0, y) to Pmin at r = (0, 0). One should not that this boundary conditions
produces a pressure gradient and hence a global blood flow in the diagonal
direction, which is somewhat unrealistic and will be repaired in initial network
configurations that contain a hierarchy of arteries and veins.

Tumor growth
The tumor in our model is defined on a square lattice, where each site repre-
sents an area of 10µm× 10µm. The tumor configuration is given by the set of
lattice sites T that are occupied by tumor cells. Initially a nucleus of N0 sites
is occupied by tumor cells, proliferation can happen only at empty neighbor
sites of already occupied sites [19], removal (death) of tumor cells can happen
everywhere. The restriction of tumor cell (TC) proliferation to the outer rim
of the tumor is also observed in real tumors [20] and in theoretical models
involving TC elasticity and increasing solid stress inside the tumor [21]. More
sophisticated representations of the growing tumor are easily incorporated
later into our model.

Oxygen concentration
Proliferation and death of tumor cells depend on the supply of oxygen (or
other nutrients), which is determined by the current vessel network: Oxygen
is transported by blood flow through the vascular system and has to diffuse
through the vessel wall to reach other cells in the extracellular matrix. In case
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of a highly diffusible solute like oxygen the transmural flux Jw is essentially
driven by the difference between the oxygen levels inside and outside the ves-
sel. With this boundary condition the distribution of extracellular oxygen is
described by a diffusion equation with sink terms, for which the adiabatic
approximation is completely sufficient [22, 23], since the inter-vessel diffusion
time for oxygen is of the order of 1-10 seconds [24, 25] whereas the cell prolif-
eration time is several hours.

The Green’s function method is an elegant and computationally tractable
way to solve the diffusion problem for the oxygen delivery to tissue by mi-
crovascular networks also for large grid sizes [27, 26]. The essential idea is
to represent blood vessels as a set of discrete O2 sources and the O2 field
in the tissue as a superposition of fields resulting from those sources. In the
most general case the source and sink strengths are unknown and have to be
determined implicitly by solving a system of linear equations for them.

Here we assume a uniform oxygen consumption rate M0 of the normal
tissue. Then the oxygen distribution at site r resulting from a unit point source
at r′ is defined as the Green’s function G(r, r′) and given by the solution of

D∆rG − M0G = −δ(r − r′) , (1.2)

where D is the oxygen diffusion constant and δ(r) is the delta function. The
resulting G(r, r′) depends only on the distance from the point source R =
|r − r′| and decays exponentially with R on a length scale Roxy =

√

D/M0).
For computational convenience we replace the exact Green’s function by a
piece-wise linear function that decays to zero on the same length scale:

G(r, r′) =
3

πR2
oxy

(

1 −
|r − r′|

Roxy

)

· θ(|r − r′| − Roxy) , (1.3)

where θ(x) is the step function (θ(x) = 1 for x ≥ 0, θ(x) = 0 for x < 0).
Furthermore here we assume for simplicity that the presence of TCs does not
significantly alter the oxygen consumption rate M0. At least for melanoma
this appears to be an acceptable approximation, since the skin tissue MVD0 ≈
100/mm2 [4] indicates Roxy ≈ 100µm (see below), and data for pO2 gradients
in tumors also indicate Roxy ≈ 100µm [1]. There are, however, various ways in
which one could include the effect of an increased cell density approximatively,
for instance by introducing a TC-density dependent O2 diffusion range Roxy(ρ)
that decreases monotonously with the local tumor-cell density ρ.

The total oxygen concentration O2(r) is then given by

O2(r) =
∑

e∈E

∑

r
′∈e

J(r′) · G(r, r′). (1.4)

where J(r′) is the source strength of a vessel segment with its center at r′

[27]. This depends on the difference between the blood O2 partial pressure
inside the vessel segment at r′, Poxy(r

′), and the tissue O2 concentration at
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r′: J(r′) = Poxy(r
′)−O2(r

′). Inserting this into (1.4) yields a system of linear
equations for O2(r

′) at all vessel segment r′, its solution determines J(r′). We
implemented this procedure for various (small) vessel network configurations
and compared the resulting field O2(r) with one that we obtained by setting
J(r′) = 1 for all vessel segments r′. It turned out that both models lead to
qualitatively the same O2 fields for the range of MVDs that occur in our
simulation runs (see below). Quantitatively the model with constant source
strengths overestimates the O2 concentration by ca. 40% for inter-capillary
distance of 0.5 · Roxy, corresponding to 2·MVD0. Hence for computational
simplicity we assume constant source strengths J(r′) = 1 in our model.

Growth factor distribution
Tumor cells under hypoxia secret increased amounts of growth factors that
can stimulate the formation of new blood vessels. In our model we assume that
a TC at site r secrets GF if O2(r) < coxy. The diffusion of the molecules into
the extracellular matrix can be described by a diffusion process with source
terms, which can again well be approximated to be adiabatic:

DGF∆GF (r) − k1GF (r) + sGF (r) = 0 , (1.5)

where GF (r) is the GF concentration field, DGF is the diffusion constant for
GF in the ECM, k1 is the degradation rate of the growth factors and sGF (r)
the source strength at location r. The latter we assume to be a delta function
of unit weight at each tumor cell under hypoxia. As a result this diffusion
equation can again be solved by the Greens-function method and we replace
the exact Greens function by a piecewise linear function as for the oxygen
concentration field. The GF concentration therefore is

GF (r) =
∑

r
′∈T with O2(r′)<coxy

3

πR2
GF

(

1 −
|r − r′|

RGF

)

· θ(|r − r′| − RGF) (1.6)

Dynamics
TCs proliferate/die when the local oxygen concentration is high/low. Vessels
(edges) emerge when the local GF concentration is high enough, and they van-
ish (collapse) stochastically inside the tumor, when the hydrodynamic shear
force acting on the vessel walls is too low. The biological and pathophysiolog-
ical motivation for the details of the model definition is discussed in [8].

Starting with the initial configuration described above the following up-
dates are performed sequentially in each time step of duration ∆t = 1h, c.f.
Fig. 1.1 for illustration.

(a)TC proliferation:
TCs can proliferate at tumor surface sites if the local oxygen concentration
is sufficient: If r is not occupied by a TC but has at least one neighboring
TC and if O2(r) > coxy: T → T ∪ {r} with probability pnew

TC = ∆t/tTC.
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(b)TC death:
TCs that are extremely under-oxygenated for a long time are eliminated.
We define the threshold for extreme under-oxygenation to be 10% of the
threshold beyond which they start to proliferate (i.e. 0.1 · coxy). If O2(r) <
0.1coxy for a TC at site r the counter for the time that a TC at site r spent
in hypoxia is increased by one: tuo(r) → tuo(r) + 1. When tuo(r) > tmax,
the TC is eliminated: T → T − {r} with probability pdeath

TC = 1/2.
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Fig. 1.1. Schematic illustration of the model: (a) TC proliferation, (b) TC death,
(c) Vessel growth, (d) Vessel dilatation, (e) Vessel collapse due to low shear force,
and (f) Collapse of non-circulated vessels.

(c)Vessel growth:
New straight vessel segments between two circulated vessels at site r and
r’ are introduced with probability ∆τ/Te (where Te is the EC proliferation
time) if: GF (r, t) > cGF, the neighbor of r on the migration path is not
occupied by a TC, no site and no neighbor site of the migration path is
occupied by ECs except r and r’, and |r − r′| < Mmax (Mmax being the
maximum sprout migration distance). In case of such an event e(r, t) = 1
and er(r, t) = r0 along this path, and O2(r, t) is updated.

(d)Vessel dilatation:
In our model a vessel segments e at site r that is surrounded by TCs and
has a GF concentration GF (r, t) larger than cGF increase its radius d(e)
by an amount r0/2π with probability ∆τ/Te as long as d(e) ≤ dmax. To
mimic the smoothening effect caused by the surface tension of the vessel
walls the location of the dilation is shifted to a neighboring vessel segment
if a radius difference larger than r0/2π would arise at the original location.

(e+ f) Vessel regression and collapse:
Vessels can collapse due to solid stress exerted by the tumor and also long-
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term reduction of wall shear stress is associated with a dramatic reduction
of the vessel diameter, up to complete vessel occlusion. We used both
criteria to identify critical vessels: weakly perfused vessels e, which are
surrounded by TCs, collapse with probability p = ∆τ/Tcollapse if the wall
shear stress f(e) is below a critical value fcrit [26]. After each collapse
event the blood flow is re-computed and O2(r, t) is updated. Vessels that
are cut from the blood circulation (q(e) = 0) are instantaneously removed.

1.3 Results

In contrast to [8] we consider here a situation in which the MVD of the
original vessel network is not sufficient for the tumor cells to proliferate and
the secretion of GF is necessary to increase the MVD such that TCs can
proliferate in certain regions of the tumor.

The original vasculature is modeled by a regular network of capillaries in
a Manhattan pattern with vessel-to-vessel distance δ = 100µm. This implies
that the original MVD is 10 vessel per mm (measured by counting the number
of vessels in a vertical cut). If we extend the network into 3 dimensions with
the same network parameters this implies a MVD of 100/mm2, close to the
value that is characteristic for skin tissue [4]. With Roxy = 100µm this yields
an oxygen concentration that is nearly homogeneous and has a value of O2 =
0.2 (measured in the source strength of each vessel segment). Thus setting
coxy = 0.3 implies that TCs can survive (since according to our definition
they die only their oxygen supply falls below 0.1coxy = 0.03), but cannot
proliferate in the original network.

We set RGF to 150µm. The value of cGF is not crucial, if it is low it implies
that new vessels can be generated within nearly the whole radius RGF around
a GF secreting TC. We set it to cGF = 0.01. Cells proliferate on the time scale
of several hours, therefore we set the time step to ∆τ = 1h. Other parameters
are: Collapse probability ∆τ/Tcollapse = 0.01, critical shear force fcrit = 0.5f0

(where f0 is the shear force in the original vasculature), sprout generation
time Te = 40h, TC proliferation time Tc = 10h, maximum sprout distance
Mmax = 100µm, TC-survival time to tmax = 100h, maximum vessel radius to
dmax = 35µm [4] and size of the initial tumor nucleus N0 = 1000.

To obtain data for the stochastic time evolution of our model according
to the dynamics defined above we performed Monte Carlo simulations. The
result of one representative run is shown in Fig. 1.2.

Tumor/vessel configurations at different times are shown in the middle
column of Fig. 1.2: Starting from a regular vessel network the MVD in the
peritumoral region is increased due to the supply of GFs from the tumor. Once
the tumor grows over this highly vascularized region, vessels start to collapse,
by which the MVD tumor center is continuously decreased until only a few
thick vessels, surrounded by cuffs of TCs remain. TCs in a distance larger
than Roxy from these vessel die after time tmax producing necrotic regions.
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Fig. 1.2. Middle panel: Tumor and vessel network configuration at time t = 1,
100, 200, 400 and 600 (from top to bottom). The tumor is the grey area in the
center - older TCs are darker than younger ones. The initial capillary network can
be seen at t = 1 (with a few new vessels already there) vessel-to-vessel distance is
100µm. White areas are necrotic regions. Left and right panel: GF and oxygen
concentration, respectively, for the configurations in the middle panel.
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Fig. 1.3. (a: Tumor density as a function of the distance r from the tumor center
for different equidistant times t. One sees clearly that the radius of the tumor grows
linearly in time. (b: MVD/MVD0 as a function of r for different equidistant times t
(same symbols as in (a)). By comparison with the plots for tumor density in (a) one
sees that the maximum MVD is localized at the tumor boundary, where it is up to
2 times larger than in the normal tissue. (c): Vessel diameter: It starts to increase
linearly with decreasing r at the tumor boundary. For a fixed r below the actual
tumor radius the average vessel radius increases linearly with time. (d): Shear force
acting on the vessel walls, normalized to the shear force in the original capillaries.
Note the pronounced dip: It is located at the maximum of the MVD in b, i.e. at the
tumor boundary: This is also the region where most vessels will collapse.

The left and right column of Fig. 1.2 show the GF concentration GF (x, y)
and oxygen concentration O2(x, y), respectively, for the tumor/vessel config-
urations at time t. Both indicate roughly the spatial extend of the tumor
and the region where new vessels can grow. Far away from the tumor it is
O2(r) = O2 = 0.2 and only in the peritumoral region it is O2(r) > coxy = 0.3.
Inside the tumor O2(r) is drastically reduced at later time, leading to under-
oxygenation of TCs and thus to GF production. Consequently inside the tu-
mor GF (r) is high, nearly one everywhere - except in the necrotic regions.
Fig. 1.2 indicates a compartmentalization of the tumor into different shells
characterized by MVD, vessel diameter and necrosis, as observed in real tu-
mors [4]: A highly vascularized peritumoral regions, a well oxygenated tumor
periphery and an hypoxic tumor center with decreased MVD, increased vessel
diameter, and large necrotic regions.
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Figure 1.3 presents a quantitative analysis of this dynamical evolution.
Shown in Fig. 1.3(a) is the radial tumor density ρTC(R). The tumor radius
grows linearly with time t: RTC(t) − RTC(0) ≃ 2t/tTC, where the factor 2
is typical for the Eden growth. The radial vessel density MV D(R), shown
in Fig. 1.3(b) is maximal at the tumor boundary at RTC(t). With increas-
ing time both densities are substantially reduced inside the tumor indicating
the emergence of necrotic regions. The radial vessel diameter d(R), shown in
Fig. 1.3(c), increases linearly from 1 at R ≃ RTC +RGF to dmax at the tumor
center due to the continuous exposure of vessels to GF.

Such a characteristic vessel morphology is also in a quantitative agreement
with experimental data presented in [4], where the morphometry of human
malignant melanoma was analyzed and data for MVD and vessel perimeter
were obtained in three different regions of the tumors: (I) the tumor center,
(II) the tumor periphery - a 100µm wide band of tumor immediately adjacent
to the invasive edge; and (III) the peritumoral host tissue - a 200µm wide
band of host connective tissue immediately adjacent to the tumor periphery.
It was found that for melanoma larger than 1.5mm the MVD in (I) was less
than 50% of the normal tissue MVD0, in (II) it was ca. 50% more than MVD0,
and in (III) it was ca. two times MVD0. Within the statistical error of the
experimental data (up to 30%), this agrees reasonably well with our results.

We investigated extensively in how far our conclusions depend on the pa-
rameters chosen here – a full account of this parameter dependence is reported
in [8]. It turns out that the model behavior is robust and the parameters can
be changed over a wide range without changing the qualitative results, in
particular: the characteristic compartmentalization of the tumor, the vessel
network morphology, the fractal dimension (to be studied below) and others.
The question arises, which simplifications are crucial and what would change
our conclusions, if they are abandoned in favor of a more realistic description.
Obviously we cannot deal with all of them at once here, but we name a few:
a) Oxygen diffusion: We modeled O2 diffusion also by determining the source
strength of each vessel implicitly as described in [27], also taking into account
a TC density dependent O2 consumption . Although this implies a major com-
putational effort the quantitative change in the data (for fixed parameters) is
only minimal - none of our conclusions is altered.
b) Growth factor diffusion: Passive (as we assumed in our model) or active
(via concentration gradients) diffusion changes the effective diffusion range
(RGF) slightly, but does not alter our conclusions.
c) Radius dependent viscosity: (to model the Fahreus-Linquist effect) does not
change our results, as we checked.
d) Tumor growth: More sophisticated tumor growth models can be incorpo-
rated than the simplified (Eden-growth inspired model) we use. We do not
expect changes in our results as long as the tumor growth is restricted to a
limited other shell of TCs (as theoretically described in [21] and experimen-
tally reported in [20]).



1 Morphology of Tumor Vasculature 11

More serious assumptions are those of a regular network of original capil-
laries, including the boundary conditions for the pressure we have chosen. We
are currently working on a version of the model that starts with a hierarchical
arterio-venous network [18], preliminary results indicate that the global pic-
ture that we present is maintained. Many other modifications are imaginable
and will be studied in the future by us.

1.4 Fractal dimension

The geometrical features of the emerging tumor vasculature in our model are
obviously very different from the original, regular capillary network: It con-
sists of a combination of dense and void regions that might possess fractal
properties. We used the box-counting method to determine the fractal dimen-
sion Df as Nǫ ∼ ǫ−df where Nǫ is the number of boxes of volume ǫ2 necessary
to cover the tumor vessel network, that is defined to lie within the outer limit
of the peritumoral region. The plot of Nǫ versus ǫ shown in Fig. 1.4 yields
df = 1.85 ± 0.05, which agrees with the value for the percolation cluster in
conventional percolation in two dimension [28]. We get the same value for a
wide range of parameter values and also with other methods to estimate df .
When we restrict the fractal analysis to concentric shells (R1 ≤ R ≤ R2) the
estimates for df decrease systematically decreasing the tumor center (see in-
set Fig. 1.4), reflecting the characteristic compartmentalization of the tumor
vasculature also in the fractal properties.

Since df agrees with the value for the percolation cluster in 2d we conclude
that the basic mechanism responsible for the fractal properties of the tumor
vasculature in our model is the stochastic removal of vessels via vessel collapse
and regression. In conventional percolation a critical cluster only emerges for
an exactly tuned bond concentration. In our model the network is dynamically
driven into this critical state without such a fine tuning since the removal of
vessels is correlated with the blood flow: the collapse of weakly perfused vessels
stabilizes the remaining ones due to an increase in blood flow. We propose that
this mechanism is also at work in real tumors. Indeed the fractal analysis of
two-dimensional photographs of vessel networks in human carcinoma yields a
value of Df = 1.89± 0.04 [5], which agrees with df for the percolation cluster
in 2d random percolation [28]. It has been suggested [5] that the origin of the
fractal architecture of tumor vasculature might be based on an underlying
invasion percolation process of the newly grown tumor vessels [29] due to
inhomogeneities in the growth supporting matrix. Our theoretical model does
not involve any such matrix-inhomogeneities and we propose that it is rather
the flow correlated percolation process that determines the fractal properties
of the tumor vasculature. Neo-vascularization mainly occurs at the tumor
perimeter and a drastic reduction of vessel density is commonly observed
in the interior of the tumor, therefore it appears unlikely that the fractal
properties attained during growth in the periphery, independent of having
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Fig. 1.4. Determination of the fractal dimension df of the vessel network at time
t = 1000 via the box-counting method: The number of Boxes of size L that is needed
to cover completely the vasculature is plotted as a function of L in log-log scale.
The slope df of the curve is the fractal dimension. We confined the measurement
to annuls with fixed outer radius that is determined by the limit of the peritumoral
plexus and with varying inner radius Ri. The slope of the curves decreases with
increasing Ri: df = 1.85 ± 0.05 for Ri = 0 (full squares, which corresponds to the
complete tumor vasculature) and df = 1.60 ± 0.05 for Ri = 200 (which corresponds
to the peritumoral plexus exclusively), indicating that the fractal dimension is not
a homogeneous measure over all regions of the tumor vasculature.

characteristics of invasion percolation or not, survive the random dilution
process in the tumor center. Thus, whereas in the proposal of [5] the fractal
properties of the network are attained during growth of new vessels, we propose
that it is mainly the regression of vessels that is responsible for the overall
fractal morphology of the tumor vasculature.

1.5 Discussion

We have introduced a theoretical model for a dynamically evolving, two-
dimensional vessel network interacting with a growing tumor, which is guided
by experimental data for human melanoma. The emerging network morphol-
ogy agrees well with those data and we find that the network is remodeled
from a regular into a fractal structure with characteristics of conventional
percolation. We have implemented the model also in three space dimensions
and find similar results [30], where df = 2.52 turns out to correspond to 3d
percolation. This suggests also for a large class of real solid tumor with de-
creased central MVD that the basic mechanism leading to the fractal features
of the tumor vasculature is the random vessel collapse inside the tumor and
not a stochastic vessel growth process.

An indirect experimental verification of this proposition is already given
by the experimental data presented in [5, 7]: The fractal dimension of in-
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vasion percolation (growth based mechanism), is 1.81 [29], whereas that of
conventional percolation (collapse based mechanism) is 1.891 [28]. Their data
for the fractal dimension the carcinoma vasculature is 1.88+/-0.02, which is
obviously closer to, if not identical with, conventional percolation indicitaing
at a collapse based mechanism.

A direct proof of the proposition that vessel collapse is the relevant mech-
anism that leads to the fractal structure of the tumor vasculature is probably
difficult but at least imaginable: We hypothesize that stabilization of tumor
vessels without hampering the growth of new vessels could give evidence for
one or the other picture.

Antiangiogenic therapies with recurrent tumor growth may represent such
a situation. Antiangiogenic blockade is known to lead to initial inhibition of
vessel growth but also to vessel stabilization and tumors may resume growth
if the blockade continues for extended period [31]. One of the possible mech-
anisms to such recurrence is the survival of some blood vessels which are
stabilized by the adjacent smooth muscle cells and which survive VEGF with-
drawal, while other small vessels lacking vascular supportive cells collapse. De-
spite the upregulation of VEGF (possibility for new vessel growth) observed in
all such tumors that resumed growth during prolonged antiangiogenesis, new
capillaries were not detected in any. Instead large central vessels with signif-
icantly increased diameters and increased smooth muscle developed. If the
structural characteristics of vessel network formation were growth dependent
(according to [5, 7]) the newly synthetized VEGF and sprouting would result
in growth dependent scale invariance, but this was not the case. Therefore
the study of the fractal properties of tumor vasculature after antiangiogenic
treatment could proof that in the long term vessel collapse is the relevant
mechanism that leads to the fractal structure of the tumor vasculature.
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