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3 HLRZ, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract. According to the Harris-Luck criterion the relevance of a fluctuating interaction at the critical
point is connected to the value of the fluctuation exponent ω. Here we consider different types of rele-
vant fluctuations in the quantum Ising chain and investigate the universality class of random as well as
deterministic-aperiodic models. At the critical point the random and aperiodic systems behave similarly,
due to the same type of extreme broad distribution of the energy scales at low energies. The critical ex-
ponents of some averaged quantities are found to be a universal function of ω, but some others do depend
on other parameters of the distribution of the couplings. In the off-critical region there is an important
difference between the two systems: there are no Griffiths singularities in aperiodic models.

PACS. 05.50.+q Lattice theory and statistics; Ising problems – 64.60.Ak Renormalization group, fractal,
and percolation studies of phase transitions – 68.35.Rh Phase transitions and critical phenomena

The presence of quenched disorder has a profound ef-
fect on quantum phase transitions, especially in one di-
mension [1]. A common feature of these one-dimensional
random magnets is the extremely broad distribution of
energy scales at low energies in the vicinity of the critical
point. This property makes it possible to use approximate
renormalization-group transformations [2], which becomes
exact at the critical point. Recently, Fisher [3] has ob-
tained new striking results for the random transverse-field
Ising spin chain defined by the Hamiltonian:

H = −
∑
l

Jlσ
x
l σ

x
l+1 −

∑
l

hlσ
z
l . (1)

Here the σxl , σ
z
l are Pauli matrices at site l and the Jl ex-

change couplings and the hl transverse-fields are random
variables. The random couplings (and fields) in (1) show
unbounded fluctuations, the cumulated deviation from the
average coupling [J ]av =

∫
dJ J P (J), where P (J) is the

probability distributions of the couplings, grows asymp-
totically with the size L as:

∆(L) =
L∑
l=1

(Jl − [J ]av) ∼ Lω, (2)

with the fluctuating or wandering exponent ω = ωrand =
1/2. A similar type of unbounded fluctuations occur in
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aperiodic sequences, too, which are generated through sub-
stitutional rules. For example the Rudin-Shapiro (RS) se-
quence is built on four letters A, B, C and D with the
substitutional rule:

A→ AB, B→ AC, C→ DB, D→ DC, (3)

thus starting with a letter A one proceeds as: A→ AB→
ABAC → ABACABDB → etc., and one may assign dif-
ferent couplings to the different letters. The wandering
exponent of the sequence

ω = ln |Λ2|/ lnΛ1, (4)

which is given in terms of the leading and the next-to-
leading eigenvalues Λ1,2 of the substitution matrix [4], is
ωRS = 1/2, i.e. just the same as for the random sequence.

Then naturally the question arises, which type of crit-
ical behavior can be found in quantum Ising chains with
an unbounded aperiodic modulation in the couplings (or
fields). It is known from the Harris-Luck relevance-irrele-
vance criterion [5,6] that the phase transition in an ape-
riodic (or quasi-periodic) quantum Ising chain belongs to
the universality of the classical Ising model in two dimen-
sions, only if the fluctuations in the couplings are bounded,
ω < 0. For marginal sequences with ω = 0 non-universal
critical behavior and coupling dependent anisotropy ex-
ponent was found in exact calculations [7–9].

In the relevant situation with ω > 0 there are only
a few exact results [10], however, on the basis of scal-
ing considerations [6,9–11] the phase transition in rele-
vantly aperiodic and random systems seem to be similar.



514 The European Physical Journal B

For instance the energy gap of a finite, aperiodic chain
at the critical point scales as:

∆E(L) ∼ exp(−const.× Lω), (5)

just as in the random model [3,12,13]. Thus one could ask
the question, whether the wandering exponent ω alone is
sufficient to characterize the universality classes of mod-
els with fluctuating interactions; and whether or not the
critical exponents of the random and the RS chains are
the same?

To answer these questions here we are going to study
systematically the critical behavior of aperiodic quantum
spin chains with unbounded fluctuations and compare it
with that of the random system. We mainly concentrate
on the RS model, but some results are also presented
for a family of relevant sequences defined on k-letters (k-
general sequence) A1, A2,..., Ak, with the substitutional
rules Ai → Ai−1Ai+1 for i ≤ k/2 and Ai → Ai+1Ai−1 for
i > k/2 (one identifies A0 = A1 and Ak+1 = Ak). The
wandering exponent (4) for the k-general sequences, given
by

ωk = ln[2 cos(π/k)]/ ln 2, (6)

is positive for k ≥ 4. It is easy to see that the k-general
sequence for k = 2 and k = 4 is just the Thue-Morse and
the Rudin-Shapiro sequence, respectively, and obviously
ω4 = ωRS = 1/2.

In the Hamiltonian (1) we have chosen homogeneous
fields hl = h and two-valued couplings: Jl = λ for let-
ters Ai with i < (k + 1)/2, and Jl = 1/λ for letters
with i > (k + 1)/2. For an odd k we take Jl = 1 for
i = (k + 1)/2. Similarly, for the random model we take
homogeneous fields and binary distribution of the cou-
plings: Jl = λ and Jl = 1/λ, with the same probability.
The critical point, simply given by [3,14]:

[lnJ ]av = [lnh]av, (7)

is at h0 = 1, both for the random and aperiodic systems.
In the following we calculate different physical quan-

tities (energy-gap, surface and bulk magnetization, criti-
cal magnetization profiles, correlation length, etc.) for the
RS-chain and compare with the known results on the ran-
dom chain. We also present some results for the k-general
chains, more details will be given in a subsequent publi-
cation [15]. In the actual calculation, we first transform
H in equation (1) into a fermionic model [16] and then
use the representation in reference [7], which necessitates
only the diagonalization of a 2L× 2L tridiagonal matrix.
The energy gap then corresponds to the smallest positive
eigenvalue of the matrix, whereas the magnetization pro-
files can be obtained from the corresponding eigenvectors.
Details will be presented elsewhere [15].

We are going to calculate the average quantities of fi-
nite systems both for the random and aperiodic chains.
For the aperiodic systems the average is performed as fol-
lows. We consider an infinite sequence through substitu-
tions, cut out sequels of length L, which start at all dif-
ferent points of the sequence and then average over the

realizations. Among these realizations there are R(L) dif-
ferent, which grows linearly with L: R(L) = aL. For the
RS-chain the number of different realizations is less than
16L, and one can obtain the exact average value by the
following procedure. Consider the RS-sequence in (3) gen-
erated from a letter A, take the first 4L sequels of length
L, starting at positions 1, 2, . . . , 4L and take also their
reflexion symmetric counterparts. Then repeat the proce-
dure starting with a letter D. The averaging then should
be performed over these 16L realizations. The fact that
the number of different samples grows linearly makes it
possible to obtain numerically exact average results for
relatively large (L ≤ 512) aperiodic chains. On the other
hand, for random chains with the binary coupling distribu-
tion there are 2L different realizations and we performed
the average over some (N = 50 000) randomly chosen
samples.

First, we investigate the probability distribution of the
energy gap PL(∆E) at the critical point of the RS-chain.
According to equation (5) the appropriate scaling variable
is ln ∆E/L1/2. Indeed, as seen in Figure 1, the accumu-
lated probability distribution function

ΩL(ln ∆E) =

∫ ln ∆E

−∞
dy P̃L(y) ∼ Ω̃(ln ∆E/

√
L) (8)

with P̃L(ln ∆E) = PL(∆E)∆E, has a good data collapse
using this reduced variable. Considering now the same
quantity for the random chain one can observe the same
scaling behavior, as shown in the insert of Figure 1. Thus
we can conclude, that both the random and the RS-chains
have logarithmically broad distribution of the energy gaps
at the critical point, from this fact one expects similar con-
sequences for the critical behavior in the two systems.

Next we turn to consider the surface magnetization of
the quantum Ising chains, which can be obtained from the
formula [17]

ms(L, h) =

1 +
L−1∑
l=1

l∏
j=1

(
h

Jl

)2
−1/2

, (9)

for a given realization. For one single RS-chain, starting
with the letter A this expression has been evaluated ex-
actly [10] with the following results. For λ > 1 there is a
finite critical point surface magnetization, which goes to
unity as λ → ∞, whereas for λ < 1 the surface magneti-
zation vanishes as

ms(L, h0) ∼ exp(−const.×
√
L). (10)

Now considering all the possible realizations of the chain
at the aperiodic critical point equation (7) we will see,
that in typical samples i.e. which occur with probabil-
ity one, the surface magnetization vanishes as in equation
(10), whereas there are rare events with a vanishing prob-
ability Prare(L) ∼ L−γ , but with a surface magnetization
of order unity. Thus the critical surface magnetization is
non-self averaging, it is determined by the rare events,
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L = 128 Fig. 1. Scaling plot of the accumulated proba-
bility density Ω(ln ∆E) versus the scaling variable
(ln ∆E/L1/2) for the RS sequence (exact average)
with λ = 4, cf. equation (8). The insert shows the
same for the the random sequence (x and y axis as in
the main figure).

and its scaling dimension xs
m defined by the asymptotic

relation [ms(L, h0)]av ∼ L−x
s
m is just xs

m = γ.
In the following, using this observation, we calculate

xs
m exactly. First, we note that to each sample with a given

distribution of the couplings one can assign a walk, which
starts at the origin and takes the l-th step +1 (−1) for
a coupling Jl = λ (Jl = 1/λ). Then, as shown in ref-
erence [18], taking the limit λ → ∞ only those samples
have non-vanishing surface magnetization, where the cor-
responding walk never visits sites with negative coordi-
nates. Thus the proportion of rare events is given by the
surviving probability of the walk: Prare(L) = Psurv(L).
For the random chain one should consider the random
walk with Psurv(L) ∼ L−1/2, thus one immediately gets
the exact result [3,18,19]:

xs
m(random) = 1/2. (11)

For the RS-chain one can perform the exact analysis [15],
from which here we present the leading finite-size depen-

dence: [ms(L, h0)]av = 5
8

(
1√
2

+ 1
4

)
L−1/2 +O(L−3/4) thus

the corresponding scaling dimension

xs
m(RS) = 1/2 (12)

is the same as for the random model.
For general relevant aperiodic sequences the surface

magnetization scaling dimension can be obtained by the
following scaling consideration about the surviving proba-
bility of the corresponding aperiodic walk. Let us perform
a discrete scale transformation, which corresponds to a
substitutional step of the sequence when the length of the
walks scales as L → LΛ1, whereas the transverse fluctu-
ations as y → y|Λ2|. Then N(L) the number of L-steps
surviving walks from the total of different R(L) = aL
walks scales as N(L) → N(Λ1L) = |Λ2|N(L), since the
number of these walks is proportional to the size of trans-
verse fluctuations. Consequently the surviving probabil-
ity Psurv(L) = N(L)/R(L) satisfies the scaling relation

Psurv(Λ1L) = |Λ2|/Λ1Psurv(L), with the general result

xs
m = 1− ω. (13)

This simple exponent relation, which is valid for the ran-
dom and RS chains, has been numerically checked for the
first members of the k-general chain.

Next we turn to calculate the correlation length criti-
cal exponent ν from the δ = lnh dependence of the sur-
face magnetization. In the scaling limit L � 1, |δ| � 1
the surface magnetization can be written as [ms(L, δ)]av =
[ms(L, 0)]avm̃s(δL

1/ν). Expanding the scaling function
into a Taylor series m̃s(z) = 1 + bz + O(z2) one obtains
for the δ correction to the surface magnetization:

[ms(L, δ)]av − [ms(L, 0)]av ∼ δL
Θ (14)

with Θ = 1/ν − xs
m. This exponent can also be deter-

mined exactly in the λ → ∞ limit from random walk ar-
guments [18]. As shown in reference [18] the surface mag-
netization of rare events is given by:

ms(L, δ) = (1 + n)−1/2 − δ

∑n
i=1 li

(n+ 1)3/2
+O(δ2), (15)

where the corresponding surviving walk returns n-times
to its starting point after l1, l2, . . . , ln steps. On the basis
of (15) we argue that Θ is connected to the surface fractal
dimension ds of the surviving walks, defined through the
asymptotic dependence of the number of return points n
of a surviving walk of L steps, n ∼ Lds . Now, to perform
the average of the linear term in (15) one should take into
account that from the R(L) different samples there are
O(n), which give the most important contribution: each
of those has O(n) return points of characteristic lengths
li ∼ L. Consequently, the average of the linear term in
(15) grows as Lds/2, thus comparing with (14) one gets
the exponent relation:

1

ν
− xs

m =
ds

2
· (16)
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Fig. 2. The accumulated probability density Ω(∆E)
for the RS sequence (exact average) with λ = 4
slightly above the critical point (h = 1.5). The distri-
bution is chopped off at ln ∆E−1

min(h = 1.5) ≈ 7.3. The
insert shows ln ∆E−1

min(h) versus the distance from the
critical point (h − h0 ∼ δ for h → h0) in the RS se-
quence for different system sizes. The straight line has
slope −1, as predicted by (20).

The random case

ν(random) = 2 (17)

is formally contained in (16) with ds = 0, since a surviv-
ing random walk returns n = O(1)-times to the starting
point. For the family of k-general sequences ds = 1/2 for
all values of k, thus the corresponding correlation length
exponent is ν(k) = 4/(5− 4ωk), with ωk given in (6). In
particular for the RS-sequence we get

ν(RS) = 4/3, (18)

which we also checked numerically by evaluating equation
(15) exactly up to L = 2 [21]. Thus, by comparing (17)
and (18) we conclude that the RS and the random Ising
quantum chain are not in the same universality class.

Next we turn to study the magnetization in the bulk
and calculate the scaling dimension of the bulk magneti-
zation xm = β/ν from the behavior of the average magne-
tization profiles at the critical point in finite systems. As
will be shown in the detailed publication [15] the average
magnetization profiles for the RS-chain are in excellent
agreement with the conformal results [20,21], in a simi-
lar way as observed for random chains [22,23]. From the
scaling behavior of the profiles xm can be estimated as

xm(RS) = 0.160± 0.005, (19)

which also differs from the random chain value
xm(random) = (3−

√
5)/4 = 0.191 [3].

Finally, we turn to discuss the properties of the RS-
chain in the disordered phase. For the random model, as
known from exact results [3,19], the susceptibility diverges
in a whole region, in the so-called Griffiths-
phase [24]. This non-analytical behavior is due to a broad
distribution of the energy gaps, which scales in finite sys-
tems as ∆E(L, δ) ∼ L−z(δ), with the dynamical exponent
z(δ) [12]. As a consequence, in the infinite chain there is
no finite time-scale and the autocorrelation function de-
cays algebraically with an exponent which is related to
z(δ) [18].

For relevantly aperiodic chains the same type of sce-
nario, i.e. the existence of a Griffiths-phase is specula-
ted [6]. To clarify this issue for the RS-chain we have cal-
culated the distribution function of the energy gap in the
disordered phase. As seen in Figure 2 the accumulated
distribution function for the RS-chain has a qualitatively
different behavior, than for the random chain: there is an
L-independent cut-off at ∆Emin(δ). As a consequence in
the disordered phase the autocorrelation function always
decays exponentially with a relaxation time tr ∼ ∆E−1

min(δ)
and the susceptibility and other physical quantities remain
analytic. Therefore there is no Griffiths-region in the RS-
chain and a similar scenario is expected to hold for any
aperiodic quantum spin chain.

One can estimate the minimal energy gap ∆Emin(δ)
close to critical point from the related expression in equa-
tion (5) by replacing there L with the corresponding char-
acteristic length-scale in the off-critical region. We note,
that this length-scale is not the average correlation length,
since it is related to a single sample. In this case the ape-
riodic length scale lap is obtained [11,10] by equating the
aperiodic (fluctuating) energy contribution ∼ lω−1

ap with

the “thermal” energy ∼ δ giving lap ∼ δ−1/(1−ω). Thus
the minimal energy gap is expected to scale as

∆Emin(δ) ∼ exp(−const.× δ−ω/(1−ω)). (20)

This relation is indeed satisfied for the RS-chain, since
in this case according to numerical results ln ∆Emin(δ) ∼
δ−1, as can be seen in the insert of Figure 2.

To summarize, we have made a comparative study of
the critical properties of random and relevantly aperiodic
quantum Ising chains. At the critical point the two sys-
tems behave very similarly, some critical exponents are
found even identical. This similarity is mainly attributed
to the fact that, at the critical point the distribution func-
tions of different physical quantities in the two systems
qualitatively agree. Outside the critical point, where the
low energy tail of the distributions is of importance, the
two systems behave differently. In the random system,
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with exponentially many realizations, there is no minimal
energy scale, whereas in the aperiodic chain with linearly
many independent realizations there exists a minimal en-
ergy cut-off. This leads then to the absence of the Griffiths
phase in aperiodic systems.
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13. H. Rieger, F. Iglói, Europhys. Lett. 39, 135 (1997).
14. P. Pfeuty, Phys. Lett. 72A, 245 (1979).
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