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54506 Vandœuvre lès Nancy Cedex, France

2 NIC, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract. We study the critical behavior of Ising quantum magnets with broadly distributed random
couplings (J), such that P (lnJ) ∼ | ln J |−1−α, α > 1, for large | lnJ | (Lévy flight statistics). For sufficiently
broad distributions, α < αc, the critical behavior is controlled by a line of fixed points, where the critical
exponents vary with the Lévy index, α. In one dimension, with αc = 2, we obtained several exact results
through a mapping to surviving Riemann walks. In two dimensions the varying critical exponents have
been calculated by a numerical implementation of the Ma-Dasgupta-Hu renormalization group method
leading to αc ≈ 4.5. Thus in the region 2 < α < αc, where the central limit theorem holds for | ln J | the
broadness of the distribution is relevant for the 2d quantum Ising model.

PACS. 75.50.Lk Spin glasses and other random magnets – 05.30.Ch Quantum ensemble theory – 75.10.Nr
Spin-glass and other random models – 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves,
spin diffusion, dynamic scaling, etc.)

1 Introduction

Quenched, i.e. time independent disorder may have a
strong influence on quantum phase transitions, which take
place at zero temperature by varying a quantum con-
trol parameter, δ, which measures the strength of quan-
tum fluctuations [1]. The critical behavior of random
quantum magnets can be conveniently studied within the
framework of a renormalization group (RG) scheme in-
troduced by Ma, Dasgupta and Hu [2] and later applied
by Fisher [3,4] and others [5–7]. In this “energy-space”
RG method the strongest bonds and transverse fields are
successively decimated out and other couplings/fields are
replaced by weaker ones generated by a perturbation cal-
culation. During the RG procedure one keeps track of
the energy scale, Ω, which is the actual value of the
strongest coupling/transverse field; the average length
scale, ξ, which is the correlation length associated with
the average equal-time correlation function; and the size
of the average local moment of a cluster, µ, which is
formed after decimating out the couplings between the
spins. For many systems – during renormalization – the
disorder grows without limits, thus as Ω → 0 typically a
coupling/transverse field is infinitely stronger or weaker
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than the neighboring one and the RG procedure becomes
asymptotically exact [8]. This type of critical behavior is
controlled by an infinite randomness fixed point (IRFP).
At an IRFP the physical properties of the system are de-
termined by the so called rare events, which are samples,
which occur with vanishing probability, but dominate the
average behavior.

At an IRFP the scaling properties are unusual: they
are fully characterized by three critical exponents, denoted
by ψ, φ and ν and defined as follows [9]. At the IRFP
the relevant time-scale, tr ∼ 1/Ω, and length-scale, ξ, are
related through:

ln tr ∼ ξψ, (1)

thus scaling is strongly anisotropic and, as a consequence,
the average critical dynamical correlations are logarithmi-
cally slow [10]. The dependence of the average magnetic
moment per cluster on the change of the energy scale as
Ω0 → Ω is asymptotically given by

µ ∼ [ln(Ω0/Ω)]φ , (2)

from which the anomalous dimension of the bulk magne-
tization, xm, in dimension, d, follows as:

xm = d− φψ. (3)
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Table 1. Critical exponents of the RTIM in one and two di-
mensions. In 1d exact results for normal disorder are in the
first row, whereas in the second row the corresponding expo-
nents are given for the Lévy distribution (1 < α < 2). In 2d
the differences in the numerical estimates are due to different
disorder distributions and the truncation procedure used in the
numerical RG method.

Ψ Φ ν xm xs
m

1d 1/2 1+
√

5
2 2 3−

√
5

4 1/2

Lévy 1/α α/(α− 1) 1/2

0.42 [5] 2.5 [5] 1.072 [5] 1.0 [5]

2d 0.5 [6] 2.0 [6] 0.94 [6]

0.6 [7] 1.7 [7] 1.25 [7] 0.97 [7]

We note that for bulk spins the average, equal-time cor-
relations behave as ∼ r−2xm at criticality, whereas end-
to-end correlations involve the corresponding surface ex-
ponent, xs

m, which is generally different form xm. Finally,
the third characteristic exponent of the IRFP, ν, is con-
nected to the asymptotic behavior of the average correla-
tion length close to the critical point:

ξ ∼ |δ|−ν . (4)

Prototype of a disordered quantum system with an IRFP
is the random transverse-field Ising model (RTIM) defined
by the Hamiltonian:

H = −
∑
〈i,j〉

Jijσ
x
i σ

x
j −

∑
i

hiσ
z
i . (5)

Here σxi , σ
z
i are Pauli matrices at site i, the nearest neigh-

bor coupling constants, Jij , and the transverse fields, hi,
are independent random variables.

In one dimension (1d), where the topology of the lat-
tice is invariant under renormalization, Fisher [3] has
solved analytically the fixed-point RG equations from
which the position of the random critical point,

δ = [lnh]av − [lnJ ]av = 0, (6)

and the values of the critical exponents follow. They are
listed in Table 1.

In equation (6) and in the following, [. . . ]av is used
to denote averaging over quenched disorder. The critical
exponents in Table 1, except φ, can also be derived by an
exact mapping to a random walk (RW) problem [11]. A
series of numerical studies [12] have confirmed the validity
of the above RG and RW results.

Also in two dimensions the critical behavior of the
RTIM is found to be controlled by an IRFP [5] and the
corresponding critical exponents, as presented in Table 1,
have been determined by implementing numerically the
RG procedure [5–7]. These RG results are consistent with
values obtained by quantum Monte Carlo simulations [13].

One important question concerning the critical behav-
ior of random quantum systems is the domain of attraction
of the IRFP for different type of disorder distributions.

Using an analogy with the RW problem it is generally
expected that the critical exponents of random quantum
systems are universal, provided the disorder is (i) spatially
homogeneous, (ii) not correlated, and (iii) not broadly dis-
tributed. Problems related to the first two conditions, i.e.
the effect of inhomogeneous or correlated disorder have
already been studied in reference [14] and reference [15],
respectively. In both cases the critical properties for strong
enough perturbations are modified: they are governed by a
line of IRFP-s, such that the critical exponents are contin-
uously varying functions of the inhomogeneity/correlation
parameters.

In the present paper we are going to release the third
type of restriction and study the effect of broad disorder
distributions on the critical properties of random quantum
magnets. We consider the RTIM with the Hamiltonian in
equation (5) and keep in mind that at the IRFP it is the
logarithm of the couplings and the transverse fields which
follows a smooth probability distribution [3]. Therefore we
use a parameterization

Jij = ΛΘij

hi = h0, (7)

where the exponents, Θij are independent random vari-
ables. They are taken from a broad distribution, π(Θ),
such that for large arguments they decrease as, π(Θ) ∼
|Θ|−1−α. We consider the region α > 1, where the κth
moment of the distribution exists for κ < α. This type
of distribution, which comes for in different domains of
physics and science [16] is usually called Lévy flight or
Riemann walk in the discrete version its parameter, α, is
the Lévy index. Throughout this paper we use the follow-
ing distribution: π(Θ) = pα(1 + Θ)−1−α for Θ > 0 and
π(Θ) = qα(1 + |Θ|)−1−α for Θ < 0, p + q = 1. In one
dimension the quantum control parameter in equation (6)
is given by δ = lnh0 − (p − q) lnΛ/(α − 1). We also use
the discretized version (Riemann walk) of the above dis-
tribution, where Θi = ±1,±2, . . . and the normalization
α is replaced by (ζ(1 + α) − 1), where ζ(x) denotes the
Weierstrass zeta function.

The structure of the paper is the following. In Section 2
the 1d version of the model is considered and studied ana-
lytically (through a mapping to surviving Riemann walks)
and numerically. In Section 3 the 2d model is studied by
a numerical implementation of the RG procedure. Our re-
sults are discussed in the final section, whereas some de-
tails about persistence properties of Lévy flights are pre-
sented in the appendix.

2 The one-dimensional problem

2.1 Exact results through a mapping to random walks

The critical properties of the one-dimensional RTIM can
be conveniently studied through a mapping to a RW prob-
lem [11] and a similar procedure works also for the ran-
dom XX- and XY-models [17]. The method, which has
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also been used for inhomogeneous [14] and correlated dis-
order [15], is based on an exact expression of the surface
magnetization of the transverse-field Ising model with L
sites [11,18]:

ms(L) =

1 +
L−1∑
l=1

l∏
j=1

(
hj
Jj

)2
−1/2

, (8)

where the last spin of the chain at l = L is fixed to the
state |σxL〉 = | ↑〉. Before analysing equation (8) we cite
another simple relation [11,19], in which the lowest exci-
tation energy, ε(L), in a finite system with open boundary
conditions is asymptotically related to the surface magne-
tization in equation (8):

ε(L) ∼ ms(L)ms(L)hL
L−1∏
i=1

hi
Ji
, (9)

provided ε(L) vanishes faster than L−1. Here ms(L) de-
notes the finite-size surface magnetization at the other end
of the chain and follows from the substitution hj/Jj ↔
hL−j/JL−j in equation (8).

Now we start to analyse the expression in equation (8)
and look for the possible values of ms(L) using the discrete
version of the distribution, π(Θ), fix h0 = 1 and taking
the limit Λ → ∞. It is easy to see that for this extreme
distribution the products in equation (8),

∏l
j=1 (hj/Jj)

2,
take three different values: zero, one or infinity, and for a
given sample ms is zero, whenever any of the products is
infinite, otherwise ms(L) = O(1). To calculate the aver-
age surface magnetization one should collect the samples
with ms(L) = O(1). Here we use the RW-picture of ref-
erence [11] and assign to each disorder configuration a
random walk, which starts at t = 0 at position y = 0
and takes at time t = i a step of length Θi with prob-
ability π(Θi). Then for a disorder configuration with a
finite surface magnetization the corresponding RW stays
until t = L steps at one side of its starting position,
y(t) > 0, t = 1, 2, . . . , L, in other words the RW has
surviving character. As a consequence [ms(L)]av is pro-
portional to the fraction of surviving RW-s, given by the
surviving probability, Psurv(t) at t = L.

For a symmetric distribution, i.e. with p = q = 1/2
the corresponding RW-s have no drift, whereas for the
asymmetric case, p 6= q, there is an average bias given by
δW = q − p, so that for δW > 0(< 0) the walk is drifted
towards (off) the adsorbing wall at y = 0. The bias of the
RW is proportional to the control-parameter of the RTIM,
δ, as defined in equation (6), thus the correspondence be-
tween RTIM and RW can be generally formulated as:

[ms(δ, L)]av ∼ Psurv(δw, t)|t=L , δ ∼ δw. (10)

Consequently from the persistence properties of Lévy
flights, which are summarized in the appendix, one can
deduce the singular behavior of the average surface mag-
netization of the RTIM.

We start with the finite-size behavior at the critical
point, δ = 0, which is given with the correspondences in
equations (10) and (A.12) as

[ms(0, L)]av ∼ L−x
s
m , xs

m = 1/2. (11)

Thus the anomalous dimension of the average surface mag-
netization, xs

m, does not depend on the Lévy index, α, its
value is the same as for the normal distribution in Table 1.

In the paramagnetic phase, δ > 0, the correspond-
ing Riemann walk has an average drift towards the ad-
sorbing site. Consequently its surviving probability in
equation (A.14) and thus the related average surface mag-
netization of the RTIM has an exponentially decreasing
behavior as a function of the scaling variable, δL1−1/α,
which is analogous to that in equation (A.4). Consequently
the characteristic length-scale in the problem, the average
correlation length, ξ, and the quantum control parameter,
δ, close to the critical point are related as in equation (4),
however with an α-dependent exponent:

ν(α) =
α

α− 1
· (12)

Note that ν(α) is divergent as α → 1+, which is a con-
sequence of the fact that the first moment of the Lévy
distribution is also divergent in that limit. In the other
limiting case, α → 2−, we recover the result for the nor-
mal distribution in Table 1.

In the ferromagnetic phase, δ < 0, the correspond-
ing Riemann walk is drifted off the adsorbing site and,
as shown in the appendix, the surviving probability ap-
proaches a finite value in the large time limit. Conse-
quently the average surface magnetization of the RTIM
is also finite in the ferromagnetic phase and for a small |δ|
it behaves according to equation (A.15) as:

lim
L→∞

[ms(δ, L)]av ∼ |δ|βs , βs =
α

2(α− 1)
· (13)

Thus the scaling relation, βs = xs
mν, is satisfied.

Next, we turn to study the scaling behavior of the low-
est excitation energy starting with the expression in equa-
tion (9). Here we note that in a given sample the existence
of a very small gap is accompanied by the presence of lo-
cal order. Thus in a sample with a low-energy excitation
one can find a strongly coupled domain (SCD) of size l,
where the coupling distribution follows a surviving walk
character. Consequently in equation (9) ms = O(1) and
ms = O(1) and one gets the estimate:

ε ∼
l−1∏
i=1

hi
Ji
∼ exp

(
−ltrln(J/h)

)
. (14)

Here ltr measures the size of transverse fluctuations of the
corresponding surviving Lévy flight of length t = l and
ln(J/h) denotes an average value. At the critical point,
δ ∼ δw = 0, the surviving region of the walk and thus
the SCD in the RTIM extends over the volume of the



270 The European Physical Journal B

sample, l ∼ L, and from equation (A.3), ltr ∼ L1/α, so
that equation (14) leads to:

ln ε(L) ∼ Lψ, ψ = 1/α δ = 0 · (15)

The critical exponent, ψ defined in equation (1) is a con-
tinuous function of the Lévy index which takes its value
for the normal distribution in Table 1 when α→ 2− .

In the paramagnetic phase, δ > 0, there are still re-
alizations with a small energy gap, the scaling form of
which in a finite system of size, L, can be estimated by
the following reasoning. For a Lévy flight the probability
of a large transverse fluctuation, ltr, is given from equa-
tion (A.8) as p(ltr, L) ∼ L (ltr)

−(1+α), thus its character-
istic size can be estimated as ltr ∼ L1/(1+α) from the con-
dition p(ltr, L) = O(1). Consequently the lowest gap has
the scaling form:

ln ε(L) ∼ L1/(1+α), δ > 0 , (16)

which implies a logarithmically broad gap distribution
even in the Griffiths phase. This is in contrast to the be-
havior with the normal distribution, where ltr ∼ lnL [11],
and the scaling form of the gap is in a power-law form,
ε(L) ∼ L−z, where the dynamical exponent, z, is a con-
tinuous function of the quantum control parameter.

In the remaining part of this subsection we discuss the
probability distribution of the surface magnetization. Let
us remind that, at the critical point, the average surface
magnetization is determined by the so-called rare events,
which are samples havingms = O(1). The typical samples,
however, which are represented by non-surviving random
walks, have a vanishing surface order in the thermody-
namic limit. For a large but finite system of size L, ms(L)
is dominated by the largest product,

∏
j(hj/Jj), in equa-

tion (8) so that

lnms(L) ∼ ε(L) ∼ −ltrln(h/J) (17)

where ε(L) is the value of the gap in the dual system,
i.e. where the fields and the couplings are interchanged,
hi ↔ Ji. Since at the critical point the system is self-
dual we have from equation (15) lnms(L) ∼ Lψ and the
appropriate scaling variable is

PL(lnms) =
1
Lψ

p̃

(
lnms

Lψ

)
· (18)

Assuming that the scaling function behaves as p̃(y) ∼ |y|a
for small |y|, then the average magnetization is given by
[ms]av = 1/Lψ

∫
dmsp̃(lnms/L

ψ) ∼ L−(1+a)ψ, which im-
plies a = α/2 − 1, to recover the exponents in equa-
tions (11) and (15). These relations have been checked
through a numerical evaluation of equation (8) for 50 000
samples of large systems with size up to L = 2048. As
seen in Figure 1 there is a very good agreement between
the scaling and numerical results. In the paramagnetic
phase, δ > 0, close to the critical point according to
equation (17) the typical surface magnetization behaves
asymptotically as

lnms(L) ∼ −δL ∼ −L/ξtyp , (19)

0.0 0.2 0.4 0.6
|ln ms|/L

1/α
0.0

1.0

2.0

3.0

P
(|

ln
 m

s|)
L1/

α

0.43*(L
−1/α

|ln ms|)
α/2−1

Fig. 1. Rescaled distribution of the logarithmic surface magne-
tization for L = 512(4), 1024(�) and 2048(◦) at α = 1.5. The
full line represents the scaling expression for small arguments,
where the only fitting parameter is the amplitude.

where the typical correlation length, ξtyp, diverges at the
critical point as:

ξtyp ∼ |δ|−νtyp , νtyp = 1 . (20)

Note that the characteristic exponent, νtyp, is indepen-
dent of α, but still satisfies the scaling relation [9], νtyp =
ν(1− ψ).

2.2 Bulk magnetization: a numerical renormalization
group study

The critical behavior of the bulk magnetization of the 1d
RTIM is not related to the properties of a homogeneous
RW, but it can be calculated from the so called average
persistence properties of a Sinai walk, i.e. a random walk
in a random environment [20]. This procedure has already
been used to calculate the magnetization scaling dimen-
sion, xm, of the RTIM with correlated disorder [15]. Here
we use another numerical method to study xm for Lévy-
type disorder, which method is based on a numerical im-
plementation of the Ma-Dasgupta-Hu RG procedure. The
RG-equations [3] and their numerical use are well doc-
umented in the literature [5–7]. Here we use the finite-
size version of the method [6], in which we start with a
large finite ring of size L with random couplings and per-
form the decimation procedure until the last spin. The last
log-coupling (transverse field) sets the log-energy scale,
Γ = − log(Ω/Ω0), which at the critical point scales from
equation (1) as Γ ∼ Lψ, whereas the critical cluster mo-
ment in equation (2), associated with the last remaining
cluster, scales as µ ∼ Lφψ. Repeating the calculation for
several realizations of the disorder the critical exponents
can be deduced from the appropriate scaling functions.
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0 2 4 6 8
 Γ/L

1/α
10

−3

10
−2

10
−1

10
0

P
(Γ

)L
1/

α

Fig. 2. Rescaled distribution of the logarithmic energy scale,
Γ , for different finite lengths, L = 32(�), 64(+) and 128(∗)
at α = 1.5. The best collapse of the data is obtained by the
analytical result ψ = 1/α.

0 1 2 3 4
 µ/L

1−xm

0

1

10

100

1000

P
(µ

)L
1−

x m

Fig. 3. Rescaled distribution of the cluster moment for dif-
ferent finite lengths, L = 32(+), 64(�) and 128(◦) at α = 1.5.
The optimal collapse of the data gives xm = 0.22.

We start with an analysis of the log-energy distribu-
tion, which should be a function of the scaling variable
Γ/Lψ for different finite systems. As shown in Figure 2
there is an excellent data collapse using our analytical re-
sult ψ = 1/α as given in equation (15).

Next, we analyze the distribution of the cluster mo-
ment µ, which is a function of the scaling variable µ/Lφψ,
from which the magnetization scaling dimension, xm, fol-
lows through equation (3). From the optimal data collapse,
as presented in Figure 3, we obtain xm = 0.22 for α = 1.5,
which is definitely larger than that of the system with
normal disorder, as given in Table 1. Repeating the cal-
culation for the average magnetization, m(δ) = [µ/L]av,
the appropriate scaling variables outside the critical point
are mLxm and Lδν. As shown in Figure 4 in terms of
the scaled variables we obtain a very good data collapse,

−0.2 −0.1 0 0.1 0.2
L δ3

0

0.5

1

1.5

2

m
L0.

22

L = 64
L = 128
L = 256
L = 512
L = 1024

Fig. 4. Scaling plot of the average bulk magnetization for
different finite systems at α = 1.5.

0 0.05 0.1 0.15
1/L

0.19

0.2

0.21

0.22

0.23

0.24

0.25
x m

(1
/L

)

α=1.5

α=1.0

Fig. 5. Effective magnetic exponents for α = 1.5 and α = 1.
The full lines connecting the data for the RTIM are guide to
the eye. For a comparison the same quantities for the q =
3-state random quantum Potts chain are also presented, where
the data points are connected by dashed lines.

using xm from Figure 3 and the analytical expression in
equation (12) for ν.

For a systematic study of the bulk magnetization scal-
ing index we have determined the average critical mag-
netization for different finite systems and then calculated
an effective exponent, xm(L), by two-point fit comparing
m(L) and m(2L). As shown in Figure 5 the effective expo-
nents have a weak size dependence, so that one can have an
accurate extrapolated value for L→∞, which clearly de-
pends on the value of the Lévy index, 1 < α < 2. These ex-
trapolated magnetization exponents are presented in Fig-
ure 6, where for α > 2 xm is expected to be α independent,
however the corrections to scaling are strong, especially
around the cross-over value αc = 2. At this point we note
that in parallel to the RTIM we have also calculated the
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1 1.5 2 2.5 3
α

0.18

0.2

0.22

0.24

0.26

x m
(α

)

Fig. 6. Bulk magnetization exponent for different values of
α. The full line represents xm for normal disorder, the dashed
line is guide to the eye.

magnetization scaling dimension of the random quantum
Potts chain for q = 3.

As can be seen in Figure 5 the extrapolated exponents
of the Ising and Potts chains are very probably the same
for the same value of the Lévy index, α. This result com-
pletes the universality of the two models as obtained be-
fore analytically for normal disorder [21].

We close this section by a study of the average magne-
tization in the ferromagnetic phase, δ < 0, where the aver-
age cluster moment scales with the size of the system, L.
As a consequence the average magnetization approaches
a finite limit as L → ∞, which close to the critical point
behaves asymptotically as m(δ) ∼ |δ|β . As shown in Fig-
ure 7 the results for different finite systems converge to
a power-law form where the critical exponent, β, satisfies
the scaling relation, β = xmν.

3 The two-dimensional problem

In 2d the critical properties of the RTIM with normal dis-
order is controlled by an IRFP, so that the Ma-Dasgupta-
Hu RG procedure provides asymptotically exact critical
properties. We expect that these properties of the RTIM
stay valid for broad distributions, too, and we study the 2d
problem using the RG method. There are, however, sev-
eral limitations for the numerical implementation of the
method. First, as in 1d, the systems under consideration
have a finite spatial extent and the number of disorder
realizations which can be studied is also finite. In 2d an
extra problem is caused by the fact that the topology of
the lattice is not invariant under the RG transformation
and as a result new couplings between remote spins are
generated.

To avoid these type of difficulties a truncation proce-
dure has been introduced in reference [5], such that a class
of generated interactions, which are expected to cause
very small errors, are neglected. In reference [6], where

−3 −2.5 −2 −1.5 −1 −0.5 0
ln|δ|

−2

−1.5

−1

−0.5

0

ln
(m

)

2
11

2
10

2
9

2
12

asymptotic

Fig. 7. Average bulk magnetization in the ordered phase as
a function of the quantum control parameter in a log-log plot
(α = 1.5). For small δ the finite size results converge to the
dashed line with a slope of β = 0.66.

the finite-size version of the RG method is used, all the
generated interactions were kept for moderately large fi-
nite systems. In reference [7] a selection condition in the
finite-size RG method has been introduced by showing
that many of the generated new couplings are “dead” in
the sense that they are not decimated out in later steps, so
that they can be omitted without causing any error in the
renormalization. With this observation one could consider
larger finite systems and at the same time the necessary
computational time has considerably reduced.

In the present paper we apply the finite-size RG
method supplemented by the selection condition. In this
way we could treat systems on the square lattice with lin-
ear size up to L = 128 and we considered typically 10 000
realizations and some 1000 samples for the largest sys-
tems.

In 2d the position of the critical point of the system is
not known by self-duality, therefore we used the following
numerical procedure for its determination. First we cal-
culated the average magnetization, m(L, h0), in a finite
systems of size L and then defined the scaling function,
gL(h0), as the ratio:

m(L, h0)
m(L/2, h0)

= gL(h0) . (21)

In the ferromagnetic phase, h0 < hc, in the thermody-
namic limit m(L, h0) does not depend on L, consequently
limL→∞ gL(h0) = 1. On the other hand in the paramag-
netic phase, h0 > hc, using the example of the surface
magnetization of the 1d RTIM in equation (8), m(L, h0)
is exponentially small in L, thus the scaling function has a
vanishing limiting value. In between at the critical point,
h0 = hc, where m(L, hc) ∼ L−xm we have a finite limiting
value limL→∞ gL(hc) = 2−xm . Consequently calculating
gL(h0) for a series of sizes the position of the limiting
crossing points defines the critical point of the system,
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m
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)

L=2048
L=1024
L=512
L=256

0.855

Fig. 8. Finite-size estimates of the critical point and the mag-
netization scaling dimension of the 1d model with α = 1.5.
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)
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L=64
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L=128

Fig. 9. The same as in Figure 8 for the 2d model with α = 3.

whereas the abscissas of the crossing points are related
to the magnetization scaling dimension, xm. This proce-
dure is illustrated in Figure 8 on the example of the 1d
model with α = 1.5, where the previously calculated crit-
ical properties of the system are accurately reobtained.

In 2d a similar plot of the scaling functions for α = 3
is shown in Figure 9, where the crossing point is obtained
with a reasonably small error. Repeating this calcula-
tion for various α-s we have obtained estimates for the
critical points and the magnetization exponents, which
are presented in Figure 10. As seen in this figure xm

is monotonously decreasing with α < αc, whereas for
α > αc xm stays approximately constant and this value
corresponds, within the error of estimates, to that of
the 2d RTIM with normal disorder, as given in Table 1.
From Figure 10 the cross-over value can be estimated as
αc ≈ 4.5. The magnetization scaling dimension, xm, or
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 α
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ln
 h

0

Fig. 10. Magnetization scaling dimensions in 2d for different
values of the Levy-index. In the inset the estimated critical
points are presented. The line connecting the data points is a
guide to the eye.
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Fig. 11. Average critical cluster moment as a function of size
in a log-log plot (α = 3). The slope of the line corresponds to
φψ = 0.48.

more precisely φψ = 2− xm, is also related to the finite-
size behavior of the average cluster moment at the critical
point: [µL]av ∼ Lφψ, which is illustrated in Figure 11 for
α = 3. From the slope of the curve in a log-log plot one
obtains an estimate of φψ = 0.48, which is in agreement
with the results shown in Figure 10. Similar agreement is
found for other values of α, too.

Our final investigation concerns the scaling behavior of
the distribution function of the log-energy-scale,PL(Γ ), at
the critical point. As in the 1d problem the critical expo-
nent, ψ, can be obtained from an optimal data collapse
in terms of the scaling variable Γ/Lψ. In Figure 12 we
present for α = 3 the rescaled accumulated probability
distribution function, where a satisfactory data collapse
is obtained for ψ = 0.8. Similar estimates for other α-s
are collected in Figure 13. As for the xm exponent ψ is
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Fig. 12. Rescaled accumulated probability distribution func-
tion of the log-energy-scale at α = 3. Satisfactory data collapse
is obtained with the exponent ψ = 0.80.

a monotonously decreasing function for α < αc ≈ 4.5,
whereas for α > αc it is approximately constant and this
value corresponds to that of the model with normal dis-
order as given in Table 1.

4 Summary

In this paper the effect of a broad disorder distribution
on the critical behavior of the RTIM is studied in one
and two space dimensions. The broadness of the disorder
distribution becomes relevant, if the Lévy index is lowered
below a critical value, αc. In the region of 1 < α < αc the
critical exponents of the IRFP-s are continuous functions
of α and for α > αc they are the same as in the model
with normal disorder.

In 1d we obtained αc = 2, in close analogy with ran-
dom walks, where the central limit theorem is valid for
α > 2. This analogy is more than a simple coincidence,
since the 1d RW and the quantum Ising spin chain are re-
lated through an exact mapping [22], which then has the
same requirement for the relevance-irrelevance conditions.
In 2d, where such type of mapping does not exist, the lim-
iting value is found to be approximately around αc ≈ 4.5,
thus in the region of 2 < α < αc the broadness of disor-
der is relevant for the RTIM, whereas it is irrelevant for
the RW.

Outside the critical point, in the so-called Griffiths-
phase [23] some physical quantities of random quantum
Ising magnets (linear and non-linear susceptibility, auto-
correlations, etc.) are still singular and in the presence
of normal disorder these Griffiths-McCoy singularities are
characterised by the dynamical exponent, z(δ), which is
a function of the distance of the critical point. For broad
distribution of the disorder the probability of rare events
is enhanced, consequently the Griffiths-McCoy singular-
ities become stronger. In 1d we have shown by scaling

2 2.5 3 3.5 4 4.5 5
α

0.5

0.7

0.9

1.1

1.3

ψ

Fig. 13. The critical exponent ψ as a function of the Lévy
index for the 2d model. The line is a guide to the eye.

arguments leading to equation (16) that the dynamical
exponent is formally infinite in the whole Griffiths-phase.

Considering other magnetic models we expect that in
1d the critical properties of the random XX, XXX and
q-state quantum Potts models are controlled by the same
IRFP as that of the RTIM and this is parameterized by
the Lévy index, α. This result for the XX-model is a con-
sequence of a known mapping [4,17], whereas for the two
other models the RG decimation equations are asymptot-
ically equivalent to that of the RTIM [4,21]. This equiva-
lence has been explicitly tested here for the Potts model
with q = 3. On the other hand in two dimensions such an
equivalence can be expected only for the random quantum
Potts model, since the random XX- and XXX-models have
no IRFP-s in higher dimensions [5,17].
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Appendix: Surviving probability of Lévy flights

Consider the following sum

Sn =
n∑
j=1

xj , (A.1)

where the independent random variables, xj , follow the
same broad probability distribution, π(x), which asymp-
totically behaves as

π(x) 'x→∞ px−(1+α), π(x) 'x→−∞ q|x|−(1+α), (A.2)
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with 1 < α < 2 and we are interested in the probability
distribution of Sn, p(S, n), for large n. According to exact
results [24] there exists a limit distribution, p̃(u)du, in
term of the variable, u = Sn/ln− cn, as n→∞. Here the
normalization:

ln = n1/α , (A.3)

is the transverse fluctuation of the walk, if we interpret
n = t as the (discrete) time and Sn=t as the position of
the walker in the transverse direction. The second normal-
ization is given by

cn = −n1−1/αδw , (A.4)

where with δw = −〈x〉 we define the bias of the walk. For a
small δw one gets from the combination in equation (A.4)
the scaling relation between time and bias as:

t ∼ |δw|−ν(α), ν(α) =
α

α− 1
· (A.5)

For a symmetric distribution, when π(x) is an even func-
tion, thus p = q and δw = 0, we have for the limit distri-
bution:

p̃(u) = Lα,0(u) =
1

2π

∫ ∞
−∞

eiku−|k|αdk , (A.6)

which has an expansion around u = 0

Lα,0(u) =
1
πα

∞∑
k=0

(−1)k
u2k

(2k)!
Γ

(
2k + 1
α

)
(A.7)

and for large u it is asymptotically given by

Lα,0(u) =
1
π
u−(1+α)Γ (1 + α) sin(πα/2) , (A.8)

where Γ (x) denotes the gamma function.
Consider next the surviving probability, Psurv(t, δw),

which is given by the fraction of those walks, which have
not crossed the starting position until t = n, thus Si > 0
for i = 1, 2, . . . , n. For a biased walk, with 0 < |δw| � 1,
the asymptotic behavior of Psurv(n, δw) is equivalent to
that of a symmetric walk (δw = 0) but with a moving
adsorbing boundary site, which has a constant velocity of
v = δw. For this event, with Si > vi for i = 1, 2, . . . , n, the
surviving probability is denoted by F (n, v), whereas the
probability for Sn > vn, irrespectively from the previous
steps, is denoted by P (n, v) and the latter is given by:

P (n, v) =
∫ ∞
nv

p(S, n)dS . (A.9)

Between the generating functions:

F (z, v) =
∑
n≥0

F (n, v)zn

P (z, v) =
∑
n≥1

P (n, v)
n

zn (A.10)

there is a useful relation due to Sparre Andersen [25]:

F (z, v) = exp [P (z, v)] , (A.11)

which has been used recently in reference [26].
In the zero velocity case, v = 0, which is equivalent to

the symmetric walk with δw = 0, we have P (n, 0)=1/2.
Consequently P (z, 0) = − 1

2 ln(1 − z) and F (z, 0) = (1 −
z)−1/2, from which one obtains for the final asymptotic
result:

Psurv(t, 0) = F (n, 0)|n=t ∼ t−θ, θ = 1/2 . (A.12)

Note that the persistence exponent, θ = 1/2, is indepen-
dent of the form of a symmetric probability distribution,
π(x), thus it does not depend on the Lévy index, α.

For v > 0, i.e. when the allowed region of the par-
ticle shrinks in time the correction to P (n, 0) = 1/2
has the functional form, P (n, v) = 1/2 − g(c̃), with c̃ =
vn1−1/α. Evaluating equation (A.9) with equation (A.7)
one gets in leading order, P (n, v) = 1

2 − c̃A(α) + O(c̃3),
with A(α) = Γ (1 + 1/α)/π. Then P (z, v) − P (z, 0) '
A(α)v

∑
n≥1 z

nn−1/α is singular around z → 1− as ∼
(1− z)−(1−1/α), consequently

F (z, v) ' (1− z)−1/2 exp
[
−A(α)v(1− z)−(1−1/α)

]
,

(A.13)

in leading order and close to z = 1−. Here the second fac-
tor gives the more singular contribution to the surviving
probability, which is in an exponential form:

Psurv(t, δw) ∼ F (n, v)|v=δw,n=t

∼ t−1/2 exp
[
−constδwt1−1/α

]
. (A.14)

For v < 0, i.e. when the allowed region of the parti-
cle increases in time we consider the large |v| limit and
write equation (A.9) with equation (A.8) as P (n, v) ' 1−
B(α)c̃−α +O(c̃−3α) with B(α) = Γ (1 + α) sin(πα/2)/πα.
Then, in the large |v| limit P (z, v) = − ln(1 − z) −
B(α)|v|−α

∑
n≥1 z

nn−α, where the second term is conver-
gent even at z = 1. As a consequence the surviving prob-
ability remains finite as n → ∞ and we have the result,
F (n, v) ' 1− const|v|−α, for |v| � 1. For a small velocity,
0 < |v| � 1, we can estimate F (n, v) by the following rea-
soning. After n = nc steps the distance of the adsorbing
site from the starting point, ys = vnc, will exceed the size
of transverse fluctuations of the walk in equation (A.3),
ltr ∼ n

1/α
c , with nc ∼ |v|−ν(α). Then the walker which

has survived until nc-steps with a probability of n−1/2
c ,

will survive in the following steps with probability O(1).
Consequently

lim
t→∞

Psurv(n, δw) ∼ lim
n→∞

F (n, v)|v=δw,n=t ∼ |δw|ν(α)/2 .

(A.15)
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Phys. (Suppl.) 138, 470 (2000).
7. N. Kawashima, F. Iglói (unpublished).
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22. F. Iglói, L. Turban, H. Rieger, Phys. Rev. E 59, 1465

(1999).
23. R.B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
24. B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for

Sums of Independent Random Variables (Addison-Wesley,
Reading, MA, 1954).

25. E. Sparre Andersen, Math. Scand. 1, 263 (1953); ibidem
2, 195 (1954).

26. M. Bauer, C. Godreche, J.M. Luck, J. Stat. Phys. 96, 963
(1999).


