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Abstract. Random walk arguments and exact numerical computations are used to study one-dimensional
random field chains. The ground state structure is described with absorbing and non-absorbing random
walk excursions. At low temperatures, the local magnetization follows the ground state except at regions
where a local random field fluctuation makes thermal excitations easier. This is explained by the random
walk picture, implying that the magnetization lengthscale is a product of the domain size and the thermal
excitation scale.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.50.+q Lattice
theory and statistics (Ising, Potts, etc.) – 75.50.Lk Spin glasses and other random magnets

In statistical mechanics of random systems the search for
universal properties has a geometric interpretation. If the
introduction of disorder is relevant, the real-space proper-
ties of the physical states can be understood through scal-
ing exponents. These describe the fluctuations of a domain
wall, or the behavior of a spin-spin correlation function,
and the configurational energy is coupled to the geometry.
A domain wall in a magnet wanders in space, described
by a roughness exponent ζ and there is an exponent θ for
the free or ground state energy fluctuations (see [1]). As-
suming that the ‘zero temperature fixed point’ scenario is
true and that the entropy is irrelevant at low enough tem-
peratures, this is all what is needed. The system evolves
via Arrhenius-like dynamics so that the cost of moving in
the energy landscape is given by the exponential factor
exp(∆Eβ), where β = 1/T and T is the temperature, and
∆E ∼ lζ relates the cost to the scale of the perturbation l.
A simple toy model, the random energy model, attempts
to describe the landscape but does not have the spatial
structure that is crucial in finite-dimensional systems [2].
Similar physics arises in systems with structural frustra-
tion, only, like glasses.

A random magnet has a ground state (GS), described
exactly by the positions and arrangement of the domain
walls. Non-trivial examples abound in the form of Ising
spin glasses and random field Ising magnets [3]. Here we
develop a novel random walk (RW) picture, that allows
us to solve exactly for the groundstate of one-dimensional
random field chains, generalizing earlier applications of
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RW ideas to this system [4]. We compare, by considering
the local magnetizations, this solution to exact numeri-
cal computations at T > 0 to discuss the relation of the
low-temperature physics to the GS of a random magnet.
Our work is analogous to RW arguments in disordered
quantum spin chains, where one can also compute exactly
physical properties [5].

The GS structure can be constructed for arbitrary field
distributions via the random walk ‘algorithm’ (see be-
low). At finite temperatures we present a scaling argument
based on the zero-temperature description of the energy
landscape, and confirm it by numerical studies of the GS
and the local magnetization on a sample-to-sample ba-
sis. The second main finding is then the existence of two
length scales. These are the zero-temperature length scale
of the domains and the typical size of ’easy’ excitations at
a given temperature. The latter changes the correlation
length of the magnetization from the GS. The emerging
picture should be applicable to more general situations
than the 1D RFIM. This is the simplest random magnet
where a non-trivial GS is mixed with thermal excitations
(e.g. random bond Ising magnets have a trivial GS).

The non-equilibrium properties of the RFIM chain
have recently received attention [6,7] since decimation-
type real space renormalization can be applied to domain
wall dynamics: each DW undergoes logarithmic Sinai dif-
fusion [8]. The asymptotic state of e.g. coarsening (on
which the related RG procedure is to be stopped) is given
by our findings. The zeroes of the magnetization profile
simply denote the equilibrium positions of domain walls
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Fig. 1. Segment of a ground state configuration (bold line),
compared to the equilibrium local magnetization 〈σi〉 at tem-
perature T = 0.45J . In the leftmost domain little melting oc-
curs, the one around i = 125 is an example of boundary melting
and in the rightmost one even spin reversal occurs.

at T > 0, with extra domain walls added to the GS due
to magnetization reversals.

The RFIM Hamiltonian is

H = −
N∑
i=1

Jσiσi+1 +
∑
i

hiσi (1)

where the σ’s are spins located at sites i of the chain,
and hi are random fields from a suitable probability dis-
tribution P (hi) (〈hi〉 = 0, with variance hr). For a binary
distribution hi = ±hi,r the model is equivalent to a spin
glass chain (with couplings Ji = ±J) in a homogeneous
external field hr [9,10]. Figure 1 shows typical GS and fi-
nite temperature (T = 0.45) magnetization profiles. The
GS domain size is often thought to be given by the Imry-
Ma argument [11]: the domain field energy balances the
cost from the domain walls on a scale [l]av ∼ 1/h2

r in
1D ([. . . ]av denotes the disorder average). This reasoning
omits the global optimization that yields the GS. At fi-
nite but small temperatures the magnetization changes as
the GS domain walls fluctuate, and thus the m(x)-profile
changes continuously. More interestingly, there are regions
inside domains where the magnetization can undergo a lo-
cal reversal, arising from the local field configurations as
demonstrated below.

The starting point for the random walk argument is the
fact that any sequence S of lattice sites i with |

∑
i∈S hi| ≥

2J leads to a GS spin structure with σi = +1 ∀i ∈ S
if
∑
i∈S hi ≥ 2J (and σi = −1 ∀i ∈ S if

∑
〉∈S hi ≤

−2J) independent of the local fields hj at sites j 6∈ S. The
system can thus be split up into such absorbing excursions
and into the remaining lattice sites, which make up so-
called non-absorbing excursions. Figure 2 illustrates this:
an absorbing excursion is a sequence of spins starting at
some lattice site i and ending at the lattice site j ≥ i,
with the field-sum |

∑
i∈S hi| for the first time becoming
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Fig. 2. The terminology used in the RW algorithm. For further
details see text.

greater or equal to 2J :

|
j∑
l=i

hi| ≥ 2J and |
k∑
l=i

hi| < 2J ∀i < k < j.

(2)

In Figure 2 the left- and rightmost sequences are absorb-
ing excursions, of length lae. A sequence S′ of spins from
i to j ≥ i is a non-absorbing excursion if

σ

j∑
l=i

hi ≤ 0 and 0 < σ
k∑
l=i

hi < 2J ∀i < k < j

(3)

where σ = ±1 is the orientation of the spins within
the preceding absorbing excursion. The length of a non-
absorbing excursion is lnae. A simple ‘step down’ (like from∑

1 to
∑

2) is included in this definition.
The GS now follows as a sequence of absorbing and

non-absorbing excursions. It, and the Zeeman energy
Ef =

∑
domain hi, and the mean domain-length can be

determined with the rules: (1) determine an absorbing ex-
cursion S0 for a given field configuration. If it starts at
site i0, ends at j0, and σ is the sign of its field-sum, then
σk = σ for all k ∈ S0. (2) start from j0 + 1 and find all
nnae non-absorbing excursions until the next absorbing ex-
cursion S1 (from i1 to j1) is found, whose field-sum is by
definition opposite in sign to the preceding one. The sites k
belonging to the non-absorbing excursions have the same
orientation σk = σ as those within S0. The orientation
of the spins at sites l within S1 is opposite to the latter
one, σl = −σ. (3) starting again at j1 + 1 the search (2)
for the next absorbing excursion then leads to the overall
GS. These steps actually define a fast algorithm for find-
ing the GS, though for historical reasons we have used the
max-flow/min-cut solution [3].

The domain length consists of two contributions and
the meanlength [ld]av is given by

[ld]av(hr) = [nnae]av[lnae]av + [lae]av. (4)
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Now one needs to estimate the hr-dependence of [nnae]av,
[lnae]av and [lae]av. The fieldsum over the local fields of a
non-absorbing excursion is a RW with absorbing bound-
aries at

∑
nae hi = 0 and

∑
nae hi = 2J and random step

size with zero mean and variance hr. Rescaling the step
size h′i = hi/hr → 1 this becomes a 1d RW starting from
x = 1 at t = 0 with random step lengths with mean
zero and variance one and absorbing boundaries at x = 0
and x = L = 2J/hr. The probability P0(t, L) to be ab-
sorbed at x = 0 within the time interval [t, t+ dt] without
having been absorbed at x = L reads P0(t, L) ∝ t−3/2

for 1 . t . L2 and decays exponentially for t & L2.
Integration over P0(t, L) leads to [lnae]av ∼ L ∝ h−1

r .
The mean number [nnae]av of consecutive non-absorbing
excursions follows from the probability for an excursion
to be absorbing growing as pae ∼ 1/L ∝ hr [12]. Thus
P (nnae) ∼ (1− pae)nnae decays exponentially. As a conse-
quence nnae ∼ 1/ln(1− b hr) and the mean length of an
absorbing excursion scales like h−2

r . Finally equation (4)
reads

[ld]av(hr) ∼
a

hr ln(1− b hr)
+

c

hr
2 → e

hr
2

for hr → 0 (5)

where one expects b < 1, a < 0 and −a ≈ c. Note that
a/hr ln(1 − b hr) ∼ h−2

r for hr → 0 and for hr < 0.5 no
significant difference between a/[hr ln(1 − b hr)] and h−2

r
can be observed. The asymptotic limit is Imry-Ma-like,
though its origin is more complicated.

This result is confirmed by exact GS computations us-
ing a Gaussian random field distribution with zero mean
and variance hr and averaging over 105 disorder configu-
rations. The system size is large enough (L = 5000) such
that [ld]av � L even for the smallest field strength hr.
Figure 3 shows our numerical result for the average length
[ld−2]av of the GS domains as a function of the field ampli-
tude hr. In the limit hr →∞ [ld]av → 2 since all the spins
align with their local fields. In the limit hr � J the data fit
well to the predicted form equation (5), scaling as h−2

r for
hr → 0. Moreover, as can be seen in Figure 4 the probabil-
ity distribution of the domain sizes decays exponentially,
with a decay rate ν that scales inversely proportional to
[ld]av, i.e. ν(hr) ∝ h2

r.
The field energy of a domain can be computed as a

function of hr and ld by noting that both a single ab-
sorbing excursion and all of the non-absorbing excursions
contribute. The former contributes a constant (2J), inde-
pendent of hr and ld. Each non-absorbing excursion adds
an amount of O(hr) so that the sum self-averages. The
contribution of a single non-absorbing excursion equals∑
i−
∑
i−1 ∼ hr, i.e. the step width of the RW. Thus

the field energy results from the number of non-absorbing
excursions in a domain, nnae, plus 2J . From (5) we learn
that in the limit hr →∞ the contribution of the absorb-
ing and non-absorbing walks to [ld]av scale similarly such
that we expect that for a fixed domain size [nnae(ld)]av ∝
ld/[lnae]av ∝ ldhr. Thus one has

[Ef (ld)]av = 2J + [nnae(ld)]av hr = 2J + dh2
r [ld]av (6)

Fig. 3. Average domain length as a function of hr. The dotted
line is a fit to equation (5) with a = −0.74, b = 0.25 and
c = 1.4. The inset shows the 8-point slope of the data yielding
an exponent 2 in the limit of small hr.
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Fig. 4. Probability distribution of the domain lengths ld.
Apart from a non-exponential tail (perhaps due to finite size
effects the decay is exponential with decay rate ν. Inset: The
decay rate ν as a function of hr. For hr � 1 the data are
compatible with ν ∼ h2

r (bold line).

The numerics confirms this result: Figure 5 shows the
data for the mean Zeeman energy [Ef (ld)]av of domains
of length ld. From the slopes of the straight lines we see
that [Ef (ld)]av is linear in the domain length and from
the offsets that it grows like h2

r, independent of the field
distribution P (hi). Note that from a naive random walk
picture one would expect [Ef (ld)]av ∝ l1/2d hr.



104 The European Physical Journal B

Fig. 5. Mean Zeeman energy HZ − 2J corresponding to
a particular domain length ld in a log-log plot. hr =
3.0, 2.0, 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.13, 0.08, 0.05 from top to bot-
tom. The slopes of the straight lines are all within the interval
1.00 ± 0.05. The data are averaged over 105 disorder configu-
rations. The straight lines represent least square fits.

We now turn our attention to T > 0 equilibria: the lo-
cal magnetization m(x) and the domain structure. Using
numerical transfer matrix methods [13,14] to compute the
partition function ZN the exact expectation value 〈σr〉 for
each spin is found by calculating the product of the N
2 × 2 transfer matrices. Floating point accuracy gives a
lower limit of T = 0.05 due to the smallness of the ran-
dom matrix elements. First we address the scale-lengths
of the equilibrium magnetization by computing the av-
erage length [lm]av separating two consecutive zeroes of
the magnetization. Figure 6 demonstrates how this length-
scale changes with temperature, if we first scale away the
T = 0-dependence on the field. A further collapse with
the right combination of hr and T leads to an universal
scaling function for [lm]av

[lm]av = [ld]avf(T/h2/3
r ), (7)

where f → 1 with T → 0. The dependence of [lm]av on
the combination of temperature and field strength does
not follow an Imry-Ma-like scaling. It is determined by
both zero-temperature effects ([ld]av) and thermal fluc-
tuations. The following argument explains the scaling
variable h

2/3
r /T , analogously to spin glass chains in an

external field [10]. The non-absorbing random walks (con-
stituting the domains) are sometimes such that the ran-
dom walk sum of fields over the excursion is close to 2J .
These almost-absorbing walks are the sequences (of spins)
most likely to be flipped at finite temperatures. The cost
of flipping such a part of a domain is proportional to J ,
which if measured in terms of hr is related to the length-
scale l of the non-absorbing excursions, hr ∼ 1/l. This
is almost equal to the Zeeman-energy optimized over the
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Fig. 6. Scaling-plot for the average domain-lengths at finite
temperatures: [l(T = 0)]av/[〈lT 〉]T versus T/ξ(h) for differ-
ent values of the field strength hr, where the length scale

ξ(h) ∝ h2/3
r .
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Fig. 7. Fraction of melted spins as a function of temperature
for different values of c. L = 400, hr = 1.0

excursion, which scales as Ef ∼ hrl1/2. Equating the cost
with the gain and solving for the energy scale (Ef ) gives
rise to the Arrhenius factor Ef/T ∼ h2/3

r /T .
As Figure 1 demonstrates, m(x) for T > 0 differs

from the GS due to domain wall fluctuations and inter-
nal cluster reversals. We introduce a parameter c ∈ (0, 2)
and define a reversal to be a sequence of spins for which
|〈σi〉(T )−σi(T = 0)| > c holds; the definition is applied to
both processes separately. Since bulk reversal involves the
breaking of two extra bonds one expects that domain wall
fluctuations dominate. However, the former contributes a
considerable portion to the total melting even at low tem-
peratures (Figs. 7 and 8). The relative portion of bulk
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Fig. 8. Portion of those spins is displayed which reside inside
bulk segments. Parameters as in Figure 7.

reversals at first grows with temperature for all values of
c since the gain in entropy allows for more broken bonds.
Moving the threshold c away from ±1, a greater number
of bulk segments is identified. Eventually for very large
c even more bulk than boundary reversals are observed.
The characteristic reversal rates are different for the two
processes, and related via the empirical formula(

∆m

∆T

)
bulk

= α

(
∆m

∆T

)
bound

, (8)

with α ≈ 1.63. Thus the change in magnetization with
increasing T is stronger inside the GS domains than at
their boundaries, independent of hr [15].

In conclusion, we have studied the magnetization
properties and the groundstates of one-dimensional RFIM
chains using a random walk construction for the GS struc-
ture. The finite-temperature properties, complicated by
thermal excitations, are explained with the help of
almost-absorbing walks. The results illustrate how global
optimization influences physics at T > 0 via the geometric
arrangement of domain walls. They also present an appli-
cation of random walk theory to global optimization and
provide a starting point for further work (e.g. the presence
of random bonds, correlations in the fields) including an
extension of the RW algorithm to 1D random field Potts
chains [16]. In both the Potts and RFIM problems the
relation of the GS, as given by the RW arguments, to
the dynamical systems’ aspects [13,17] is of interest. An
extension of the random walk arguments to higher dimen-
sional (RFIM) problems [15] seems difficult, but the basic

physics should remain the same: the overlap of the GS
and the low-temperature equilibrium state is finite, and
can be understood in terms of the excitations being again
governed by two different scales, as in 1D.
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