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Abstract. The random field q-states Potts model is investigated using exact groundstates and finite-
temperature transfer matrix calculations. It is found that the domain structure and the Zeeman energy of
the domains resembles for general q the random field Ising case (q = 2). This is also the expected outcome
based on a random-walk picture of the groundstate. The domain size distribution is exponential, and the
scaling of the average domain size with the disorder strength is similar for q arbitrary. The zero-temperature
properties are compared to the equilibrium spin states at small temperatures, to investigate the effect of
local random field fluctuations that imply locally degenerate regions. The response to field perturbations
(‘chaos’) and the susceptibility are investigated. In particular for the chaos exponent it is found to be 1 for
q = 2, . . . , 5. Finally for q = 2 (Ising case) the domain length distribution is studied for correlated random
fields.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 75.50.Lk Spin glasses and other random magnets

1 Introduction

Adding disorder to random magnets creates new effects
one the prime examples being the random field Ising model
(RFIM) [1,2]. Since the randomness couples directly to the
order parameter one has interesting physics in the ground-
state (GS) properties [3–6], already. With a finite temper-
ature the disordering effects of entropy and local fields
compete.

The purpose of this article is to explore the general-
ization or extension of the one-dimensional RFIM to the
one-dimensional random-field Potts model. The 1d RFPM
is defined on a chain of L spins (with periodic boundary
conditions being used here) where each spin site can be in
one of q states. The Hamiltonian is given by

H = −J
∑
〈i,j〉

(qδσi,σj − 1) −
∑

i

hi(qδσi,αi − 1) (1)

where 〈i, j〉 are nearest-neighbour pairs and δσ,σ′ the
Kronecker-delta, i.e., δσ,σ′ = 1 for σ = σ′ and δσ,σ′ = 0
otherwise . The vector αi is a unit vector pointing ran-
domly in one of the q spin directions and hi is the local
field strength which is chosen either constant or randomly
distributed. In the numerical computations presented be-
low we have used a Gaussian distribution for the random
fields with 〈hi〉 = 0 and 〈hi

2〉 = hr
2, such that hr/J is a
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measure for the strength of the disorder, except at finite T
where fields are uniformly distributed between [−δ, +δ]. In
the following we denote the one-dimensional versions of
the RFIM and the RFPM with RFIC (random field Ising
chain) and RFPC (random field Potts chain).

Our approach is to explore the RFPC by three dif-
ferent techniques. We compute the exact GS by using a
shortest path method [4–6]. This is a generalization of an
idea that allows to find the GS of the RFIC, and can be
understood as the zero-temperature limit of the transfer
matrix computation of the equilibrium spin state. This is
also employed here, to compare that state with the GS.
Finally we resort to a qualitative description in terms of a
random-walk (RW) picture of the groundstate. This is also
an extension of the RFIC case, where an earlier paper [7]
presented a RW description of the exact groundstates.

There is rather little work on the RF Potts model
with the exception of trivial field distributions for the
RPFC [8,9]. Thus it is worth to recapitulate some of the
features of the RFIC or the reasons why it still receives
some attention. Due to the fact that the model is one-
dimensional one could expect that the basic magnetiza-
tion properties are more or less trivial. It turns out to
be so, however, that in particular for binary random field
distributions (hi = ±hr) these have very peculiar proper-
ties [10,11]. The equation for the local magnetization can
be considered as a 1d dynamical system with, for suitable
parameters, a multifractal probability distribution [12].
For the RFPC this is perhaps also the case, generalized
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suitably to higher dimensions if q > 2. In this article we
omit such considerations for the sake of the equilibrium
and groundstate properties.

One of the points of an exact solution for the GS is
that it can be investigated how exactly the introduction
of a small, finite temperature breaks up the GS. For the
RFPC it is more or less trivial that the overlap between
the GS and the T > 0 state stays close to one, contrary to
e.g. spin glasses where this question may still be open to
a debate. However, it is of interest to study how exactly
the GS is modified by the “easy” excitations. These are,
as discussed below, related to the almost degenerate re-
gions of the GS. The equilibrium state is also of interest
as the asymptotic one for out-of-equilibrium processes. In
such one-dimensional systems the domain walls undergo
activated dynamics, in particular the RFIC ones perform
Sinai walks [13,14].

The structure of the rest of the paper is as follows. First
we overview, in Section 2, the theoretical expectations for
the groundstate properties and outline qualitatively the
consequences for perturbations from a given GS, whether
by temperature or by changing the local fields (by random
shifts or by an uniform applied field). Section 3 is devoted
to exact numerical studies of the RFPC. In Section 4 the
temperature is switched on, and the effect of entropy on
the domain structure is analyzed. Section 5 contains a
brief numerical study of the effect of correlated fields. Fi-
nally, Section 6 finishes the paper with conclusions. The
numerical techniques are discussed in the Appendices.

2 Random walks: decomposition
of the groundstate

We have earlier presented a way to divide the sequence
of random fields hi for the RFIC in such a way so that
one can understand the ensuing domain structure [7]. The
idea is to look at trial random walks: start from a test site,
and follow the sum of the random fields left/right (an ar-
bitrary choice). Each of such trials constitutes either an
absorbing or non-absorbing one. The terms describe the
fact that trials are random walks with absorbing bound-
aries. One boundary results in an excursion of the RW
which is such that enough Zeeman energy (2J) is accu-
mulated to form a domain, but if the other one is met
first the try is finished and a new one is started. Since
the RW’s are independent, the GS factorizes. Mathemati-
cally such excursions are given by the following rules. An
absorbing excursion (ae) is a sequence S of spins start-
ing at some lattice site i and ending at j ≥ i, with the
field sum |∑i∈S hi| for the first time becoming greater or
equal to 2J . On the other hand a sequence S′ of spins
from i to j ≥ i is a non-absorbing excursion (nae) if
0 < σ̄

∑j
l=i hl < 2J ∀i < k < j ; where σ̄ = ±1 is the

orientation of the spins within the preceding absorbing
excursion.

As shown in Figure 1 for each domain one has at least
one such absorbing RW (it can contain more than one
such large fluctuation) and it will be bounded by the next

Fig. 1. Random walk picture for the RFIC domains. The up-
per part of the figure shows the field sum

�
hi at each of the

spin sites (starting from the left) and the lower part depicts
the corresponding domain structure. The random walk starts
a non − absorbing (nae) excursion as soon as it leaves the
shaded region of height 2J (for details see text).

opposite absorbing RW’s on each side. The rules to be
followed are: (1) Determine an absorbing excursion S0 for
a given field configuration. If it starts at site i0 and ends
at j0, and σ̄ is the sign of its field sum, then σk = σ̄
∀k ∈ S0. (2) Starting from j0 + 1 find all non-absorbing
excursions until the next absorbing excursion S1 (from i1
to j1) is found, whose field sum is by definition opposite
in sign to the preceding one. The sites k belonging to
the non-absorbing excursions have the same orientation
σk = σ̄ as those within S0. The orientation of the spins
at sites l within S1 is opposite to the later one, σl = −σ̄.
(3) Starting at j1 +1 the search (2) for the next absorbing
excursion then leads to the overall GS.

This picture explains also, for binary random fields
hi = ±h, the degeneracy of the RFIC. For our purposes
it is more important to note that for any kind of pertur-
bations it implies that there are three processes, domain
wall-shifts, destruction and creation of domains, that fol-
low naturally from the sequence of RW’s. If one changes
the local random fields some of the absorbing excursions
become non-absorbing, and thus domains are destructed
while new ones may ensue if some non-absorbing ones be-
come absorbing. These are in principle easy and in prac-
tice cumbersome (since one needs to be concerned with
the exact first passage properties of the perturbed field
distributions or random walk step length distributions) to
compute for each process. Moreover, the normal outcome
is that the domain-walls are shifted. The major results
that follow for the RFIC from the RW picture concern
the domain structure and optimization. The domain mag-
netic (Zeeman) energy scales linearly with domain size in
contrast to the Imry-Ma argument [15]. The domain size
distribution is exponential, and for hr � 1 the Imry-Ma
result 〈ld〉 ∼ 1/h2

r is recovered since both the contributions
from the non-absorbing walks and the absorbing ones that
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Fig. 2. The simplified Random walk picture for the RPFC.
The field sums undergo coupled random walks where each step
magnitude is determined by hi, and �i (Eq. (1)). The plot is for
the q = 3-case, with the original domain aligned along the q0-
orientation. The dashed lines denote the absorbing boundaries
for creating a new domain, with the chosen spin alignment.

contribute to the domain length scale with 1/h2
r. Thus for

the RFPC it will be interesting to compare both the do-
main structure and the Zeeman energy,

HZ =
∑
i∈D

hi(qδσi,αi − 1). (2)

For the Potts model one can use the same thought
experiment: assume the spin σi = q′′, and look for
“absorbing excursions”. Now, in contrast to the q = 2-
case the general RFPC is more complicated. For each of
the other q′ �= q′′ one can follow, analogously to the RFIC,
the random walk that results from three steps: 1) null step
(local field aligned to other direction than q′ and q′′), 2)
positive and 3) negative steps. One has q − 1 such trial
walks, with the elementary step directions being corre-
lated or shared. These follow “partial” sums of local ran-
dom fields, according to the rules 1) – 3). Thus an analogy
of the RFIC results in studying the first passage properties
of a q−1 dimensional space. This is illustrated in Figure 2.
Either one of the coordinates is increased, or all of them
are decreased (q′′-step, q0 in the plot) at the same time.
One is interested in the first-passage through one of the
sides of a hyper-cube in (q−1)-dimensions, i.e. across the
plane where q′ = 2J . The walk starts in the immediate
vicinity of the corner (0, . . . , 0) of the hyper-cube. The
simplest complication that arises over the q = 2, RFIC
case is that for each trial walk that compares any of the
spin orientations and the original one there are “empty”
steps consisting of local fields aligned with the other q− 2
possibilities. This implies that the typical domain length
might simply scale with q, as borne out later by the nu-
merics. In more general terms, forgetting for simplicity the
complications for q > 2 outlined below, one has to deal
with the joint first passage properties of random walks
coupled due to the correlated steps. This should become
equivalent in the limit q → ∞ to the solution of the fol-
lowing extremal problem: what is the first random walk
out of q − 1 walks to reach a given absorbing boundary,
if i) the decrements (a q′′-step) are shared, but otherwise

ii) the increments among the walks are taken to be uncor-
related. We do not explore this further here, but that it
is useful to note that the extremal properties of the RW
picture vanish for the q = 2 case.

There are two further complications compared to the
RFIC, both resulting from the fact that the optimization
can not be done as straightforwardly as in the RFIC due to
the factorization of the landscape to absorbing and non-
absorbing excursions. Namely, for q > 2 the process is
slightly non-local. Consider the q = 3 case, and assume
that spin i has q′ = 1. If a large fluctuation is found
by following the appropriate partial sum of the q′ = 2-
orientation, and the next one is of q′ = 3-kind, one has
to consider whether it is energetically more favorable to
create a 2-domain, a 3-domain, or both, since the number
of domain walls created can be lowered by omitting in this
example the 2-domain. One can also use the argument the
other way: if a large 3-fluctuation exists, it is possible to
create a 2-domain since one of the domain walls is free.
The following structure 1 1 1 1 3 3 3 of total energy Ei, is
changed into 1 1 1 2 3 3 3 of energy Ef by flipping a single
spin 1 → 3 (the local random field hi = h directed along
α = 3 at the flipped site). The latter configuration would
be more favourable than the former one if, Ef < Ei, yield-
ing h > J . This shows that the minimum Zeeman energy
of a domain of length 1 should at least be J(q − 1).

3 Ground state properties

3.1 Correlations among the successive domains
and the evolution with increasing disorder

As noted above the sequence of domains is complicated
due to the joint optimization. The easiest quantity is to
compare the probability that the third domain from the
original one is of the same orientation as the first one. We
calculate the probability Pσ(q) of finding the every third
domain (Di+2) to be the same or different as the first (Di)
one. In absence of any correlations among the successive
domains one should expect the probability Pnc

σ (q) of ob-
taining Di+2 same or different with respect to Di to be,

Pnc
σ (q) =




1
q−1 , for Di = Di+2

q−2
q−1 , for Di �= Di+2.

(3)

We carried out computations with the Shortest Path
Algorithm (see Appendix A) for q =2, 3, 4, 5 states, with
the field strength hr = 0.05. It is easy to see from Figure 3
that Pσ(q) deviates some from the Pnc

σ (q). Evidently, the
system prefers to have the third domain different from
the first one. One can put this in two ways: creating a 121
configuration costs more energy, on one hand, and on the
other hand as noted before one can add a domain at the
expense of a single domain wall between two others (131
becoming 1231).

The evolution of the domain structure with increasing
field amplitude hr differs fundamentally from the same
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Fig. 3. Left: Probability of obtaining every third domain Di+2

same or of different as the first Di. The continuous lines rep-
resents the no-correlation probability function P nc

σ (q). Inset:
The ratio of P nc

σ (q)/Pσ(q) means the third domain is the same
as the first one. The system size L = 105 and the number of
configurations 20 000.

Fig. 4. Evolution of groundstate with increasing disorder
strength hr for q = 5.

phenomena in the RFIC. New domains can be created
in-between two earlier ones at a smaller cost (2J instead
of 4J). Figure 4 depicts the evolution of the GS domains
for a q = 5 states sample with identical configuration of
the random direction of the local fields but increasing dis-
order hr = 0.05, 0.07, 0.15. The large domains are split
into smaller fragments, mostly at their boundaries.

Fig. 5. Log-log plot of the mean Zeeman energy as a function
of domain length ld. The disorder strength hr = 0.20, 0.15,
0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03 from top to bottom
in all the subplots.

 

 

Fig. 6. Mean domain length as a function of hr. The straight
lines are fits to the function f(x) = ax−2 where the coefficient
a =6.99, 6.57, 6.89 and 7.39 respectively for q = 2, 3, 4 and 5.
The fit works well for smaller hr but deviates for larger am-
plitudes. Inset: The average domain length 〈ld〉 as a function
of q. The straight line is a linear fit with slope 201.88.

3.2 Distribution of domain length and Zeeman energy

To compare with the q = 2 or RFIC case we now used a
larger system size of L = 100000, with n = 105 samples.
Figure 5 shows the numerical results for the accumulated
Zeeman energy HZ as a function of domain length ld for
different field amplitudes hr. The data has been averaged
for each hr for all domain sizes ld, separately. It easy to
see that all 〈HZ〉 versus ld curves can be asymptotically
(except for the smaller ld region) fitted to a straight line
of the form [7]

〈HZ〉 = qJ + dqh
γ
r ld. (4)

Here the coefficient dq grows roughly logarithmic
for q < 15.

Figure 6 shows the mean domain length 〈ld〉 for differ-
ent values of q as a function of the field amplitude hr. The
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Fig. 7. Scaling plot of the domain length probability distribu-
tion P (ld). The data are shifted by 7, 14, 21 units along the
x-axis for q = 3, 4, 5, respectively. Inset: Unscaled plot of P (ld)
for q = 5. The labels refer to the disorder strength hr.

data along the x-axis for q = 3, 4, 5 are shifted by fac-
tors 2, 4 and 8 respectively. In the limit hr � J the data
fits quite well with the Imry-Ma scaling [15] 〈ld〉 ∼ 1/h2

r.
The prefactor of the domain length is (see the inset of
Fig. 6), except for q = 3, linearly dependent on q. Figure 7
finally shows the scaling plots of the probability distribu-
tion P(ld) of the domain lengths. Apart from the initial
part, the distribution decays exponentially. We may there-
fore conclude that in spite of the slight correlations in the
domain structure, the RFPC obeys the same scalings in
the GS as the RFIC.

3.3 Response to constant external field

In the presence of an external field favoring one of the spin
orientations via an additional term h

∑
i(qδσi,αi − 1) in

the Hamiltonian (αi arbitrary but fixed and the same for
all sites), the magnetization becomes of course non-zero.
The ground state magnetization is computed as

ma =
1
N

N∑
i=1

(
qδσi,a − 1

q − 1

)
(5)

in a particular direction a (here a ∈ [1, .., q]) for q different
states. Now for a small field strength (hr � J) in an
infinite system one has

m∞(h) ∼ h. (6)

For a finite system the corresponding finite-size scaling
relation can be obtained as follows [16,17]. In the GS the
Zeeman energy of a block of spins of size L is

EZ ∼ Lh. (7)

Further the random field (variance hr) energy of the
block is

ERF ∼ L1/2hr. (8)

 
 

 
 

Fig. 8. Ground state magnetisation for q = 2, 3, 4, 5, re-
spectively. The exponent ν = 1.0 (for all q) follows from the
fit to f(x) = bxν , which is also verified by the data collapse
according to equation (10).

For a non-zero h one would expect mL(h)h−1 to be a
function of the dimensionless ratio of EZ and ERF only,
yielding

mL(h) = hm̃(L1/2h/hr) (9)

with

m̃(x) ∼



const. for x � 1

1/x for x � 1
. (10)

Equation (9) can once again be written as,

mL(h) = L−1/2m̄(L1/2h/hr) (11)

with m̄(x) = const. for x � 1 and m̄(x) = 1/x for x � 1.

The system is subjected to a constant external field h
in a fixed direction a = 1 to evaluate ma(S, h) for a
sample S with some given realization of random fields.
To start, h = 0.0001, and the GS magnetization is
computed. Then the field is increased after averaging
1000 samples, until saturation. Here hr = 0.1, L ∈
{5 000, 10 000, 20 000, 40 000, 80 000} while h is in the in-
terval [0.0001, 0.03]. The data collapse of L1/2h/hr vs.
L1/2mL(h) are shown in Figure 8. For smaller systems
one has to use higher values of hr, since otherwise a single
domain may percolate.

3.4 Chaos exponent

A slight variation of the random fields in each sample gives
rise to “chaos”. In the case of the RFIC or RFIM in general
this has already been studied [18,19]. There the general
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Fig. 9. Scaling plot of the overlap correlation function Cδ(r)
versus rδ. Data are averaged over 1000 samples for each per-
turbation strength δ with fixed system size L = 105 and the
disorder strength is fixed at hr = 0.05.

behavior is such that for small amplitudes δ of the local
perturbation the overlap between the new and the old
GS remains considerable, and the difference is a smooth
function of δ. This is easy to see if one considers the RW
factorization of the GS: a variation of the local fields gives
rise to a new RW, in superposition with the original one.
In the limit δ → 0 this has only minute effects except
for barely absorbing walks and barely non-absorbing ones
that can be affected if δ is large enough.Thus the average
overlap q is linear for the RFIC in δ. Next we look at the
chaos properties in the RFPC.

To modify the initial random fields hi at each site i

they are replaced by hi

′
= hi + δh̃. As before, hi and

also h̃ follow Gaussian distributions and the parameter δ
measures the strength of the perturbation. Denoting σ0

i
and σδ

i to be the unperturbed and perturbed ground state
at site i respectively, the ground state overlap correlation
function up to a distance r is defined by

Cδ(r) =

[
1
N

N∑
i=1

∆(σ0
i , σ

0
i+r)∆(σδ

i , σ
δ
i+r)

]
av

(12)

with

∆(σ, σ′) = 2δσ,σ′ − 1. (13)

In the limit N → ∞ one would expect a scaling form

Cδ(r) ∼ c̃(r/ξ(δ)) (14)

with

ξ(δ) ∝ δ−1. (15)

In Figure 9 we show the results of our calculation of the
GS overlap correlation function Cδ(r). r is varied from 4
up to 160 for each perturbation strength δ. The obtained
data collapse agrees quite well with the argument above.

Fig. 10. Destruction of a GS domain for T > 0 in the RFIC.
The upper part of the figure shows the field sum

�
i hi in the

neighbourhood of spin i = 1, ..., 5, the lower part the corre-
sponding ground state and a T > 0 state. The reason why this
domain melts at relatively low temperature is indicated in the
middle part: The field sum of spin 5 is just outside the shaded
area(see text).

4 Domains at finite temperature

4.1 Changes with the introduction of a finite
temperature

For T > 0 we calculated the expectation values 〈σi〉 us-
ing the transfer matrix technique [10,24] as described in
Appendix B. The domains start “melting”, i.e. the over-
lap with the GS, 〈σiσi,GS〉, decreases, as the temperature
is switched on from T = 0. The effect of temperature is
similar to a random field perturbation in the sense that
both should play a role in particular where the fluctua-
tions in the random landscape (absorbing/almost absorb-
ing walks) make it the easiest. On the other hand the effect
of temperature is not limited to those regions, only. Next
we compare the finite temperature and GS configurations
to illuminate the T > 0 physics.

In Figure 10 we represent the destruction of a domain
for a system of size of L= 400 and hr = 0.7, as the tem-
perature is raised to 0.2 from T = 0. The random field
distribution is uniform in the interval [−1, 1]. The zero
temperature domain from i = 2 to i = 5 is due to a single
absorbing excursion, depicted by the large shaded region
in the upper part of the Figure 10. The inset in the middle
part shows the sensitive region at i = 5, where the field
sum just crosses the absorbing boundary. As the temper-
ature is increased from zero, the entropy gives weight to
states where the whole region or much of it is flipped, to
the σ = −1 state instead of +1.

Figure 11 shows the melting of a GS domain at T = 0.1
for a system of L = 400 and strength of disorder hr = 1.0
(the distribution of local fields is again uniform in [−1,1]).
Now the sum-of-fields random walk in the GS from i = 1 to
10 is actually part of a non-absorbing excursion inside the
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Fig. 11. Creation of a fluctuation for T > 0 (RFIC). The up-
per part of the figure shows the field sum

�
i hi in the neigh-

bourhood of spin i = 1, ..., 10, the lower part the corresponding
ground state and two T > 0 states. The reason why this do-
main melts at relatively low temperature is indicated in the
middle part: The field sum of spin 4 and 10 are very close to
the absorbing boundary (see text).

  
  

Fig. 12. GS of the q-states random field Potts model and
equilibrium states for T > 0. The GS domains are represented
by a thick dotted line. The range of temperature goes up to
T = 0.7. Between T = 0.25 and T = 0.7 ∆T = 0.05. The
system size is restricted to L = 400 and hr = 0.5

embedding domain with σ = −1. It is however susceptible
to the introduction of temperature (note the spins i = 4
and 10 where the RW is closest to creating a domain, in
the inset).

At a finite temperature the sites 2, 3, 4 form a “new
domain” with σ = −1. This new domain contains only
one part of the RF fluctuation, from 1 to 4.

To further investigate the melting of a GS domains
at finite temperatures, an overview of the GS and equi-
librium configurations at finite temperatures is shown in
Figure 12. The calculations for each temperature including
the GS are carried out for the same local field configura-
tion. The thick dotted line corresponds to the GS whereas
the continuous lines represents the melted configurations
with the gradual increase in temperature.

In general, for very low temperatures there are only a
few segments of spins, which differ from their respective
GS orientations [7], growing with increasing temperature

Fig. 13. The GS of RFPC with q = 3 and equilibrium states
(〈σi〉 is the thermal expectation value of the spin value at site i)
for T > 0. Within the interval 0.1 ≤ T ≤ 0.45 the temperature
is raised by ∆T = 0.05. (b), (c), and (d) shows components of
melting probabilities for q = 1 . . . 3.

in height and width. At high temperatures (T � J and
T � hr) the expectation value 〈σ〉 of each spin finally
fluctuates around the mean value 1/q.

4.2 Domains at T > 0

To construct a domain structure at any finite tempera-
ture we focus to the melting, or change from the GS, of
individual q states. It is easy to calculate the contribution
for each of q states to the resultant melting by taking a
single state in the diagonal matrix, in the transfer matrix
calculation, and keeping the others zero. The maximum
of these contributions will give rise to a definite local spin
state (σi = 1, ....q). Figure 13a represents the GS (straight
bold line) and melted 〈σi〉 at finite temperatures for q = 3.
Figures 13b, c, d shows the components (for each q) of
probability P (σi = 1, 2, 3) at T ≥ 0 of individual spins
〈σi〉 at sites i. Consider the 1st segment of domain in (a).
It is evident that the melted domain approaches the state
q = 3 as confirmed by the behavior of the same segment
in Figures 13b, c and d. To analyze the melting process
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Fig. 14. Probability distribution of finite T domains P (lT ) for
q = 2, 3, 4, 5. The data are averaged over 1065 samples.

quantitatively we investigate the probability distributions
of lengths of the melted segments and the melting rates
∆mi

∆T , where mi = 〈σi〉 for each of q = 2, 3, 4, 5.
We also compute the finite temperature distribution

of domain lengths. The simulations are for different tem-
peratures with a system of fixed L = 300 and disorder
strength hr = 0.7. The distribution of local random fields
is uniform in [−1,1]. The disorder, temperature, and sys-
tem size are restricted by the fact that one has to compute
products of L(q× q) transfer matrices. One also prefers to
avoid Gaussian disorder instead of one with a bounded
support. It is clear from Figure 14, that except for the
initial part, the probability distribution P (lT ) varies ex-
ponentially with lT , similarly to GS domains. With an in-
creasing temperature the decay in the tail becomes faster,
indicating that correlations diminish as expected.

We define the probability distribution of melting rates
∆mi

∆T as,

P

(
∆mi

∆T

)
=

N(∆mi

∆T )
nL

, (16)

with

∆m = |σ(T + ∆T ) − σ(T )|, (17)

where n is the number of samples. We measure the change
in magnetisation mi for each spin σi when the temperature
changes by ∆T . For counting we use the resolution δ =
0.001, for which N(∆m

∆T ) is actually the number of spins
σi with ∆mi

∆T ∈ [∆m
∆T − δ

2 , ∆m
∆T + δ

2 ].
Figure 15 shows the distribution P (∆m

∆T ) at different
temperatures for q =2, 3, 4, 5; ∆T = 0.05 is the same for
all temperatures and 105 configurations. The data points
for ∆m

∆T are not shown as in this regime we observe a strong
maximum at ∆m

∆T → 0. For q = 2 there is a small but
distinct peak in the curve for T = 0.2 which gradually
diminishes for higher values of q.

Fig. 15. Probability distribution P (∆m
∆T

) at constant field
hr = 0.7.

 

Fig. 16. Scaling plot of the average T > 0 domain length for
different hr. The data are shifted along the y-axis by −0.1 and
−0.2 units for q = 3, 4 respectively. L = 300 and the data are
averaged over 50 000 configurations.

4.3 Finite temperature lengthscales

Finally we investigate how the local regions of the mag-
netization evolve at finite T [7]. We calculate the average
length lm(lm = 〈lT 〉) from the finite temperature configu-
rations. Figure 16 represents how this lengthscale changes
with temperature, if one first scales away the T = 0 depen-
dence on the field. Note that the temperature is restricted
so that T ≥ 0.09. A further collapse with the right combi-
nation of h and T makes it possible to observe an universal
scaling function for lm so that

lm = ldF

(
hν

T

)
, (18)

where the scaling function F → 1 as T → 0. The exponent

ν ∼= 2/3 (19)

does not change with q, and thus one has the same scal-
ing for q > 2 as for the RFIC. The implication is basically
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Fig. 17. Scaling exponent γ of p(ld) = h−γ
r P (hγ

r ld) against ρ.
ρ is the exponent of the correlated random field distribution
(see text).

the same: one has per each domain a number of “easy”
excitations that allow the magnetization to change a lot
from the GS. These are related to the non-absorbing ex-
cursions in the RFIC case. For a given temperature T a
lengthscale follows from taking a typical energy gap. This
scales with h with the Zeeman energy of the non-absorbing
excursions. Take now the lengthscale corresponding to the
cost of flipping the domain, J ∼ h ∼ 1/l where the last
proportionality uses the RW result for the typical length
of non-absorbing excursions. This equals the Zeeman en-
ergy, hl1/2, so that one obtains EZ,gap ∼ h2/3 yielding the
scaling in equation (19) [20]. The presence of such almost
degenerate regions is, as indicated by the numerics, not
affect by the value of q.

5 RFIC with correlated random fields

We have already seen that for an uncorrelated random
field distribution the average domain length asymptoti-
cally follows the Imry-Ma argument, i.e. 〈ld〉 ∼ 1/h−2

r .
This should change for spatially correlated random fields.
Now we obtain an exponent γ with 〈ld〉 ∼ 1/h−γ

r where γ
approaches 2 as the spatial correlations decrease. Consider
a power-law correlation function of the form

〈hihi+r〉 ∼ r−ρ. (20)

To use an analogy of the Imry-Ma argument, the random
field energy of a domain of length ld is expressed as

ERF ∝
√√√√ ld∑

i,j=1

hihj . (21)

Making use of the correlation function (21) we readily ob-
tain,

ERF 
√√√√h2

r

(
l2−ρ
d

1 − ρ

)
(22)

with 0 < ρ < 1. The domain wall energy is as usual

EDW  J. (23)

To create domains, in the GS, ERF and EDW are of the
same order of magnitude, thus

ld  h−γ
r (24)

where the exponent

γ =
2

2 − ρ
, (25)

for ρ < 1. For ρ > 1 this Imry-Ma type argument pre-
dicts the irrelevance of the correlations in the disorder,
i.e. ρ = 2.

We computed the probability distribution P (ld) on a
large system of size L = 65536, with the local, correlated,
Gaussian random fields generated by the Noise Construc-
tion Algorithm [21]. Statistical averaging was performed
over 105 samples. As in the case of uncorrelated fields
P (ld) is again exponential for all values of ρ we stud-
ied. The disorder hr was varied for each value of ρ, to
calculate the exponent γ from the data collapse of P (ld)
versus ld. As it is clear from Figure 17 that γ deviates sig-
nificantly from the predicted value as ρ approaches unity,
but finally approach the value 2 for ρ → ∞. The deviation
might be due to logarithmic corrections to the Imry-Ma
prediction (25) close to the critical value ρ = 2. The same
properties can also be verified for the RFPC, if the ran-
dom field magnitudes and their directions obey the same
correlations.

6 Conclusions

It is a fortunate fact that one can solve numerically, but
exactly, for the groundstates of the RFPC. For the RFIM
one has access to powerful graph optimization methods
that work in d arbitrary, but for q > 2 it can actually be
shown that the problem is NP-complete for d > 1 [22].
Here we have used this to study the Potts chains, aug-
mented with random walk considerations and with trans-
fer matrix calculations.

As it is already known that the RFIC groundstate is,
essentially, separable to independent regions and what the
consequences are it is most natural to compare the q > 2
behavior to the RFIC physics. It turns out that essentially
all more general scaling behaviors, whether pertaining to
the GS or to the finite temperature states, follow similar
laws. This is true, in groundstates, for the Zeeman energy,
for the form of the domain distribution, and for the aver-
age domain length. At T > 0 we have demonstrated that
the change from the GS configurations follows a similar
course for q arbitrary. Finally also for GS chaos the value
of q has no essential importance.

There are of course slight differences since the local do-
main structure has correlations due to the “decorations”
of large domains with smaller ones that utilize the fact
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that only one domain wall needs to be created if e.g. in-
duced by increasing the disorder strength. These are of
secondary importance for the scaling properties. Some of
the details of the random walk description, as modified
for the RPFM, seem to lead to interesting mathematical
problems that to our knowledge are not discussed in the
literature [23].

The greatest deviations from the expected behavior we
observed in the case of the RFIC with correlated fields,
where the scaling exponent of the domain length with dis-
order strength does not seem to take the expected value
γ = 2 (but is slightly less) for weakly correlated fields. This
may be due to corrections to scaling, or to the detailed
properties of a RW picture, similarly to the uncorrelated
case, when the walks are fractional Brownian motions.

In the case of the RFPC it is possible to propose a
number of topics for further investigations. Eg. the gener-
alizations of the multifractal magnetization distributions
of the RFIC seem mathematically interesting. Also the de-
tailed properties of the “melting” of the GS might merit
further study.

We are grateful to G. Schröder for contributing to the early
stages of this work, in particular for the design of the graph
on which the algorithm for finding the ground states of the
RFPC operates. This work has been partially supported by
the Deutsche Forschungsgemeinschaft(DFG) and the European
Science Foundation (ESF) Sphinx program. MJA acknowl-
edges the contribution of the Center of Excellence program
of the Academy of Finland.

Appendix A

The ground state of q-state RFPC can be calculated ex-
actly by mapping onto a shortest path problem on an
acyclic graph. The graph G(L, q) corresponding to a q-
state RF Potts chain of length L consists of (L+1)×q
nodes which we consider to be arranged like presented
in figure 1 and denoted by (x, k) with x = 1, ...., L and
k = 1, ...., q. Each node (x, k) is connected to all of its right
neighbours, i.e. to all nodes (x + 1, k′) with k′ = 1, ...., q
by a directed one-way edge with cost

c(x,x+1,k,k′) = −J(qδk,k′ − 1) − hx+1(qδk,α − 1). (A.1)

Fixing the spin at x = 0 to be in state k the groundstate of
RFPC then corresponds to a shortest path from (1, k) to
(L, k) in G(L, k). To apply periodic boundary conditions
it is necessary to solve q shortest path problems, one for
each of the q (with (q, q) spins at sites x = 1 and x = L+1)
possible states. One of these shortest paths with minimum
energy gives rise to the optimal groundstate.

Since the underlying graph (Fig. 18) is acyclic no cy-
cle, in particular none with negative weight, can occur
and Dijkstra’s algorithm for finding the shortest path in
a weighted graph can be applied although not all edge
weights are positive. The running time of this algorithm

 

Fig. 18. The graph corresponding to the Shortest Path
Method for the RFPC problem.

is linear both in number n of the nodes and in the num-
ber m of the edges, thus the overall complexity to find the
groundstate of the RFPC with periodic boundary condi-
tion is O(q2L).

Appendix B

For temperature T > 0 we generalize the Transfer Matrix
Method [24] for the q-states RFPC. The calculation of the
partition function ZN can be reduced to the problem of
finding the product of N random matrices:

ZN =
∑
{σ}

exp(−βHσ) = Tr

(
N∏

i=1

L(i)

)
(B.1)

where

L(i)
j,k =

[
exp[βJ(qδσj ,σk − 1) + βhi(qδσj ,αi − 1)]

]
q×q

.

(B.2)

Here (j, k = 1, ..., q).
Using this expression of partition function the expec-

tation value 〈σr〉 for each spin can be expressed as,

〈σr〉 =

∑
{σ} σr exp (−βH)

ZN
· (B.3)

It is easy to see from equation (17) that

〈σr〉 =
Tr
[(∏N

i=1 L(i+r−1)
)

S
]

Tr
(∏N

i=1 L(i+r−1)
) (B.4)

with Sij = iδij .
The only computational effort consists in calculating

the product of N q×q transfer matrices. Since the elements
of L(i) become very small for low temperatures, arbitrar-
ily small temperatures can not be considered. However,
the admissible temperature interval is sufficient for our
investigations.
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