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Abstract. We consider the optimal paths in a d-dimensional lattice, where the bonds have isotropically
correlated random weights. These paths can be interpreted as the ground state configuration of a simplified
polymer model in a random potential. We study how the universal scaling exponents, the roughness and
the energy fluctuation exponent, depend on the strength of the disorder correlations. Our numerical results
using Dijkstra’s algorithm to determine the optimal path in directed as well as undirected lattices indicate
that the correlations become relevant if they decay with distance slower than 1/r in d = 2 and 3. We show
that the exponent relation 2 ν −ω = 1 holds at least in d = 2 even in case of correlations. Both in two and
three dimensions, overhangs turn out to be irrelevant even in the presence of strong disorder correlations.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.50.+q Lattice
theory and statistics (Ising, Potts, etc.) – 64.60 Ak Renormalization-group, fractal, and percolation studies
of phase transitions – 68.35.Rh Phase transitions and critical phenomena

1 Introduction

Optimal paths have been a subject of intensive studies
during the recent years. Besides being one of the simplest
problems involving disorder, this interest can be traced
back to the relevance of this problem to various fields,
such as polymer models [1–3], surface growth [4], random
bond ferromagnets [5–7], spin glasses [8], and the traveling
salesman problem [9].

The model under consideration is easily sketched:
given an arbitrary weighted graph, each edge has a par-
ticular cost. The optimal or shortest path connecting two
sites is the one of minimal weight, which is the sum of
all costs along that path. We do not restrict to a particu-
lar geometry yet as well as we do not specify the costs
more precisely so far. In the simplest case, we choose
them from a set of random numbers that are uniformly
distributed. In this context, the directed polymer model
has drawn the most significant attention during the past
years [1,2,10–12], where one assumes in d = 2 a simple
square lattice being cut along its diagonal and oriented as
a triangle with the diagonal as its base. One allows only
paths in the direction to the base, i.e., the path cannot
turn backwards. The costs of the edges that belong to
the shortest path are interpreted as potential energies for
a polymer configuration that passes through these edges
(or bonds).
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We may now ask whether the properties (scaling ex-
ponents) of the shortest path are either influenced by the
distribution of the random numbers or the geometry of
the lattice. The former is still discussed [1,13–16]. As far
as the latter is concerned, it seems to be clear that the
universal properties are not changed if the randomness
is uncorrelated. For this case Schwartz et al. [17] inves-
tigated directed and undirected paths in d = 2, 3 using
Dijkstra’s algorithm to find the shortest path and Marsili
and Zhang [18] used a transfer matrix method approach
considering directed and undirected paths up to d = 6.
Both state that overhangs exist but nevertheless they sug-
gest that both problems belong to the same universality
class, even in high dimensions where overhanging config-
urations are entropically favored. It is not a priori clear
that this observation remains true for correlated disorder.
In fact, as we will point out below, the average number of
overhangs increases for strongly correlated disorder indi-
cating that they might become relevant for strong enough
correlations.

In the present study, we study the universal proper-
ties of shortest paths and focus on the effect of isotropi-
cally correlated random weights on the scaling exponents.
To this end, we consider directed and undirected lattice-
graphs in two and three dimensions with bond weights ηj,
where the d-dimensional index vector j = i1, ..., id ∈ Z

d

denotes the position of a particular bond in the lattice.
The total energy or cost of a path P from one end of the
lattice (e.g. from one special site or node in the top layer)
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to the opposite end (e.g. to an arbitrary site or node in
the bottom layer) is simply the sum of these bond weights

E =
∑
j∈P

ηj . (1)

The weights ηj are correlated positive random variables,
which we define below. We choose the index vector j of the
bonds in such a way that it is identical with the position of
the center of the bonds in an Euclidean lattice. E.g. for the
square lattice (2d) in which we define the upper left corner
as the origin, all indices take on odd values. We refer to
isotropic correlations if the connected correlation function
of the costs ηj decays with a power law with Euclidean
distance of two bonds, viz.

G(j, j′) = 〈ηjηj′〉 − 〈ηj〉〈ηj′ 〉 ∼ | j− j′ |2ρ−1, (2)

where ρ < 1/2. Here 〈· · · 〉 denotes the disorder average,
i.e. an average of the probability distribution of ηj.

For ρ = 0 model (1) with (2) represents an effective
single vortex line model for interacting vortex lines in a
random vector potential [19]. We would like to empha-
size that isotropic correlations have not been investigated
so far: For historical reasons one discriminates between
d − 1 transverse or spatial directions and 1 longitudinal
or time direction. This can be traced back to the relation
between directed polymers and the KPZ-equation. If the
randomness is only correlated in d−1 dimensions and un-
correlated in the remaining direction one refers to spatially
correlated randomness, if the correlations are only present
in time direction one refers to temporal correlations. Let
j = (x, t) = ((i1, ..., id−1), t). Then we can describe both
cases by G ∼ |x− x′ |2ρ−1 · δ(t − t′) (spatial correlations)
and G ∼ | t − t′ |2θ−1 · δ(x − x′) (temporal correlations).

The first systematic numerical work done on spatially
correlated noise is due to Amar et al. [20]. Their results
are in agreement with the dynamical [21] and functional
RG [22,23] predictions. Subsequent careful work by Peng
et al. [24] and Pang et al. [25] was done. As far as temporal
correlations are concerned, we refer to the simulation of a
ballistic deposition model by Lam et al. [26].

In this paper we study isotropically correlated disorder,
it is organized as follows: In Section 2 we introduce the
models, the numerical method and the quantities that we
are interested in. In Section 3 we present our results and
in Section 4 we summarize our findings.

One remark on the notation: We will use the words
graph and lattice as well as costs and energy, node and site
and edge and bond synonymously throughout the paper.

2 Model

The undirected graph can be described as follows (see
Fig. 1b): we choose a simple lattice structure and define
one longitudinal and d − 1 transversal directions. We will
refer to them by means of t and x respectively. We assume
the lattice to be periodic in space (x) with period H and
L to be the longitudinal size. We choose the origin of the

a) b)
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L

Fig. 1. a) The directed graph can be regarded as a square
lattice that was cut along its diagonal and oriented as a triangle
with the diagonal is its base. The paths are directed downwards
to the base. b) In the undirected case the path is allowed to
turn back on a lattice with periodic boundary conditions in
the spatial direction(s). In both cases one fixes the source •,
whereas the target � is the most favorable node of the base.

coordinate system as being the starting point (the source)
of the path. We assign a particular amount of energy to
each bond, whereby these energies are isotropically cor-
related. Generating these random numbers we follow the
method introduced by Pang et al. [25]. We infer period-
icity and symmetry of the correlator gρ in any direction,
where

gρ(∆j) := G( j, j + ∆j ) = |∆j|2ρ−1 (3)

with gρ(..., (∆j)i + pi, ...) := gρ(..., (∆j)i, ...) and
gρ(..., (∆j)i, ...) = gρ (..., pi/2 − | (∆j)i − pi/2 |, ...) in case
of a period pi in direction i. In contrast to pure spa-
tial and temporal correlations where the correlator is
taken to be the product of two separate ones, one for
the time direction and one for the remaining spatial co-
ordinates, here it is due to a generic vector ∆j. Adapt-
ing the correlator to the lattice, we require a period H
in the transversal and 2L in the longitudinal direction.
By means of the factor 2 we guarantee that gρ(t) has the
required form (3) in the range 1 ≤ t ≤ L. Its Fourier
transform yields Sρ(k) such that the correlator in the
k-space is given by 〈ηkηk′〉 ∼ δk+k′,0 Sρ(k). Choosing
ηk ≡ √

Sρ(k)(rk − 1/2) exp(2πiφk), that relation can be
fulfilled, where rk and φk are random variables uniformly
distributed between 0 and 1. A transformation back to real
space provides the random numbers correlated according
to the power law rule (see also Appendix A).

From the set of Ld−1 optimal paths that connect the
source (x, t) = (0, 0) with nodes of the bottom layer with
coordinates (x, L), we select the shortest one. Technically
this is achieved not by repeating the same calculation Ld−1

times (i.e. once for each end-point) but by introducing
an extra target node connected to the bottom layer by
zero-weight bonds. The algorithm that computes the op-
timal paths in polynomial time is Dijkstra’s algorithm that
works in any graph with non-negative weights.

Our study is focused on the universal characteristics
of the optimal path, i.e. on the scaling exponents ν, the
roughness exponent, and ω, the energy fluctuation expo-
nent. ν describes the fluctuations of the path with regard
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to a line parallel to the t-axes that is shifted to the ori-
gin by an amount matching to the mean position 〈x〉 of
the polymer. We refer to these fluctuations by D. Due to
the direct mapping between the model of shortest paths
and growing interfaces [4], it is immediately seen that the
energy of the polymer also fluctuates, where we consider
several realizations of disorder, we have:

D ∼ tν ∆E ∼ tω. (4)

There is no need to modify these relations when we con-
sider directed paths. For this purpose we introduce directed
bonds, e.g., we restrict to the positive axes. In order to de-
termine the roughness of the polymer, we refer to a line
parallel to the bisecting line (x, t) ∼ (1d−1, 1) that crosses
the origin. For each size L we can determine the distance
of the target node to that line by considering the projec-
tion of its position vector onto the bisector. That is, a
directed path connects the source (x, t) = (0, 0) and the
sites on the line between (0, L) and (L, 0), what has to be
extended to the notion of a plane in d = 3.

As far as undirected paths are concerned one has to
make clear how x(t) can be defined if overhangs appear. In
that case x(t) is not a single valued quantity anymore. We
have checked the relevance of several choices but finally
we took x(t) = max{xi(t)} with t constant for all xi. The
numerical results that we present are independent of this
choice.

As there are O(2n) undirected paths across the lat-
tice, where n is the number of nodes, an efficient method
is needed that terminates within a reasonable time, such
as Dijkstra’s algorithm [17,27], that is able to generate
the shortest path in polynomial time. In this algorithm
the path is successively constructed, i.e., one obtains not
only a single path but a cluster of them with energy la-
bels smaller than a certain limit, so that a growth front
is established. This cluster contains the so called perma-
nently labeled sites. The algorithm proceeds by extending
the front by this site that is the nearest neighbor to it
with respect to the energy. If the growth front reaches the
base of the lattice we are enabled to reconstruct the short-
est path. The growth process of that front can directly
be mapped onto a growing Eden cluster [4] providing the
same scaling behavior as directed polymers.

If we assume uncorrelated costs the roughness of the
growth front scales like the energy fluctuations of the poly-
mer. Since the properties of the surface are described by
the KPZ-equation and, consequently, the height-height
correlation increases according to a power law with ex-
ponent ω = 1/3, we expect in d = 2 the scaling exponents
of the optimal path of size:

ωOP = βKPZ = 1/3 νOP = 1/zKPZ = 2/3.

Exact values are only accessible in d = 2. The value of
the exponent ν can be extracted from ω if we take into
account the exponent relation

2 ν − ω = 1

which holds for uncorrelated noise. This relation follows
from the Galilean invariance of the KPZ-equation and the

transfer to shortest paths afterwards. In d = 3 there exist
no analytical predictions. Nevertheless, the estimates of
numerous numerical studies [1,2,17] yield

ω ≈ 0.19 ν ≈ 0.62.

As long as the Galilean invariance holds, the scaling rela-
tion remains unchanged. This invariance is not altered in
the presence of spatial (transversal) correlations but it is
broken in the presence of temporal (longitudinal) correla-
tions.

A Flory type argument [11] leads to the following es-
timate νF of the roughness exponent as a function of ρ. A
continuum Hamiltonian of the energy (1) has to include
an elastic part, since this is generated in a coarse graining
procedure.

H =
∫

dt

[
λ

2
(∇t x)2 + η(x, t)

]
. (5)

Rescaling t with a factor b and x with a factor bν the
elastic term scales with b 2ν−2 and the disorder term with
b ρ−1/2 (because of the power law decay of the disorder
correlations), resulting in

νF =
1
2

ρ +
3
4
· (6)

In case of uncorrelated random numbers the disorder term
scales with b −ν(d−1)/2−1/2, resulting in

νuncorr. =
3

d + 3
· (7)

Hence we expect

ν =




νuncorr. for ρ ≤ 3(1−d)
2(3+d)

νF for ρ > 3(1−d)
2(3+d) ·

(8)

This simplified scaling picture should yield at least a lower
bound for the roughness exponent.

3 Numerical results

In addition to the relations in (4), we define the two ex-
ponents γ and δ by l ∼ Lγ and B ∼ Lδ, where B is the
number of backward bonds with respect to time, and l is
the total length of the path. We also determine the fractal
dimension dc of the shortest path cluster M ∼ Ldc , where
M is the mass of its surface. The shortest path cluster
consists of all nodes with labels smaller than a maximal
one given by the shortest path weight from the source to
the base. As far as Dijkstra’s algorithm is concerned, its
surface is constituted by all the sites that are part of the
growth front with at least one nearest neighbor that is not
yet permanently labeled.

The scaling exponents are extracted from a set of
data that reproduces the simulation of several lattice sizes
(Fig. 2). The statistical error is usually smaller than the
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Fig. 2. Scaling of the height-height correlation D(L) and the
energy fluctuations ∆E(L) in d = 2 for NDOPs. The straight
lines are least square fits of the data for L > 100 to a power
law D(L) ∝ Lν and ∆E(L) ∝ Lω with ν = 0.66, 0.77, 0.85 and
ω = 0.32, 0.50, 0.67 for ρ = −0.50, 0.25, 0.40. The statistical
error of the data for D(L) and ∆E(L), which are averaged
over at least 10 000 disorder realizations, is smaller than the
symbol size.

symbol size. We adapt the transversal expansion H to the
size L in such a way that we eliminate further effects on
our data by increasing H , even if ρ = ρmax. Finally, we
consider lattices of size H ≥ 4L if L ≤ 2048 and H = 4096
if L = 2048 in d = 2, as well as H = 128 if L ≤ 32 and
H = 256 if L ≥ 64 in d = 3. At any time, we forbid the
shortest path cluster spanning the lattice in order to avoid
saturation effects. This requirement cannot be satisfied for
all L = 128 in case of d = 3 and ρ close to ρmax.

Our results are averages over more than 10 000 disor-
der realizations per size L. The generation of correlated
random numbers is the most time consuming part. For
each sample we have to perform a Fourier transformation
of N = 2dLHd−1 numbers twice. On the average approxi-
mately 90% of the CPU time is needed for this execution.
Some more information about the generation is given in
Appendix A.

0.25

0.30

0.35

0.40

0.45

0.50

0.55

-0.50 -0.25 0.00 0.25 0.50

ω

ρ

DOP

Fig. 3. Our result of the directed path in d = 2 for spa-
tial correlations. A direct comparison with the results of [25]
(Fig. 3) shows that they are in good agreement. The full line
is theoretical prediction from a one-loop KPZ dynamic RG
calculation [21] and a DPRM functional RG [23] calculation.

As a first check we studied the directed polymer prob-
lem in d = 2 with only spatially correlated bond weights
as it was done by Pang et al. [25]. It can be seen from
Figure 3 that we are in very good agreement with their
results. In case of strongest correlations (ρ = 0.40) we ob-
tain ν = 0.71±0.01 and ω = 0.43±0.01. It is quite evident
that correlations are only relevant in the regime ρ > 0.

Two dimension (d = 2)

In d = 2 we find that the roughness exponent ν does not
depend on the directedness of the lattice. Overhangs do
not play an important role and the undirected path can be
regarded as a directed one (Fig. 4). Independent from the
strength of the correlations all exponents ν are smaller
than the critical value 1. As far as undirected shortest
paths are concerned, exceeding that critical value leads
to fractal objects that cannot become directed, even on
large scales. The errorbars depicted in Figure 4 are not
the result of the least square fit but estimates of the mini-
mal and maximal slopes being in nearly perfect agreement
with our data.

In contrast, we obtain a less significant data collapse
with respect to the energy fluctuation exponent ω, if ρ > 0.
This may be affected by a statistics that has room of im-
provement but it indicates a tendency that is especially
noticeable in d = 3: the stronger the correlation the more
significant variations in ω occur. The reason for this rela-
tion is not clear to us. In both cases the exponent relation
can be satisfied (Fig. 5) where we are in better agreement
with 2 ν − ω = 1 for undirected paths. We learn from
Figure 3 that isotropic correlations in the randomness are
relevant for ρ > 0. The scaling of the energy fluctuations is
much more sensitive to passing from white noise to weak
correlations (ρ = −0.5) in comparison to the roughness.
Whereas ν keeps constant (ν = 0.66 ± 0.01), ω reduces
from ω = 0.32 ± 0.01 to ω = 0.29 ± 0.01. The number of
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Fig. 4. The scaling exponents ν and ω in d = 2 depend on the
strength ρ of the correlation. Close to ρ = 0 correlations start
to affect them significantly. In either case the insets show the
difference of both the exponents of the undirected and directed
lattice respectively. The reference lines represent the values
ν = 1/3 and ω = 2/3 respectively.

backward bonds in the NDOP model remains negligibly
small. It is B ≈ 15 for L = 1024 if ρ = 0.40 where δ ≈ 1.0.
In that case almost every path has at least one such bond.
According to these results we obtain l ∼ L.

Although the roughness exponent increases signifi-
cantly for ρ ≥ 0.3 and might even come closer to 1 for
ρ ≈ 0.6 it stays still smaller than one. Also the length of
the shortest path scales linearly with L for the values of ρ
that we could study. Both observations imply a non-fractal
shortest path. However, the properties of the shortest path
cluster change remarkably when coming closer and closer
to ρ = 0.40, where the fractal dimension of its surface be-
comes dc ≈ 1.1 instead of dc ≈ 1 if ρ = 0. In Figure 6
one can see that for weak correlations the surface of the
shortest path cluster is a semicircle whereas for larger cor-
relations it becomes topologically more complicated.

Not only the disorder averaged roughness D scales
with Lν but the whole probability distribution PL(D):
It is PL(D) = Lνp(D/Lν) as we show in Fig-
ure 7 for ρ = 0.40. For the scaling function p(x)
we can fit a log-normal distribution given by p(x) =
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Fig. 5. The exponent relation is depicted for the NDOP model
in d = 2. Both data sets diverge only close to ρ = 0.40 accord-
ing to the insets of Figure 4.

a) b)

d)c)

Fig. 6. Realizations of the shortest path cluster (NDOP)
for H = 512 and L = 256. In each case the growth process
stops when the growth front reaches the base of the lattice. We
choose a) uncorrelated random numbers and correlated random
numbers with b) ρ = 0, c)+d) ρ = 0.40.
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Fig. 7. Scaling plot for the probability distribution PL(D) of
the roughness in case of directed paths for ρ = 0.40. The scaling
function p(x) is a log-normal distribution with D0 = 0.11 and
σ = 0.70.

(2πσ2)−1/2 exp(−(ln D/D0)2/2σ2). The parameters σ and
D0 do not depend on ρ for ρ ≤ 0 (where D0 ≈ 0.13,
σ ≈ 0.58) and vary slightly with ρ for ρ > 0.



352 The European Physical Journal B

0.60

0.65

0.70

0.75

0.80

-0.6 -0.4 -0.2  0  0.2  0.4

ν

ρ

NDOP

 1

 10

 10  100

D
 (

 L
 )

L

ρ=0.40
ρ=0.25

ρ=-0.50

0.2

0.4

0.6

-0.6 -0.4 -0.2  0  0.2  0.4

ω

ρ

NDOP
DOP

0.8

0.9

1.0

1.1

1.2

-0.6 -0.4 -0.2  0  0.2  0.4

2 
ν 

- 
ω

ρ

NDOP
DOP

Fig. 8. The exponents ν and ω in d = 3 are plotted versus
ρ. The insets show the scaling of the height-height correlation
D(L) for NDOP and the exponent relation in d = 3 respec-
tively. The reference lines belong to our results ν = 0.62 and
ω = 0.22 in case of uncorrelated numbers.

Three dimensions (d = 3)

The results in d = 3 are qualitatively similar to those
of the preceding section. For uncorrelated randomness we
obtain ν = 0.62 ± 0.02 and ω = 0.22 ± 0.01 in agreement
with [1,2,17]. Both ν and ω increase monotonously with ρ,
i.e. increasing correlations. While ν does so without any
difference between directed and undirected paths, ω dif-
fers from this behavior: the stronger the correlations the
more estimates for the exponents deviate from each other
(Fig. 8). As ν < 1 the undirected path becomes directed
on large scales. We should emphasize that obtaining data
in the regime ρ > 0.25 for d = 3 is much more delicate
than in d = 2. The local slopes of the energy fluctuations
indicate that even for the maximal size L = 128 we are
not yet in the asymptotic regime for ρ > 0.3. Therefore we
explicitly restrict ourselves to values ρ ≤ 0.3. This result
refers to both kinds of lattices and, so is not a consequence
of saturation effects. The distinct behavior of both kinds

a)

b)

Fig. 9. Cluster of shortest paths in d = 3 that is cut along the
x-t-plane with y = H/2. a) uncorrelated randomness b) strong
correlations (ρ = 0.40). It is seen that we pass again from a
semicircle like cluster to a topologically more complicated one.

of paths can be demonstrated more obviously by plotting
the exponent relation 2ν − ω = 1 (see inset of Fig. 8).

Even though the scaling regimes in d = 3 are not very
wide our estimates for ν and ω deviate significantly from
their values in the uncorrelated case. Significantly means
here that their estimated errors (obtained in the same way
as in our 2d-study before) are smaller than the deviation
from the uncorrelated values. Therefore we can infer that
for strong enough correlations (ρ ≥ 0.3) the DOP and
NDOP problems constitute new universality classes. The
precise determination of the critical value for ρ, beyond
which correlations become relevant, is, however, beyond
our numerical precision.

For completeness we mention that even in case of L =
128 and ρ = 0.40 the number of bonds turning backward
is negligibly small: B ≈ 1.6 compared to B ≈ 3 in d =
2. We do not expect a significant change in B for larger
lattices as this quantity scales by an exponent δ ≈ 1.0 but
the number of paths including such bonds should increase
from 60% to 100%.

In contrast to the difficulties above, the fractal dimen-
sion dc of the surface can be extracted quite clearly. It
is dc ≈ 2.35 ± 0.10 if we choose ρ = 0.40 in contrast
to dc → 2.0 for uncorrelated numbers. We illustrate the
change of the cluster by cutting the system along the x-
t-plane. Figure 9 shows such cuts for y = H/2 where a)
denotes random costs and b) corresponds to strongest cor-
relations.

4 Summary

In the present paper we have considered the effect of
isotropically correlated bond weights on the scaling be-
havior of both undirected and directed paths in two and
three dimensions. We found that in d = 2 the algebraic
correlation of the disorder are relevant for a decay slower
than 1/r (i.e. ρ = 0) and the roughness exponent ν and the
energy fluctuation exponent ω increase monotonously for
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ρ ≥ 0. The Flory estimate (8) for the roughness exponent
is fulfilled as a lower bound of our numerical estimates.
A precise value for ρc, above which correlations modify
the universality class, is hard to estimate numerically, but
we observe that it is close to and slightly smaller than
zero in d = 2 and d = 3, in agreement with the Flory
argument (8).

Moreover, the results in d = 2 indicate that the scal-
ing exponents are independent from the directedness even
in case of very strong correlations. In contrast to this,
in d = 3 directed and undirected lattices yield different
results for ρ > ρc ≈ 0 indicating that both cases consti-
tute different universality classes. In 2d the scaling relation
2ν − ω appears to remain valid even for stronge correla-
tions (although Galilean invariance is broken), whereas for
d = 3 we observe in the directed case significant deviations
from it (in the undirected case it appears to remain valid).

Finally we could exclude the possibility that optimal
paths become fractal for strong disorder correlations as
long as they decay algebraically. As a consequence ν stays
smaller than one and overhangs turn out to be irrelevant.
This behavior changes if we consider the following disor-
der correlations: 〈(ηj − ηj+r)2〉 ∝ rα, with α > 0, which
increase with distance r = |r|. These type of correlators
are relevant for an effective model of dislocations in a vor-
tex line lattice [28]. In this case we found that the optimal
paths are fractals with a fractal dimension significantly
larger than one and depending on the value of α [29].

This work has been supported by the Deutsche Forschungsge-
meinschaft (DFG).

Appendix A

Here we explain how to initialize the correlation function
gρ(j) and we show that N = 2dLHd−1 correlated random
numbers have to be created for our purposes. We need
to generate 2N uncorrelated random numbers and have
to perform a Fourier transformation twice. If we consider
the simple square lattice of nodes with lattice spacing a we
can immediately see that we have to distinguish between
positions of nodes and positions of bonds. The latter build
a simple lattice that is rotated towards the node lattice
by π/4 with a lattice spacing enlarged by a factor

√
2

(Fig. 10). But we have to create correlations according to
positions of bonds. Let us assume now this lattice to be a
two dimensional array. The most comfortable solution of
the generation of correlations due to bond positions is to
keep the original lattice structure, meaning we switch to
a spacing a/2 and finally focus on those positions within
this array that correspond to bonds in our lattice. Then we
define the center of that lattice (array) and initialize each
position of the array by |j|2ρ−1, where −H/2 ≤ ji < H/2
or −L/2 ≤ ji < L/2 is the position vector. This array
is called the correlator gρ(j). There are two problems: by
doing so, we generate twice the quantum of correlated
random numbers we really need (the information of the

L=2

t

x

H=4

pb
c

pbc

a

Fig. 10. First we stretch the lattice of size (H×2L) resulting
in (2H×4L) and finally compress it again. Here • denotes sites
that refer to nodes on a lattice of size L and H , ◦ corresponds
to virtual nodes which have to be introduced in order to follow
the definition of the correlator (periodicity in each direction)
and � refers to bonds. Squares denote positions that addition-
ally arise by switching to a lattice spacing a/2. In contrast to
black squares the entries of white squares do not play any role
concerning the generation of correlated random numbers.

black squared positions) and we still have to discuss how
to define gρ(0). As mentioned in Section 2, we already
have to take into account a factor 2 from the longitudinal
expansion so that N becomes N = 2 × 2dLHd−1, where
again all sites in the left part of Figure 10 would be oc-
cupied. In order to restrict memory usage we compress
the lattice along one axes (here the x-axes), whereby we
loose the information of all the positions indicated by open
symbols. By doing so, we avoid the necessity of defining
gρ(0) corresponding to a virtual node at the origin and,
consequently, being not part of the right side of Figure 10.
More important, N is reduced by a factor 2. Note that the
Fourier transform on the compressed lattice also yields the
desired correlations.
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