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Application of a continuous time cluster algorithm
to the two-dimensional random quantum Ising ferromagnet
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Abstract. A cluster algorithm formulated in continuous (imaginary) time is presented for Ising models in
a transverse field. It works directly with an infinite number of time-slices in the imaginary time direction,
avoiding the necessity to take this limit explicitly. The algorithm is tested at the zero-temperature critical
point of the pure two-dimensional (2d) transverse Ising model. Then it is applied to the 2d Ising ferromagnet
with random bonds and transverse fields, for which the phase diagram is determined. Finite size scaling
at the quantum critical point as well as the study of the quantum Griffiths-McCoy phase indicate that the
dynamical critical exponent is infinite as in 1d.

PACS. 75.50.Lk Spin glasses and other random magnets – 05.30.-d Quantum statistical mechanics –
75.10.Nr Spin-glass and other random models

Quantum phase transitions (QPT) in random transverse
Ising models at and close to their quantum critical point
at zero temperature have attracted a lot of interest re-
cently [1]. In particular in one dimension many astonish-
ing results have been obtained with powerful analytical
[2,3] and numerical [4,5]) tools. Among the most impor-
tant results is that at the critical point time scales diverge
exponentially fast, implying that the dynamical exponent
is zcrit = ∞. Such a behavior is reminiscent of thermally
activated dynamics in classical random field systems [6],
and has also been proposed for the Anderson-Mott tran-
sition of disordered electronic systems at the QPT [7].

The other important result for random transverse Ising
models in any dimension is that close to the quantum
critical point there is a whole region in which various
susceptibilities diverge for T → 0 and that all these sin-
gularities, also called Griffiths-McCoy singularities [8,9],
can be parameterized by a single dynamical exponent z(δ)
that varies continuously with the distance δ from the crit-
ical point [1,10]. Recently it has been argued that experi-
mentally observed non-Fermi liquid behavior in f -electron
compounds can be nicely explained within such a sce-
nario [11]. In one dimension z(δ) diverges for δ → 0. It
is not clear in how far these properties, i.e. zcrit =∞ and
z(δ → 0) = zcrit also apply in higher dimensions: in 2 and
3-dimensional transverse Ising spin glass models a finite
value for zcrit has been reported [12] and for finite dimen-
sional bond diluted ferromagnets it has been shown [13]
that zcrit is infinite only at the percolation threshold.
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In this paper we therefore consider the two-
dimensional random ferromagnet (without dilution) in a
transverse field with the help of a new Monte-Carlo cluster
algorithm that is particularly suited to handle the inherent
difficulties in the study of such a random quantum system:
the origin of the Griffiths-McCoy singularities are strongly
coupled clusters (with strong ferromagnetic bonds and
weak transverse fields) which are extremely hard to equili-
brate in a conventional Monte-Carlo algorithm, therefore
we had to use a cluster method. Moreover, the exponent
z(δ) is a non-universal quantity for which reason we re-
ally have to perform the so-called Trotter-limit explained
below.

A continuous time algorithm that incorporates this
limit right from the beginning (in the spirit of Refs. [16,
17]) is the most efficient method we can think of. In the
first part of this paper we present the method we use and
apply it to the pure case in two dimensions, in the sec-
ond part we present our results for the random case. In a
related work [14] a short account of our results on the
Griffiths-McCoy phase in the random system has been
given and also a study of essentially the same model with a
discrete time cluster algorithm, not performing the Trotter
limit and therefore concentrating on the critical behavior,
was presented.

The system we are interested in is defined by the quan-
tum mechanical Hamiltonian

H = −
∑
〈ij〉

Jijσ
z
i σ

z
j +

∑
i

Γiσ
x
i (1)

in which σi are spin- 1
2 operators located on any

d-dimensional lattice (below we consider a L × L square
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lattice with periodic boundary conditions), 〈ij〉 indicate
all nearest neighbor pairs on this particular lattice, Jij ≥ 0
ferromagnetic interactions (either uniform Jij = J or ran-
dom) and Γi transverse fields (either uniform Γi = Γ or
random – note that the sign of Γi can always be gauged
away by a local spin rotation).

To derive our continuous time algorithm we use the
Suzuki-Trotter decomposition to represent the free energy
F of the system (1) at inverse temperature β = 1/T as
the limit of a (d+1)-dimensional classical Ising model [18]:

F = −β−1 lim
∆τ→0

ln Tr exp(−Sclass), (2)

Sclass = −
∑
τ,〈ij〉

KijSi(τ)Sj(τ) −
∑
τ,i

K ′iSi(τ)Si(τ + 1).

Here the additional index τ = 1, . . . , Lτ of the now clas-
sical Ising spin variables Si(τ) = ±1 labels the Lτ d-
dimensional (imaginary) time slices within which spins
interact via Kij = ∆τJij and among which they inter-
act with strength K ′i = − 1

2 ln tanh∆τΓi. The number of
time slices Lτ is related to ∆τ by ∆τ = β/Lτ , so that the
limit ∆τ → 0 in (2) implies Lτ →∞.

Taking the limit ∆τ → 0 consecutive spins with
the same value along the imaginary time direction, e.g.
Si(τ)=Si(τ+1)=· · ·=Si(τ+N), form continuous segments
Si{[τ, τ+t]} of length t = N∆τ rather than individual lat-
tice points. Since we are going to take this limit implicitly
we will have to consider these imaginary time segments
as the dynamical objects in a Monte-Carlo algorithm, and
not the individual spin values at discrete imaginary times
any more. These segments correspond to continuous, un-
interrupted pieces of a spin’s world line during which it
has the same value, say +1, and its two ends, in the fol-
lowing called cuts, are those times when this spin changes
to another value, say −1.

As the next step we apply the scheme of the Swendsen-
Wang cluster update method [19] within the aforemen-
tioned implicit continuous time limit. Remember that
in this method in order to construct the clusters to
be flipped at random, neighboring spins pointing in the
same direction are connected with a certain probabil-
ity p: for neighbors in the space direction, for instance
Si(τ) and Sj(τ) with 〈ij〉 being nearest neighbors, it is
pij = 1− exp(−2Kij) = 2∆τJij +O(∆τ2) and for neigh-
bors in imaginary time, for instance Si(τ) and Si(τ + 1),
it is p′i = 1−exp(−2K ′i) = 1−∆τΓi+O(∆τ2). These spin
connection probabilities are now translated into probabil-
ities for creating (cutting) and connecting segments.

The probability for connecting spins along the imagi-
nary time direction at a particular site i over a finite time
interval of length t < β is given by the probability to set
t/∆τ bonds, i.e. in the limit ∆τ → 0

p
′t/∆τ
i = (1−∆τΓi)

t/∆τ → exp(−Γit). (3)

This means for each site one generates new cuts in addi-
tion to the old ones from the already existing segments via
a Poisson process with decay time 1/Γi along the imagi-
nary time direction. Next one connects segments on neigh-
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Fig. 1. Sketch of the cluster construction procedure: (a) con-
figuration of segments before update — full (broken) lines cor-
respond to worldline segments with spin up (down). (b) In-
sertion of new cuts (crosses) in addition to old ones (bars)
according to a Poisson process along each worldline described
by (3). (c) Connection of segments with probabilities given by
(4). (d) Configuration of segments after assigning randomly a
spin value to each cluster of connected segments. Before start-
ing a new cycle (with A) the redundant cuts within segments
are removed.

boring sites i and j that have the same state and a non-
vanishing time-overlap t, e.g. Si{[t1, t2]} and Sj{[t3, t4]}
with t now the length of the interval [t1, t2]∩ [t3, t4]). The
probability for not connecting the two segments is given by

(1− pij)
t/∆τ = (1− 2∆τJij)

t/∆τ → exp(−2Jijt) (4)

in the limit ∆τ → 0. Finally, one identifies clusters of con-
nected segments and assigns each of them (and herewith
all of the segments belonging to it) one value +1 or −1
with equal probability. In Figure 1 the individual steps
of this cluster update procedure are illustrated. The mea-
surement of observables is straightforward: for instance
the local magnetization mi at site i for one particular
configuration of segments is simply given by the difference
between the total length of all +segments and the total
length of all −segments, divided by β. The expectation
value for the local susceptibility is

χi(ω = 0) =

∫ β

0

dτ〈σzi (τ)σzi (0)〉QM = β〈m2
i 〉MC, (5)

where 〈· · · 〉QM is the quantum mechanical expectation
value for model (1) and 〈· · · 〉MC is an average over all
configurations generated during the Monte-Carlo run.

For an actual implementation of the algorithm one
has to provide sufficient memory in which the information
about the segments Si{[t1, t2]} (site index i, starting point
t1, end point t2 and state +1 or −1) is stored in linked
lists. The number of segments, which of course fluctuates,
is typically of the order O(βΓmaxL

d), whereas in discrete
time algorithm the number of spin values to be stored is
βLd/∆τ , which diverges in the limit ∆τ → 0.

We tested our code first for the one-dimensional pure
case (d = 1, Jij = 1 and Γi = Γ ), for which the critical
properties at T = 0 are identical to those of the classical
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2-dimensional Ising model and are well-known exactly [20]
(Γc = 1, ν = 1, β = 1/8, z = 1).

As a first non-trivial application we considered the
pure case (again Jij = 1 and Γi = Γ ) in two dimensions,
where the quantum critical point at Γc is in the universal-
ity class of the classical 3-dimensional Ising model. Close
to this quantum critical point quantities are expected to
obey finite size scaling forms

〈O〉 = LxO q̃(L1/νδ, Lz/β) (6)

with δ = Γ − Γc and xO the finite size scaling expo-
nent of the quantity O. From the equivalence with the 3-
dimensional classical Ising model one knows the dynamical
exponent a priori to be z = 1, thus we can perform con-
ventional one-parameter finite size scaling if one chooses
the aspect ratio β/L to be constant. In Table 1 we list the
results of the finite size scaling analysis of our data for
system sizes up to L = 32 (and β = 8). Our estimates for
the critical field value Γc = 3.044(1) and the thermal ex-
ponent ν = 0.625(5) agree well with the series expansion
result [21] and a recent DMRG study [22].

The real challenge for our algorithm (and our main
motivation for implementing it) is the random case, which
we consider now. The ferromagnetic couplings as well as
the transverse field are now quenched random variables,
which we define both as being uniformly distributed, i.e.

P (Jij) =

{
1, for 0 < Jij < 1

0, otherwise

P ′(Γi) =

{
Γ−1, for 0 < Γi < Γ

0, otherwise
. (7)

Observables now have to be averaged over a large number
(103–104) of disorder configurations, which will be indi-
cated by [. . . ]av.

The main interest in our investigation is the determina-
tion of the dynamical exponent at and above the quantum
critical point. Since both are unknown, it is hard to work
with a finite size scaling form like (6). Therefore we have
chosen the following procedure: first we determine the (T ,
Γ ) phase diagram of the model (1) with (7) by calculat-
ing the averaged ratio of moments [g]av for various system
sizes L at fixed temperature T > 0, corresponding to a
fixed system size in the imaginary time direction. Thus,
at any finite temperature the system is expected to be in
the universality class of the classical two-dimensional ran-
dom bond Ising ferromagnet. For large enough system size
the finite size scaling analysis to detect this classical phase
transition proceeds in the conventional manner by study-
ing the Γ -dependence of [g]av, which at Γc is expected to
be dimensionless (i.e. has no system size dependence). For
small temperatures (i.e. large system size in the imaginary
time direction) the crossover region to the quantum uni-
versality class becomes larger, necessitating larger system
sizes (we went up to L = 32) to get a reliable estimate of
Γc(T ). By extrapolating the latter to T = 0, see Figure 2,
we obtain for the location of the quantum critical point
Γc = Γc(T = 0) = 4.2 ± 0.2. Obviously the systematic
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Fig. 2. The phase diagram of the two-dimensional random
transverse Ising model. PM means paramagnetic, FM means
ferromagnetic, Tc = 1.00(1) is the critical temperature of the
classical random Ising ferromagnet with a uniform bond dis-
tribution between 0 and 1, and Γc = 4.2(2) the location of the
quantum critical point we are interested in. The filled dots are
obtained by analysing our Monte-Carlo data for finite temper-
atures as described in the text, their statistical error is smaller
then the point size.

error in this extrapolation is hard to estimate, the value
0.2 for our error bar is essentially a statistical error based
on a quadratic approximation of the phase boundary close
to Γc.

For Γ = Γc it is δ = 0 and any observable is expected
to be a function of the aspect ratio β/Lz alone. On the
other hand, if the two-dimensional case, which we consider
here, is similar to the one-dimensional case where one has
unconventional (or activated) scaling [2–5] one would ex-
pect z =∞, which implies that lnβ/Lψ would be the ap-
propriate scaling variable (with ψ a fit-parameter, playing
the role of the barrier exponent in classical activated dy-
namics [6,7,23]). Our data scale much better according to
the latter scenario with ψ close to 0.5 as in 1d (details
will be published in [15]). The corresponding study of the
critical behavior of the discretized model reported in [14]
yields an estimate of ψ = 0.42.

Now we turn our attention to the Griffiths-McCoy re-
gion in the disordered phase (Γ > Γc). Due to the presence
of strongly coupled regions in the system the probability
distribution of excitation energies (essentially inverse tun-
neling times for these ferromagnetically ordered clusters)
becomes extremely broad. As a consequence we expect the
probability distribution of local susceptibilities to have an
algebraic tail at T = 0 [4,5,10]

Ω(lnχlocal) ≈ −
d

z(Γ )
lnχlocal (8)

where Ω(lnχlocal) is the probability for the logarithm
of the local susceptibility χi at site i to be larger than
lnχlocal. The dynamical exponent z(Γ ) varies continu-
ously with the distance from the critical point and param-
eterizes the strengths of the Griffiths-McCoy singularities
also present in other observables. At finite temperatures
Ω is chopped off at β, and close to the critical point one
expects finite size corrections as long as L or β are smaller
than the spatial correlation length or imaginary correla-
tion time, respectively. We used β ≤ 1000 and averaged
over at least 512 samples.
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Table 1. Estimates for the critical field strength and the critical exponents for the quantum phase transition of the pure
two-dimensional transverse Ising model. The left column indicates the quantity for which the finite size scaling analysis with
constant aspect ratio β = L/4 has been performed (m = magnetization, χ = uniform susceptibility and g = dimensionless ratio
of moments). The values in brackets are obtained from the scaling relation γ/ν = d+ z − 2β/ν (d = 2 and z = 1 here).

FSS form Γc ν β/ν γ/ν

m L−β/νm̃(L1/ν(Γ − Γc)) 3.0440(2) 0.622(3) 0.5050(5) [1.990(1)]

χ Lγ/ν χ̃(L1/ν(Γ − Γc)) 3.0437(1) 0.621(1) [0.500(3)] 2.000(5)

g g̃(L1/ν(Γ − Γc)) 3.0435(2) 0.629(5) — —
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Fig. 3. The value of d/z(Γ ) obtained from analyzing the inte-
grated probability distribution of lnχlocal according to (8) in
the Griffiths-McCoy region. The vertical line indicates the (ap-
proximate) region of the critical point at Γc ∼ 4.2, the open
circle corresponds to z(Γc) = ∞ and the horizontal line at
d/z = 1 indicates the expected limit limΓ→∞ z(Γ ) = d. The
broken line is just a guide to the eye, the statistical error of
our estimates for d/z is smaller than the point size.

In Figure 3 we show our result for d/z(Γ ) in the
Griffiths-McCoy region. For Γ →∞ we expect d/z(Γ )→
1, since this is the results for isolated spins in random
fields with non-vanishing probability weight at Γi = 0.
The more interesting limit is Γ → Γc. The data are well
compatible with limΓ→Γc z(Γ ) = ∞, implying that here,
in analogy to the one-dimensional case [2,4] this limit and
the critical dynamical exponent zcrit agree.

To summarize we have presented a new Monte-Carlo
cluster algorithm in continuous imaginary time with which
we studied the random transverse Ising model in two di-
mensions. We determined the temperature-transverse field
phase diagram, estimated the location of the quantum
critical point at zero temperature and performed a finite
size scaling analysis at the critical point. Here we found
indications for an exponential divergence of time scales
(z =∞) and also the dynamical exponent parameterizing
the strength of the quantum Griffiths-McCoy singulari-
ties extrapolates to z(Γ → Γc) = ∞. In this respect the
phenomenology of the one-dimensional model seems to ex-
tend to higher dimension. Another aspect is the different
scaling behavior of average and typical correlations in the
one-dimensional case, which is present in two dimensions,
too [14].
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