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Abstract. – Dynamical correlations of the spin and the energy density are investigated in
the critical region of the random transverse-field Ising chain by numerically exact calculations
in large finite systems (L ≤ 128). The spin-spin autocorrelation function is found to decay

proportionally to (log t)−2xm and (log t)−2xs
m in the bulk and on the surface, respectively, with

xm and xs
m the bulk and surface magnetization exponents, respectively. On the other hand, the

critical energy-energy autocorrelation functions have a power law decay, which are characterized
by novel critical exponents ηe ≈ 2.2 in the bulk and ηs

e ≈ 2.5 at the surface, respectively. The
numerical results are compared with the predictions of a scaling theory.

The asymptotic behavior of the time-dependent correlation functions for interacting many-
body systems turned out to be a very difficult subject of theoretical research. Exact results in
this field are scarce, one can mention the one-dimensional spin-1/2 XY-model [1] and the Ising
chain in a transverse field [2]. Both models can be mapped onto a system of non-interacting
fermions, where the equal-position correlation functions are calculated by the Pfaffian method
utilizing the theory of Töplitz determinants.

In this letter we consider —for the first time— the critical dynamical correlations of an
interacting quantum system in the presence of quenched (i.e. time-dependent) disorder. It has
recently become clear that quenched disorder has rather different effects on phase transitions in
quantum systems [3] than on thermally driven phase transitions. For example, in the Griffiths
phase, which is situated at the disordered side of the critical point, the susceptibility has
an essential singularity in classical systems, whereas in a quantum system the corresponding
singularity is stronger, it is in a power law form.
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Here we consider the prototype of random quantum systems, the one-dimensional random
transverse-field Ising model defined by the Hamiltonian

H = −
∑
l

Jlσ
x
l σ

x
l+1 −

∑
l

hlσ
z
l , (1)

where the σxl , σ
z
l are Pauli matrices at site l and the Jl exchange couplings and the hl transverse

fields are random variables with distributions π(J) and ρ(h), respectively. The Hamiltonian
in (1) is closely related to the transfer matrix of a classical two-dimensional layered Ising model,
which was first introduced and studied by McCoy and Wu [4].

The static critical behavior of the random transverse-field Ising model in (1) has been studied
analytically and numerically by several authors [5]-[8]. The system possesses a critical point at
δ = [lnJ ]av − [lnh]av = 0, and has a spontaneous ferromagnetic order if the average couplings
are stronger than the average fields. (We use the bracket [. . .]av to denote disorder averages.)
The critical properties of the model, which are known through exact and conjectured results to a
large extent, are in many respects different from that of pure systems. One important difference
is that in the random system —due to a broad distribution of various physical quantities—
the typical and average quantities are usually different and the rare events dominate the
critical properties. For instance, the static average spin-spin correlation function is expected
to behave as

Gm
l (r) =

[
〈σxl σ

x
l+r〉

]
av

=
1

r2xm
exp[−r/ξ] , (2)

where 〈. . .〉 means the (zero-temperature) expectation value. For the random transverse-
field Ising model the average correlation length ξ ∼ δ−ν diverges with the true exponent
ν = 2 and the decay exponent xm = 1 − ω/2 ≈ 0.191 is expressed in terms of the golden
mean ω = (1 +

√
5)/2. The decay of the average end-to-end distance critical correlations

involves the surface magnetization exponent xs
m = 1/2. On the other hand, the typical

correlation length diverges with νtyp = 1 and the typical critical correlations are of a stretched
exponential form: − logGm

typ(r) ∼ r1/2. In contrast, the critical energy-density correlation

function Ge
l (r) =

[
〈σzl σ

z
l+r〉

]
av

is a self-averaging quantity and at the critical point it behaves

as − logGe(r) ∼ r1/2, like its typical value.
In this letter we consider the time-dependent correlation functions

Gm
l (r, t) = [〈σxl (t)σxl+r〉]av and Ge

l (r, t) = [〈σzl (t)σzl+r〉]av (3)

at the critical point, both in the bulk and at the surface of the system. In a quantum system
statics and dynamics are inherently related and the time evaluation is given via the Heisenberg
picture by σxl (t) = exp[tH]σxl exp[−tH]. For simplicity here we confine ourselves to the
autocorrelations, i.e. r = 0; dynamical two-site correlations will be discussed elsewhere [9].

To start our study, we present a scaling framework for the quantum critical dynamics of the
model (1). Consider the general time- and position-dependent correlation function 〈σxl (t)σxl+r〉,
which can be written as

〈σxl (t)σxl+r〉 =
∑
n

〈0|σxl |n〉〈n|σ
x
l+r |0〉 exp[−t(En −E0)] . (4)

Here |n〉 denotes the n-th excited state of H in eq. (1) with energy En. Before performing
the disorder average, we note that this correlation function is not self-averaging at the critical
point. To see its scaling behavior at the critical point we present the following simple argument.
The random samples can be divided into two groups. In the typical samples (i.e. which appear
with probability one) the critical correlations decay faster than any power law. On the other
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hand, a vanishing fraction of the samples (the so-called rare events) is ordered at the critical
point and the correlation function measured on these samples is of order O(1). The disorder
average of the correlation function is then determined by the rare events and the corresponding
scaling behavior is governed by the scaling properties of the probability distribution of these
rare realizations.

For example the probability P (l), which measures the occurrence of samples with a finite
local magnetization m(l) = O(1) at site l (take, for instance, fixed boundary conditions, or
consider an off-diagonal matrix element in the case of free b.c., see [8]), scales as the average
critical magnetization P (l/b) = b−xmP (l), when lengths are rescaled by a factor b > 1. For
equal time correlations in the rare realizations the local magnetization is of order O(1) at both
spatial coordinates. The corresponding joint probability distribution P2(l, l+ r) factorizes for
large spatial separations limr→∞ P2(l, l+ r) = P (l)P (l+ r), since the disorder is uncorrelated.
Consequently, the spatial correlations follow the scaling rule

Gm(r, t = 0) = b−2xmGm(r/b, t = 0) , (5)

whereas for end-to-end distance correlations we have the surface magnetization scaling dimen-
sion xs

m. Now taking r = b we recover the known critical decay as given in eq. (2).
For critical time-dependent spin-spin autocorrelations, however, the scaling behavior is dif-

ferent from that in eq. (5). This is due to the fact that the disorder is strictly correlated
along the time axis and the probability for the occurrence of a rare sample with m(l) = O(1)
at different times is simply P2((l, t), (l, 0)) ∼ P (l). Thus, the scaling behavior of the critical
magnetization autocorrelation function satisfies the scaling rule

Gm(r = 0, ln t) = b−xmGm(r = 0, ln t/b1/2) , (6)

where we have made use of the relation between the relevant time tr and length ξ scales,√
ξ ∼ ln tr [5], [6]. Note that the usual scaling combination is t/bz, however, the critical

dynamical exponent z is ∞ here. Taking now the length scale as b = (ln t)2, we obtain

Gm(r = 0, t) ∼ (ln t)−2xm . (7)

For the surface autocorrelation function the scaling relation in eqs. (6), (7) and consequently
the decay exponent involve the surface magnetization exponent xs

m.
For energy density autocorrelations the typical realizations govern the scaling properties at

the critical point. The relevant quantity is now the matrix element [|〈0|σzl |n〉|
2]av on the r.h.s.

of eq. (4), which scales in an exponential form: log[|〈0|σzl |n〉|
2]av = b−1/2 log[|〈0|σzl/b|n〉|

2]av

[8]. Consequently the critical energy density autocorrelations satisfy the scaling relation

logGe(r = 0, ln t) = b−1/2 logGe(r = 0, ln t/b1/2) , (8)

and with b = (ln t)2 one obtains a power law dependence of Ge(r = 0, t) with novel, non-trivial
exponents

Ge(r = 0, t) ∼ t−ηe . (9)

In the actual calculations we transformed the model in eq. (1) into a free fermion model [10],
where the correlation functions are expressed by averages of fermion operators, which are
then calculated by Wick’s theorem and by the Pfaffian method [11]. We use free boundary
conditions, in which case the most convenient representation is given in [12], which necessi-
tates only the diagonalization of a 2L × 2L matrix. From the corresponding eigenvalues and
eigenvectors, one obtains the elements of the Pfaffian, which is then evaluated by calculating
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Fig. 1. – a) Bulk spin-spin autocorrelation function Gm
L/2(τ ) = [〈σxL/2(t)σxL/2〉]av in imaginary time for

various system sizes (and the uniform distribution). Note that we have chosen L to be odd, so that

L/2 denotes the central spin. In this plot with [Gm
L/2(τ )]−1/2xm on linear scale vs. τ on a logarithmic

scale the infinite system size limit is expected to lay on a straight line as indicated. b) Same as a) for
the surface spin-spin autocorrelation function Gm

1 (τ ) = [〈σx1 (τ )σx1 〉]av in imaginary time.

the determinant of the corresponding antisymmetric matrix. Details of the calculations will be
presented elsewhere [9].

The critical properties of the random quantum spin chains are expected to be independent
of the details of the distributions of the couplings and the fields. In this letter we consider the
binary distribution π(J) = 1

2δ(J − λ) + 1
2δ(J − λ

−1) and h = h0, and the uniform distribution

π(J) = Θ(1 − J)Θ(J) and ρ(h) = h−1
0 Θ(h0 − h)Θ(h). In both cases the critical point is at

h0 = 1. All numerical data which we present below are averaged over 50000 samples.
First we study the critical spin-spin autocorrelation function for imaginary times t = −iτ in

the bulk (i.e. at the site l = L/2) and at the surface (i.e. at site l = 1). As shown in fig. 1 a),
the finite lattice results fall into the same curve for log τ ≤

√
L and the critical temporal

decay takes place on a logarithmic scale Gm
L/2(τ) ∼ (log τ)−2xm , in agreement with the scaling

prediction (7). For surface correlations the numerical calculation is less demanding and one can
go up to finite systems of size L = 128. As can be seen in fig. 1 b), in this case the logarithmic
decay depends on the surface magnetization exponent: Gm

1 (τ) ∼ (log τ)−2xs
m .

The autocorrelation functions in real time generally have an oscillatory character. In the
random system the average over different oscillating functions results in a complicated looking
behaviour, as we demonstrate for the surface autocorrelation function in fig. 2 a). Its Fourier
transform, however, has a nice scaling character. We actually consider

χm
1 (ω) =

1

2π

∫ ∞
−∞

dt eiωt
∫ ∞
−∞

dτ Gm1 (t+ iτ) =
2

ω
|〈ω|σx1 |0〉|

2 , (10)

where 〈ω| is a state with an excitation energy Eexc − E0 = ω. For small frequencies ω we
expect the finite-size scaling form of χm

1 (ω) to be given by

χm
1 (ω,L) ∼ ω−1L−1 χ̃(log(ω)/L1/2) (11)

with the scaling combination log(ω)/L1/2 replacing log(t)/L1/2 from (6). In fig. 2 b) we show
a corresponding scaling plot that yields a good data collapse.

Next we turn to analyze the energy density autocorrelation function at the critical point.
As seen in fig. 3 a), the energy density autocorrelation function is described by a power law
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Fig. 2. – a) Surface spin-spin autocorrelation function Gm
1 (t) in real time for the binary distribution

with λ = 4. The data for L = 64 and those shown for L = 32 are exactly identical, although both data
sets have different disorder realization. The expected 1/ log(t) behavior for the envelope indicated by
the broken line is only a guide to the eye. b) Scaling plot of the Fourier-transformed surface spin-spin
autocorrelation function χm

1 (ω) (10) for the binary distribution and λ = 4.

dependence in imaginary time τ as Ge
L/2(τ) ∼ τ−ηe , in agreement with the scaling prediction

(8) and (9). The decay exponent ηe ' 2.2 is universal, i.e. it does not depend on the type
of randomness. A similar power law decay is found for the surface energy autocorrelations in
fig. 3 b), with a surface critical exponent ηs

e ' 2.5. These novel critical exponents complete our
knowledge about the critical behavior of the random transverse-field Ising spin chain.

To summarize, we have studied dynamical correlations at the critical point of the random
transverse-field Ising spin chain. We showed that the magnetization autocorrelation function has
anomalous logarithmic decay, whereas the energy-density autocorrelations decay as a power law
with novel critical exponents. There are still many interesting aspects of the dynamical behavior
of random quantum systems. Here we mention the dynamical properties in the Griffiths phase,

Fig. 3. – a) Bulk energy-energy autocorrelation function Ge
L/2(τ ) = [〈σzL/2(τ )σzL/2〉]av in imaginary

time for various system sizes (and the binary distribution, λ = 4) in a log-log plot. The straight
line has slope −2.2, which yields our estimate for the exponent ηe. b) Same as a) for the surface
energy-energy autocorrelation function Ge

1(τ ) = [〈σz1(τ )σz1〉]av in imaginary time. The straight line has
slope −2.5, which yields our estimate for the exponent ηs

e.
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the temperature-dependent autocorrelations and the dynamical two-site correlations. The study
of these and other related problems is in progress [9].
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supported by the Deutsche Forschungsgemeinschaft (DFG).

REFERENCES

[1] McCoy B. M., Barouch E. and Abraham D. B., Phys. Rev. A, 4 (1971) 2331.

[2] Perk J. H. H., Capel H. W., Quispel G. R. W. and Nijhoff F. W., Physica A, 123 (1984) 1.

[3] See, for instance, Rieger H. and Young A. P., Quantum Spin Glasses, Lect. Notes Phys.,
Vol. 492, Complex behaviour of Glassy Systems, edited by J. M. Rubi and C. Perez-Vicente

(Springer, Berlin-Heidelberg-New York) 1997, p. 254; J. Kisker and H. Rieger, Phys. Rev. B,
55 (1997) 11981R and references therein.

[4] McCoy B. M. and Wu T. T., Phys. Rev., 176 (1968) 631; 188 (1969) 982; McCoy B. M.,
Phys. Rev., 188 (1969) 1014.

[5] Fisher D. S., Phys. Rev. Lett., 69 (1992) 534; Phys. Rev. B, 51 (1995) 6411.

[6] Young A. P. and Rieger H., Phys. Rev. B, 53 (1996) 8486.

[7] McKenzie R. H., Phys. Rev. Lett., 77 (1996) 4804.
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