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Abstract. – With the help of exact ground states obtained by a polynomial algorithm we
compute the domain wall energy ∆ at zero temperature for the bond-random and the site-random
Ising spin glass model in two dimensions. We find that in both models the stability of the
ferromagnetic and the spin glass order ceases to exist at a unique concentration pc for the
ferromagnetic bonds. In the vicinity of this critical point, the size and concentration dependence
of the first and second moment of the domain wall energy are, for both models, described by a
common finite-size scaling form. Moreover, below this concentration the stiffness exponent turns
out to be slightly negative, θS = −0.056(6), indicating the absence of any intermediate spin glass
phase at non-zero temperature.

In spite of two decades of research on the Edwards-Anderson (EA) model for spin glasses, a
number of fundamental questions failed to be answered conclusively [1], in particular those
concerning the existence of a phase transition in three dimensions with [2], [3] and even
without [4] an external field. In addition, the situation in two dimensions has not been
clarified in the case where the ratio of ferro- and anti-ferromagnetic bonds varies. It has
been argued [5]-[7] that an intermediate spin glass phase might be present in the p-T phase
diagram between the ferromagnetic phase and the paramagnetic phase. In fig. 1, such a p-T
phase diagram is shown including the proposed spin-glass transition line represented by the
dash-dotted line. For the site-random model the evidence for the existence of a spin glass phase
seems to be even stronger than for the bond-random model [8], [9].

On the other hand, in the case of the bond-random±J model with p = 1/2, arguments for the
absence of a spin glass phase in two dimensions were mainly based on results from Monte Carlo
simulations [10], [11] and the estimates of the domain wall energy [7], [12], [13]. The data from
Monte Carlo simulations, however, are not available at very low temperature. Furthermore, it
is not clear whether the “stiffness” exponent θS is really negative [13]. More recently results of
Monte Carlo simulation at lower temperatures have been reported [14] indicating a transition
at T ' 0.24 J. In addition, θS = 0 was suggested [7] based on estimates of the domain wall
energy, which implies a marginally stable or weakly ordered low-temperature phase.
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The aim of the present letter is to reinvestigate this issue by studying the domain wall energy
at zero temperature via the determination of exact ground states for large system sizes and huge
sample numbers. This can be done very efficiently with the help of a polynomial algorithm
described by Barahona et al. [5], which amounts to finding a minimum-weight perfect matching
in a weighted graph with N = L2 nodes and has computational complexity O(N3). The model
that we consider is the two-dimensional Ising spin glass with binary couplings defined by the
Hamiltonian

H ≡ −
∑
(ij)

JijSiSj , (1)

where Si = ±1 are Ising spins, (ij) are nearest-neighbor sites on an L×L-square lattice and the
interactions strengths Jij are quenched random variables taking on one of the two values, +J
and −J . We consider two different cases: In the bond-random model all interactions living on
the bonds are independently distributed with a concentration p ∈ [0, 1] of ferromagnetic bonds
(Jij = +1). For the site-random model one first generates independently distributed random
variables for all sites, εi = ±1. The concentration of type-A sites, i.e. those with ε = +1, is
c, the type-B sites (ε = −1) occur with probability 1 − c. Then, Jij is set to be −J if and
only if εi = εj = −1, and it is set to be +J , otherwise. In this case the ferromagnetic bond
concentration is given by p = (2− c)c.

We calculate the domain wall energy ∆ defined by ∆ ≡ Ep − Ea, where Ep and Ea are
the ground-state energies with the periodic and the anti-periodic boundary conditions in the
x-direction, respectively. Free boundary conditions are imposed in the y-direction. Of crucial
importance are the exponents ρ and θS that characterize the system size dependence of the
moments of the domain wall energy:

[∆] ∝ Lρ and [∆2]1/2 ∝ LθS . (2)

A positive value for ρ indicates the stability of a ferromagnetic ground state even in the
presence of thermal fluctuations and thus the existence of the ferromagnetic long-range order at
finite temperature [12]. On the other hand, a positive value for the stiffness exponent, θS, with
ρ being negative at the same time, still indicates the stability of the ground state, which now
possesses long-range order different from a ferromagnetic one. Thus a positive θS is interpreted

as a sign for a spin glass phase at non-zero temperature [15]. We define p
(1)
c and p

(2)
c as the

critical concentrations of ferromagnetic bonds at which the asymptotic L dependences of [∆]
and [∆2]1/2, respectively, change from increasing to decreasing, i.e. the concentrations where
a ferromagnetic phase and a spin glass phase, respectively, cease to exist at finite temperature.

We computed [∆] and [∆2]1/2 for L = 4, 6, 8, 12, 16, 24 and 32 at various values of p ranging
from 0.50 up to 0.95. While the number of bond samples depends on L and p, it is 32768 for
one of the most time consuming data points, such as the one for L = 32 and p = 0.5. We
hypothesize the following finite-size scaling form for [∆]:

[∆]Lψ1 = f1((p− p
(1)
c )Lφ1) , (3)

where we implicitly assume a diverging length scale proportional to |p−pc|−ν1 (with ν1 ≡ 1/φ1)

at a critical concentration p
(1)
c , in analogy with a percolation transition [16]. At the critical

point (p = p
(1)
c ), [∆] diverges with system size L as [∆] ∝ L|ψ1|. Its behavior above ([∆] ∼ Lρ)

and below this concentration is contained in the asymptotic form of the scaling funtion, which
is then expected to behave as f1(x) ∼ x(ρ+ψ1)/φ1 for x→ +∞.

The critical exponents φ1 and ψ1 as well as p
(1)
c have to be chosen so that a good data

collapse for all data is obtained. To quantify the “goodness” of this fit, we used an appropriate
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Fig. 1. – The schematic phase diagram with the previously proposed spin-glass transition lines. T
(f)
c

stands for the critical temperature of the Ising model on the square lattice. P , F , and SG stand for
the paramagnetic, ferromagnetic and spin glass phases, respectively.

Fig. 2. – The scaling plot of [∆] for the bond-random model. p
(1)
c = 0.896, φ1 = 0.77 and ψ1 = −0.19

are assumed. The inset is the view focused on the region near p = p
(1)
c .

cost function S(pc, φ, ψ) [3] whose minimum value should be close to unity when the fit is
statistically acceptable. When we use all the obtained data points, the best fit is achieved with
S(pc, φ, ψ) ∼ 2, which indicates that there is a non-negligible systematic error, i.e. a correction
to scaling. Therefore, we have tried a similar analysis on a restricted set of data, omitting
data which are presumably outside the asymptotic scaling regime, namely, data with p far from

p
(1)
c and data for small system sizes. For instance, the goodness of the fit can be significantly

improved to S = 1.12 by omitting the data for p = 0.95, which yields the estimates

p(1)
c = 0.896(1), φ1 = 0.77(1), ψ1 = −0.19(2) . (4)

Considering the very small errors accompanying the data points, it is remarkable that all the
data, even including those for L = 4, can be expressed by the finite-size scaling form (3). The
resulting scaling plot is shown in fig. 2. We have confirmed that other choices of data points

producing a value of S close to unity result in estimates of p
(1)
c , φ1, and ψ1 consistent with the

estimates quoted above. The value of p
(1)
c is consistent with most of the previous estimates

such as 0.88(2) [17], 0.89(2) [5] and 0.89(1) [18], while inconsistent with 0.885(1) [7].
In fig. 3, [∆2]1/2 is plotted against L. The lowest curve with crosses, which is almost straight

with a negative but very small slope, corresponds to p = 1/2. In other words, the domain wall
energy decreases systematically but it does so very slowly. The method of least squares using
all the data points yields θS = −0.052(1), whereas the analysis with all but the first two points
(for L = 4 and 6) results in θS = −0.060(2). Therefore, we quote here the value θS = −0.056(6)
as our estimate.

Considering the size of actual reduction in [∆2]1/2 as L grows from 4 to 32, we cannot
rule out the possibility that the exact value of this exponent is 0, i.e. [∆2]1/2 stays constant.
Such a scenario would be consistent with a suggestion by Ozeki [7]. In this case one has a
marginal situation and we cannot decide whether the long-range order persists at a low but
finite temperature based solely on a calculation of the stiffness exponent. We may, however,
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Fig. 3. – The domain wall energy [∆2]1/2 of the bond-random model plotted against the system size
L for various ferromagnetic-bond concentration p. The inset is the view focused on the data points for
p = 1/2. The straight line in the inset is obtained by the fitting to the data points excluding the two
leftmost ones.

say that the low-temperature phase is only weakly ordered even if the phase transition takes
place at a finite temperature.

Similarly to the above-mentioned procedure employed for [∆], we perform a finite-size scaling
analysis for the data of [∆2]1/2,

[∆2]1/2Lψ2 = f2((p− p
(2)
c )Lφ2) , (5)

and one expects for the scaling function f2(x) ∼ |x|(θS+ψ2)/φ2 for x → −∞. Now we have
to omit more data to get an acceptable fit with the value of S close to unity, indicating that
the correction to scaling is larger for [∆2]1/2 than for [∆]. However, a good data collapse is
obtained when we use only data for L ≥ 12 and 0.85 ≤ p ≤ 0.91. The best fit yields

p(2)
c = 0.894(2), φ2 = 0.79(6), ψ2 = −0.16(4) (6)

with S = 0.99. The resulting scaling plot is shown in fig. 4. The present estimate of p
(2)
c

is larger than but marginally consistent with all the previous estimates such as 0.86(2) [19],
0.85 [5] and 0.870 [20], while it is clearly inconsistent with 0.854(2) [7].

It is remarkable that not only p
(2)
c but also φ2 and ψ2 agree with the corresponding values

in (4) within the statistical errors. While the agreement in pc already suggests the absence of
the intermediate phase, we consider the agreement in the critical indices as another evidence
for the absence of the intermediate spin glass phase, since it is hardly possible that the first
and the second moment of ∆ show the same critical behavior at different values of pc.

We now focus on the site-random model. In fig. 5, [∆2]1/2 is plotted as a function of the
system size. A significant correction to scaling can be seen in fig. 5. The same remark applies
to the first moment, [∆]. We have performed a finite-size scaling analysis similar to what has
been done for the bond-random model. As for [∆], in order to reduce the cost function, S, down
to unity, the smallest system sizes L = 4 and L = 6 have to be excluded from the scaling plot.
The data out of the range, 0.60 ≤ c ≤ 0.68, are also excluded in the quantitative estimation of
cc and the indices φ1 and ψ1. As for [∆2]1/2, an even stronger correction to scaling is present,
as shown in fig. 5, making an additional system size (L = 8) unavailable for the quantitative
estimation of cc. The range of c from which the data are chosen is again 0.60 ≤ c ≤ 0.68.
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Fig. 4. – The scaling plot of [∆2]1/2 of the bond-random model. p
(2)
c = 0.894, φ2 = 0.79 and

ψ2 = −0.16 are assumed.

Fig. 5. – The domain wall energy [∆2]1/2 of the site-random model plotted against the system size L
for various “A-site” concentration c.

The critical concentration, c
(i)
c , and the critical indices, φi and ψi, are defined in a similar

fashion to (3) and (5), resulting in

c(1)
c = 0.658(3), φ1 = 0.78(2), ψ1 = −0.18(3) , (7)

c(2)
c = 0.661(4), φ2 = 0.79(2), ψ2 = −0.23(3) . (8)

Obviously c
(1)
c = c

(2)
c within the error bars, from which also we here conclude that no interme-

diate spin glass phase exists. In addition, again, the critical indices for [∆] agree with those for
[∆2]1/2 within the statistical errors. These critical indices agree with those for the bond-random
model ((4) and (6)), implying that both models belong to the same universality class.

To summarize, we have performed a systematic calculation of the domain wall energy at
zero temperature with systems larger than previous calculations for both bond-random and
site-random models. We observed a significant crossover effect or a correction-to-scaling
especially for the site-random model, while no indication for a finite temperature spin glass
phase could be detected. Some of the previous evidences for the positive stiffness exponents
were based on systems smaller than those studied in the present paper and, therefore, may be
attributed to this crossover effect. The critical concentration for the ferromagnetic bonds and
critical indices estimated from [∆] agree with those from [∆2]1/2, again indicating the absence
of an intermediate phase. Moreover, the critical exponents for the site-random model agree
with those for the bond-random model, suggesting that both models have the same universal
critical behavior and also qualitatively identical features away from pc. We have also seen that
the domain wall energy is almost independent of the system size below pc.

It is interesting to speculate about some sort of “unfrustrated” clusters and regard the
transition that we have observed at p = pc as a percolation transition of such clusters [21]. The
correlation length exponent for two-dimensional percolation [16] is ν = 4/3, which is indeed
compatible with our estimate ν = 1/φ ≈ 1.3. This agreement makes it worth putting some
more effort in the investigation of this issue.
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