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Abstract. – We study the first passage time properties of an integrated Brownian curve both
in homogeneous and disordered environments. In a disordered medium we relate the scaling
properties of this center-of-mass persistence of a random walker to the average persistence, the
latter being the probability Ppr(t) that the expectation value 〈x(t)〉 of the walker’s position
after time t has not returned to the initial value. The average persistence is then connected to
the statistics of extreme events of homogeneous random walks which can be computed exactly

for moderate system sizes. As a result we obtain a logarithmic dependence Ppr(t) ∼ ln(t)−θ

with a new exponent θ = 0.191 ± 0.002. We note a complete correspondence between the
average persistence of random walks and the magnetization autocorrelation function of the
transverse-field Ising chain, in the homogeneous and disordered case.

First passage time or persistence problems have a long history in the physical literature [1].
Recently they gained a lot of interest, since the persistence exponents, describing the asymp-
totic behavior of first passage time probabilities, are shown to be independent dynamical
critical exponents, which have been calculated for various models exactly [2, 3]. Not much is
known about analogous quantities in systems with quenched disorder, for instance the random
walk (or diffusion) in a disordered environment [4], which is in the one-dimensional case the
Sinai-model [5]. For this model the first passage / persistence exponent for a single walker has
been determined by us in a previous work [6]. In this letter we introduce and study the concept
of average persistence of random walks both in homogeneous and random environments.

We consider a random walk with nearest-neighbor hopping in one dimension defined by the
Master equation

pi(t = 0) = δi,1 ,
d

dt
pi(t) = −(wi,i−1 + wi,i+1)pi(t) + wi−1,ipi−1(t) + wi+1,ipi+1(t) (1)

describing the time evolution of the probability pi(t) for the walker to be at site i after
time t when having been initially at site i = 1. The homogeneous random walk is defined
via uniform transition rates wi,i+1 = wi+1,i = 1/2 and the random walk in a disordered
environment is modeled by choosing the transition rates to be quenched random variables that
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obey a particular distribution, e.g., the uniform distribution πuni given by πuni(wi,i±1) = 1 for
0 < wi,i±1 < 1 and 0 otherwise, or the binary distribution

πbin(wi,i−1) =
1

2
δ(wi,i−1 − λ) +

1

2
δ(wi,i−1 − λ

−1), wi,i+1 = 1, ∀ i (2)

with λ some arbitrary parameter. For the disordered case physical observables have to be
averaged over this distribution π which is denoted by square brackets [. . .]av. Note we consider
the general case of asymmetric hopping rates wi,i+1 6= wi+1,i and we do not confine ourselves
to the so-called random force model with correlated transition probabilities parameterized as
wi,i±1 = A exp[±φi] with random, uncorrelated potentials φi on each site.

In order to define single-walker persistence probabilities we put an adsorbing boundary at
site i = 0, which means that we set w0,1 = 0 and also introduce a finite-size length scale L into
the system by putting another adsorbing boundary at i = L+ 1, i.e. setting wL+1,L = 0. Now
we define the length-scale–dependent single-walker persistence Ppr(L, t) to be the probability
that a walker does not cross its starting point (i.e. does not get trapped at site i = 0) within the
time interval t. The following arguments [6] will then lead us to a scaling form for Ppr(L, t):
a) the typical time the walker needs to reach the site L + 1 scales like ttyp ∼ L2 in the

case with symmetric transition rates and like ln ttyp ∼
√
L in the asymmetric case, the Sinai

model, b) the asymptotic limit Psurv(L) = limt→∞ Ppr(t, L) = limt→∞ pL+1(t), which is what
we call a survival probability, behaves like Psurv(L) ∼ L−1 in the symmetric case and like
Psurv(L) ∼ L−θa with θ = 1/2 in the Sinai model. Hence we expect

[Ppr(L, t)]av ∼


L−θs · p̃s(L

2/t) (symmetric case) ,

L−θa · p̃a(
√
L/ ln t) (asymmetric case) ,

(3)

where the persistence exponents are θs = 1 for the symmetric case and θa = 1/2 for the
asymmetric case, and the scaling functions behave like p̃s(x) → xθs/2 and p̃a(x) → x2θa for
x → ∞ and p̃s/a(x) → const for x → 0. In the infinite-system-size limit one thus has for

persistence probability Ppr(t) in the asymmetric case Ppr(t) = limL→∞ Ppr(L, t) ∝ ln(t)−2θa ,
a logarithmically slow decay reminiscent of the critical dynamics of the surface magnetization
of the random transverse Ising chain [7] (RTIC). This is not incidental: the equivalence of
the surface magnetization in the latter quantum spin chain and the survival probabilities of
random walks has been formulated the first time in [8] and further analogies between anomalous
diffusion and the RTIC have been uncovered recently [6, 9].

It is known that diffusion in the Sinai model is different from normal diffusion in many
respects [4]. Consider for instance one particular disorder realization. Then an initially narrow
probability distribution of a walker peaked around, say, x(t = 0) = 0 does not broaden with
time, only its expectation value 〈x(t)〉 =

∑
i i · pi(t) diffuses logarithmically slowly away from

its starting point. Therefore, in this situation in addition to the single-walker persistence one
should also consider the persistence properties of the average position of the walker 〈x(t)〉, the
average persistence P pr(t): This is the probability that up to a specified time t the average
position of the walk in a particular environment has always been on one side of the starting
point, i.e. ∀ 0 < t′ < t : 〈x(t′)〉 > 0.

To study the average persistence we consider again a finite-size situation where we put an
adsorbing boundary at i = −L and one at i = L (note that now a single walker is not adsorbed
when crossing the starting point but only when he leaves the finite strip of width 2L centered
around i = 0). Then the average persistence Ppr(L, t) obeys the same scaling form as in the
second line of (3), but the single-walker persistence exponent θa is replaced by the average
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Fig. 1. – The average persistence [P pr(L, t)]av to the power −1/2θa vs. ln t, which should yield a
straight line in the limit L → ∞, for different finite-size scaling length L. The data are for uniform
distribution and averaged over 50000 samples. We used an estimate θa = 0.19 to obtain an optimal
data collapse in the scaling region. The straight line indicates the asymptotic result for the infinite
system L→∞.

persistence exponent θa:

[P pr(L, t)]av ∼ L
−θa · pa(

√
L/ ln t) . (4)

Moreover, the persistence probability for the infinite system decays again logarithmically slow:

P pr(t) ∝ ln(t)−2θa . Recently it has been conjectured for the random force model [9] that
the exponent θa is related to the golden mean via θa = (3 −

√
5)/4 ≈ 0.191. In fig. 1 we

show numerical data that have been obtained by a numerical calculation of Ppr(L, t) via
diagonalization of the linear operator on the r.h.s. of eq. (1), which indicate that this might
also hold for the general asymmetric case.

In what follows we will demonstrate how to obtain a precise estimate of the average
persistence exponent θa. Since in the limit t → ∞ the average persistence probability is

given by P surv ∼ L−θa , the computation of the survival probability P surv will lead us to the
desired result. We will now relate this survival probability to a problem in the statistics of
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Fig. 2. – Sketch of the random landscape that corresponds to the binary distribution (2). In the limit
λ→ 0 transitions corresponding to broken arrows will rarely occur, whereas transitions corresponding
to full arrows will occur with probability close to one. For further details describing the effective
dynamics see text.
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Fig. 3. – The effective finite-size exponent θa from exact values for P pr(L) via complete enumeration

of all surviving configurations. The asymptotic value θa = 0.191 obtained by series extrapolation
methods is also shown. The insert shows the result for P pr(L) via stochastic enumeration for larger

system sizes, giving θa = 0.19 ± 0.01.

extreme events of homogeneous random walks. To this end we consider the binary distribution
π in (2) in the limit λ→ 0, which means that one can discriminate between “forward” bonds
(i, i + 1), which are those for which wi,i−1 = λ → 0, i.e. those where almost only (with
probability 1/(1 + λ) → 1) jumps from i to i + 1 occur, and “backward” bonds, which have
wi,i−1 = λ−1 → ∞, implying almost always jumps from i to i − 1 (again with probability
λ−1/(1 +λ−1)→ 1). This implies that when sketching the transition rates as configuration as
is done in fig. 2 the disorder configuration can be done visualized as a random landscape with
hills and valleys. Thus a walker starting at i = 0 is on average first driven to the first minimum
M1, and considering the finite-size situation where L = L1 this disorder configuration counts as
a surviving configuration, since the walker in average spends most of its time atM1. Increasing
the length scale L further beyond L2 will then drive the average position of the walker over
the barrier B into the valley M3 at negative coordinates, which means that this configuration
is dead, i.e. not surviving.

Thus we conclude that the computation of P surv amounts to counting all surviving config-
urations of a random landscape, i.e. a homogeneous random walk, in the manner described
above and the ratio of surviving configurations is just P surv. In other words we consider
random walks of length 2L, corresponding to realizations of the transition probabilities ac-
cording to (2) in a strip of width 2L centered around the starting point, and say that it
is on average surviving if certain conditions are fulfilled. These conditions are checked by
inspecting the random landscape generated by the disorder configuration (i.e. the transition
rates): one scans the landscape in both directions from the starting point and denotes with h(i)
(i = −L,−L+ 1, . . . ,−1, 0, 1, 2, . . . , L) the position of the walker (or height of the landscape)
at step (or site) i. We define the extreme events to the right and to the left of i = 0 by
xmax/min(i) = max/min{h(j)|0 ≤ j ≤ i} and ymax/min(i) = max/min{h(j)| − i ≤ j ≤ 0},
respectively, and check iteratively (from i = 1 to i = L) whether

xmin(i) > ymin(i) and xmax(i) > ymax(i) . (5)

If this happens for some site i, as it does for i = 8 in fig. 2, it means that there is a lower
minimum on the left side of the starting point (xmin < ymin) and that the walker can go there
since the barrier in between is low enough (xmax < ymax). This implies that this configuration
is dead.

In the inset of fig. 3 we show the results for a numerical estimate of the survival probability
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P surv(L) by inspecting 105 random walk configuration for different system sizes —the data fit
well to a power law with the exponent θa = 0.19. Next we implemented a recursive routine
that computes the number of surviving configuration according to the above extreme events
criterion (5) exactly. Here we took special care to the degenerate minima (like M1 and M2

in fig. 2), in which case we assumed the arithmetic mean of the location of the two to be the
effective position (L1 in fig. 2). From these exact data for system sizes up to L = 14 we can
extract via θa(La, Lb) = − ln(Psurv(La)/Psurv(Lb))/ ln(La/Lb) an effective finite-size exponent
that approaches the exact value. In fig. 3 we show these exact data for La = L = Lb + 1 and
La = L = Lb+ 2. Finally, from a standard series extrapolation procedure [10] applied to these
data we obtain our best estimate which is

θa = 0.191± 0.002 , (6)

in very good agreement with the conjectured value θa = (3 −
√

5)/4 = 0.19098 . . . for the
random force model [9].

Although the concept of an average persistence seems to be based upon the special feature
of non-dispersive diffusion in the Sinai model, which we described above, it turns out that there
is an analogy to it in normal diffusion, too. To show this, we first introduce the integrated
position of the walker at step t as It =

∑t
τ=1 iτ , where iτ is its position at time-step τ . Then,

we define the center-of-mass persistence through the survival condition for the integrated
position as It′ ≥ 0 for 0 < t′ < t. For the disordered case we define a center-of-mass position
via

C(i) =
i∑

j=−i

j ·M(h(j)) , (7)

where the weights M(h(j)), which are proportional to the average time the walker spent at
a given site, depend on the random configurations. In a strip (−L ≤ i ≤ L) with adsorbing
boundaries the survival condition of the average position in the large t-limit is C(i) ≥ 0 for
i = 1, . . . , L, which is equivalent to the survival condition in (5). For the extreme binary
distribution we consider here, the weight function is singular, such that M(h′)/M(h)→ 0 for
h′ < h, which is a consequence of the limit λ → 0 for the distribution (2). Since the form
of the distribution of the random transition rates is generally irrelevant one expects that the
scaling properties of the average persistence and those of the center-of-mass persistence in (7)
are equivalent for other types of distributions as well.

For a homogeneous walk one can also study the center-of-mass persistence or the survival
probability of the It integrated position. This type of problem has already been considered by
Sinai [11] for a discrete model and later by Burkhardt [12] for the continuum model. According
to these exact results in a homogeneous infinite system the long-time behavior of the average

persistence is given by limL→∞ P
hom
pr (L, t) ∼ t−1/4. In the following we generalize this result

involving a length scale, L, which can be done in two different ways. If we consider the walk
in finite a strip (−L ≤ i ≤ L) with adsorbing boundaries, thus the walk is being adsorbed if
its position i > L, then we have

P
hom(pos)
pr (L, t) = t−θhomp

(pos)
hom (L2/t) . (8)

Here θhom = 1/4, the scaling function behaves like p
(pos)
hom (x) ∼ xθhom for x→ 0 and p

(pos)
hom (x)→

const for x → ∞, and the scaling combination, x = L2/t in (8), follows from the scaling
properties of the Brownian motion.

Another condition for the length scale, L, can be formulated with the integrated position,
It, so that the walker is adsorbed if It > L. Now, to obtain the scaling relation between L
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Fig. 4. – Finite size scaling plot for the average persistence probability P
hom
pr (L, t) for the homogeneous

random walk (9), i.e. the adsorbing condition is on the intergated position: It > L. The data are
obtained generating 105 independent random walks with 104 steps each, the straight lines being the
asymptotic forms of the scaling function phom(x) for x→∞ and for x→ 0 (see text).

and t we make use the fact that 〈I2
t 〉 =

∑t
τ=1 τ

2 = t(t + 1)(2t + 1)/6 ∼ t3, thus t ∼ L2/3.
With this we have for the persistence probability with adsorbing condition for the integrated
displacement

P
hom

pr (L, t) = t−θhomphom(L2/3/t) , (9)

where, as in (8), θhom = 1/4. The scaling function phom(x) has the same limiting behaviour

as p
(pos)
hom (x) in (8).

We checked the scaling relations in (8) and (9) numerically and show the result for P
hom
pr

(i.e. adsorbing condition for the integrated position) in fig. 4. By an exact enumeration up
to t = 30 we have also estimated limx→∞ phom(x) = 0.6183(3) for the scaling function, whose

Table I. – Comparison of the scaling behavior of the average (single-walker) persistence of a random
walk (RW), Ppr(L, t), with the bulk (surface) spin-spin autocorrelation function of the transverse-field
Ising model (TIM), G(L, t). Both homogeneous and random systems are considered.

RW TIM

Ppr(L, t) G(L, t)

average position bulk spin (σb)

Homogeneous t−1/4ph(L2/3/t) t−1/4gb
h(L/t) [13]

Random L−0.191pr(
√
L/ ln t) L−xrgb

r (
√
L/ ln t) [7]

xr = (3−
√

5)/4 = 0.191 [14]

single walker surface spin (σs)

Homogeneous L−1ph(L2/t) L−1gs
h(L/t) [13]

Random L−1/2pr(
√
L/ ln t) L−1/2gs

r(
√
L/ ln t) [7]
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value agrees, within the accuracy of the estimate, with the inverse of the golden mean ratio
1/τ = 2/(

√
5 + 1) = 0.6180.

Concluding, we introduced the concept of average persistence in random walks and studied
its scaling properties in homogeneous and in disordered environments. The scaling behavior
of Ppr(L, t) as given in (4) and (8), (9) involve new exponents: θ in (6) and θhom = 1/4
for the disordered and homogeneous problems, respectively. It is interesting to note an
analogy between the scaling form of the average persistence of random walks and that of the
magnetization autocorrelation function Gb,s(L, t) = [〈σxb,s(0)σxb,s(t)〉]av of the transverse-field
Ising spin chain of length L. As summarized table I these relations complete the previously
observed correspondences [6] between single-walker persistence and the surface autocorrelation
function of the transverse-field Ising spin chain.
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