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Abstract. – The competing effect of a periodic pinning potential and random point disorder is
studied for ensembles of elastic lines or directed polymers. The ground states are investigated by
exact combinatorial optimization. In both two and three dimensions a phase diagram is found
with two or three distinct phases: a strictly flat phase if the disorder is bounded and weak, a
weakly fluctuating phase for intermediate valley depths, where the lines roughen individually
on a scale smaller than the line-line distance, and a rough phase for strong disorder, where the
roughness follows the scaling with pure point disorder. In the three-dimensional, rough phase
the line wandering in the transverse direction leads to an entangled state with a complicated
topology.

Ensembles of elastic lines form one of the most interesting examples of the interplay of
disorder and an ordering tendency. Much of the attention is motivated by the experimental
connections to dirty type-II superconductors, in which flux lines (FL) interact with point
or columnar defects [1–3]. This interaction often gives rise to beneficial, technologically im-
portant effects since the impurities pin lines, individually or collectively, and creating them
in a controlled fashion has been demonstrated by various techniques. The theory of FL ar-
rays with a wide variety of possible disorder backgrounds has received great interest [4]. It is
worth noting that the physics of a single FL has connections to paradigmatic questions in non-
equilibrium statistical mechanics [5,6] through mappings to the Kardar-Parisi-Zhang equation
of kinetic roughening in surfaces, and to Burgers’ equation of vortex-free turbulence [7].

Here we analyze with exact numerical tools the roughening or disordering of an ensemble
of elastic lines at zero temperature when point disorder competes with a periodic potential
that tries to order the ensemble into a regular structure. The FL analogue is the Abrikosov
lattice in the presence of point disorder. For both the two- and the three-dimensional case (2d
and 3d) we find a transitions in terms of the ratio q = [ε]av/∆, where ∆ measures the depth
of the potential valleys, and [ε]av is the average strength of the point disorder.
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Fig. 1 – Periodic potential in 2d. The depth of the valleys is denoted by ∆ and the nearest-neighbour
distance by a. In the model there is additional point disorder ε, which is not shown. The FL can
only enter and leave the system via the energetically neutral arcs connecting the source and the sink,
respectively, with the potential valleys.

Below a roughening transition threshold qc2 the lines behave like individual lines in the
presence of columnar defects, and bulk disorder [8]. The fluctuations are restricted in the
transverse direction, thus making the line-to-line interaction negligble. For unbounded dis-
order, this phase extends down to zero disorder strength, whereas for bounded disorder we
have an intermediate flat region (q < qc1) in which the lines are strictly confined to the poten-
tial valleys. Above the roughening transition (q ≥ qc2) there is a crossover to the asymptotic
roughness of multiline systems, which is expected in systems without the periodic potential [9].
This is accompanied by an entangled state in three dimensions since in the asymptotic, large
system size limit the lines have freedom to move in the transverse direction.

We are interested in an assembly of N elastic lines described by the Hamiltonian

H =
N∑

i=1

∫ H

0

dz


γ

2

[
dri

dz

]2

+
∑
j( �=i)

Vint[ri(z) − rj(z)] + Vr[ri(z), z] + Vp[ri(z)]


 , (1)

where the vectors ri(z) ∈ Rd−1 (with d = 2 and d = 3 studied here) denote the transverse
displacement of the i-th line at longitudinal coordinate z; H is the system height; Vr[r, z]
describes the point disorder, which is taken to be delta-correlated with variance ε; Vint[r− r′]
is a short-range repulsive interaction between the lines (e.g. hard-core) and Vp[r] a periodic
potential with period a in all transverse space directions. We assume its minima to be well
localized, i.e. they have a width that is small compared to the interaction range of the lines.
This allows only single occupancy of the potential valleys and we concentrate on the case in
which the line density (ρ = Ld−1/N) is such that each potential valley is occupied by exactly
one elastic line, i.e. ρ = 1/ad−1. A similar model has been studied in d = 1 + 1 in [10] for the
competition between point disorder and random columnar defects, i.e. a potential Vp that is
not periodic but random.

We study a lattice version of the continuum model equation (1) which is defined [11] on
a square lattice of size Ld−1 × H. To each bond (ij) of the lattice an energy eij = εij + ∆ij

is assigned. Along longitudinal, periodically arranged lines of the lattice ∆ij is set to zero,
whereas it equals a positive value ∆ for all other bonds of the lattice. These lines form the
potential valleys of effective depths −∆, cf. fig. 1. Additionally, point disorder is introduced to
the model by adding a random number εij to each lattice bond. The investigated distribution
of εij are i) the uniform distribution (bounded disorder) P (ε) = 1 for 0 ≤ ε ≤ εmax and
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Fig. 2 – Optimal ground-state configurations in 2d (top) and 3d (bottom) for different point disorder
strengths, q, increasing from left to right. In the flat phase (left) the FLs are trapped completely
inside the potential valleys.

P (ε) = 0 otherwise, and ii) the exponential distribution (unbounded disorder) P (ε) = exp[−ε]
for ε ≥ 0 and P (ε) = 0 otherwise. The ratio q = 〈εij〉/∆ is a measure for the strength of
point disorder. The energy eij is the cost of occupying the lattice bond (ij) by a segment of a
FL. The hard-core interaction between FLs is implicitly incorporated by requiring that each
bond cannot be occupied by more than one FL. Since all bond energies eij are positive, short
line lengths are more favourable than longer ones which reproduces the elastic energy of the
continuum Hamiltonian. The lattice Hamiltonian then reads

H(x) =
∑
(ij)

eij · xij , (2)

where
∑

(ij) is a sum over all arcs (ij) joining site i and j of a d-dimensional, e.g. rectan-
gular (Ld−1 × H) lattice, with open boundary conditions (b.c.) in all space directions. For
convenience we consider forward and backward arcs such that for each pair of sites i, j there
is a bond (ij) and a bond (ji). The FLs enter the system via the plane z = 0 and leave it
via the plane z = H, see fig. 1. The FL configuration is defined by the set of variables xij

that are either 0 or 1: xij = 1 if a FL runs from site i to j, xij = 0 otherwise. For the
configuration to form lines on each site of the lattice, the configuration x has to be divergence
free, i.e. ∀i : ∇ix ≡ ∑

j n.n. of i xji −
∑

j n.n. of i xij = 0. All sites of the top (bottom) lattice
plane are attached to an additional ghost site s (t) via energetically neutral arcs. The lattice
divergence of these two sites is required to be ∇sx = 0 and ∇tx = 0, respectively, where N
is the number of FLs. Finding the minimum energy configuration of N lines now becomes
equivalent to a minimum cost flow problem with energy function (2) and the mass balance
constraints expressed in the site divergences. This task can be solved exactly in polynomial
time (with complexity O(N ·Ld−1H) by applying the successive-shortest-path algorithm which
is described in detail in [11–13]).

Figure 2 demonstrates with a series of snapshots the geometry involved in the calculations,
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Fig. 3 – Schematic phase diagram in 2d for bounded disorder. The full circles correspond to the
numerical estimates of the critical disorder strength qc2 , where the roughening transition occurs, for
a given period of the peridiodic potential. Below q = qc1 ≈ 2 all lines are strictly localized to the
potential valleys of the periodic potential, independent of a and independent of the dimension d.

and the typical behavior with increasing q in 2d and 3d. In both cases the lines are pinned
to the energetically favorable valleys for small q, and finally for large q a crossover to a rough
state takes place. In 3d one can observe that the lines wander almost freely in such conditions.
The examples of fig. 2 represent different regions in the a-q phase diagram, which is depicted
for 2d in fig. 3.

We discriminate between the different regions in the phase diagram by looking at the
behavior of the average transverse fluctuation or roughness w of the lines [14]:

w2(L,H) =

[
1
N

N∑
i=1

1
H

∫ H

0

dz
(
ri(z) − ri

)2
]

av

, (3)

where ri = H−1
∫ H

0
dz ri(z) and [. . .]av denotes the disorder average. By studying very

large longitudinal system sizes H ≥ 104 we are able to extract the saturation roughness
w(L) = limH→∞ w(L,H) for a finite system of transverse size L. Note that we have chosen
open b.c.: the transverse fluctuations cannot get larger than the system size. Other quantities
of interest are the size l‖ of the longitudinal excursions (the average distance between the
locations at which a line leaves a valley and returns to it); and the total number of potential
valleys PV that a line visits between its entry and terminal point in the limit H → ∞.

Figure 4 displays our data for the roughness w and l‖ as a function of 1/q in 2d, fig. 5
displays w and PV in 3d; both for bounded disorder. In fig. 6 we show our data for w for
unbounded disorder. The physical picture that emerges is the following. In the flat region we
observe w(L) = 0, l‖ = 0 and PV = 1, i.e. the lines lie completely in the potential valleys. This
region (q < qc1) exists only for bounded disorder. For the uniform distribution no energetically
favourable transverse fluctuation can exist as long as q < ∆. That qc1 > 1 follows from the
fact that the system is at full occupancy, N = NV, where NV is the number of valleys. For
q ≤ qc1 the ground state always consists of N straight lines regardless of dimension. The
value of qc1 depends on the distance between the valleys and on the disorder distribution (for
a flat distribution qc1 ≈ 2) and is independent of dimension. For unbounded disorder this flat
region does not exist, since the probability for a repulsive sequence of high-energy bonds in the
valleys is always positive. In the weakly fluctuating region for qc1 ≤ q ≤ qc2 the lines roughen
locally. Here one finds w > 0, l‖ > 0 and PV = 1 and that none of these quantities depends
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Fig. 4 – Roughness w in 2d as a function of disorder strength q for bounded disorder. qc1 and qc2 are
shown. In the flat phase w = 0, whereas w > 0 for q > qc1 . No transversal system size dependence
is observered in the weakly fluctuating phase. The inset shows l‖. Each data point is averaged over
n = 20 (L = 128) up to n = 600 (L = 8) disorder configurations, a = 4.

Fig. 5 – Top: the same as in fig. 4, now in 3d. Bottom: the FL start to jump from one potential
valley to the next at qc2 so that the number of potential valleys each line visits changes from PV = 1
to PV > 1 at this threshold (bottom). n = 6 (L = 128) up to n = 100 (L = 5), a = 4.

on the lateral system width. The transverse fluctuations of FLs are bounded by the average
line distance or valley separation a. The central feature is that lines fluctuate individually, so
that a columnar defect competes with point disorder. Both in 2d and in 3d a strong columnar
pin strictly localizes the line [8] reducing the line-to-line interaction to zero.

With increasing q the transverse fluctuations increase, and when their lengthscale l⊥ be-
comes comparable to the inter-line distance a the physical properties change. When individual
lines can move from one valley to a neighboring valley —i.e. exactly when PV becomes larger
than unity – the line assembly is collectively rearranged manifesting itself in a system size de-
pendence of the saturation roughness (see fig. 4 for 2d and fig. 5 for 3d). Thus the rough phase
is characterized by a dependence of w and l‖ on the transverse system size and by PV > 1.
In particular the latter criterion facilitates the numerical determination of the location of the
roughness transition at qc2 , which we find to increase monotonically with a.

In the limit q → ∞ the collective behavior of the transverse fluctuations of the lines crosses
over to that of a line array in the absence of the periodic potential. The scaling of displacement
correlations and the system roughness are slightly decreased compared to the case without the
potential because of the lengthscale of the pinned parts of the lines (the remaining tendency
to localize in the valleys). For an elastic medium model this would imply that the correlations
should depend logarithmically on the distance. In 2d, in particular, it should be w ∼ ln L
and our data indicates indeed (cf. the equidistant data on the y-axis of fig. 4) that the pure
disorder scaling is obtained above qc2 .

A fundamental difference exists between the real-space geometry of two-dimensional and
three-dimensional systems. In 3d and for small line densities, the lines can wander freely
since there they can wrap around each other, in contrast to 2d. This implies that in the
thermodynamic limit, the line ensemble becomes entangled. We characterize this by computing
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Fig. 6 – Same as fig. 5 for unbounded disorder. The inset shows 3d. Though hardly visible from
this data, qc1 vanishes. But we still find a finite value of qc2 , below which the roughness shows no
L-dependence both in 2d and 3d. n = 10 up to n = 200, both in 2d and 3d.

Fig. 7 – Number of entangled lines Nent in 3d with a = 4 normalized by the total number of lines.
The horizontal lines indicate the values for completely random permutations of N lines.

the fraction of lines Nent/N that, when forced to start and end in an arbitrary one of all the
potential minima, enter and exit in different valleys. In the limits H → ∞, L → ∞ the
fraction Nent(q)/N of entangled lines develops a first-order jump at the roughening transition
from zero to unity. Nent = N implies that all the lines are entangled, though in a finite system
the saturation value of Nent/N is limited by the finite probability that at least one out of N
integers ends up at exactly at the same position in a random permutation. This finite-size
feature can be seen in the data presented in fig. 7.

When we venture away from the fully occupied case that we have considered here, we
expect the roughening transition reported here to vanish. At full occupancy (ρ = 1) the
fundamental excitations (e.g., jumps of individual lines from one potential valley to the next)
have a bulk contribution, due to the full occupancy of the narrow potential valleys. Therefore
jumps between valley can occur only if the disorder is strong enough. On the other hand, for
ρ < 1 empty segments of the potential valleys will allow FLs to jump between them, so that
beyond a particular length scale (given by the line density, disorder strength and distance
beween the valleys) the FL system is rough. For ρ > 1 (i.e. all potential valleys are occupied
and a number of lines are present between the valleys) the system will also be rough, since
the lines between the valleys can exchange places without energy loss [9].

To conclude, we have analyzed (with the aid of exact combinatorial optimization methods)
ensembles of elastic lines (or directed polymers or FLs) in the presence of a confining periodic
potential and competing random point disorder. The main finding is a transition between
“rough” and “flat” regimes, in both 2d and 3d, at a finite potential strength. It arises since
rare fluctuations are not able to induce line-line interactions when the filling factor of the
system is at one. In the rough phase the physics is characterized by correlations that increase
with system size. In 3d we find an entangled phase, in which the lines form a topologically
complicated geometric configuration which will be studied in more detail.
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[6] Lässig M., J. Phys. C, 10 9905 (1998).
[7] Kardar M., Parisi G. and Zhang Y.-C., Phys. Rev. Lett., 56 (1986) 889.
[8] Balents L. and Kardar M. Phys. Rev. B, 49 (1994) 13030; Hwa T. and Nattermann T.,

Phys. Rev. B, 51 (1995) 455.
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