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PACS. 75.40.Gb – Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dy-
namic scaling, etc.).

PACS. 05.50.+q – Lattice theory and statistics (Ising, Potts, etc.).
PACS. 75.10.Nr – Spin-glass and other random models.

Abstract. – We study the kinetics of domain growth in ferromagnets with random exchange
interactions. We present detailed Monte Carlo results for the nonconserved random-bond Ising
model, which are consistent with power law growth with a variable exponent. These results are
interpreted in the context of disorder barriers with a logarithmic dependence on the domain
size. Further, we clarify the implications of logarithmic barriers for both nonconserved and
conserved domain growth.

A homogeneous binary mixture becomes thermodynamically unstable if it is rapidly
quenched below the coexistence curve. The subsequent far-from-equilibrium evolution of
the system is characterized by the emergence and growth of domains enriched in the new
equilibrium phases. The domain morphology is quantified by a) the time dependence of the
domain scale R(t), where t is the time after the quench; and b) the correlation function or its
Fourier transform, the structure factor [1]. There is a good understanding of domain growth
kinetics in pure and isotropic systems, where the domain scale shows a power law behavior,
R(t) ∼ tθ. For the case with nonconserved order parameter, e.g., ordering of a ferromagnet
into up and down phases, we have θ = 1/2. On the other hand, for the case with conserved
order parameter, e.g., phase separation of a binary (AB) mixture into A- and B-rich domains,
we have θ = 1/3 when growth is driven by diffusion.

Of course, real experimental systems are neither pure nor isotropic. In this letter, we focus
on domain growth in ferromagnets and binary alloys with quenched disorder in the form of
random exchange interactions. There have been many experimental [2–4] and numerical [5–10]
studies of this problem [11]. At early times, domain coarsening is not affected by disorder.
Then, there is a crossover to a disorder-affected regime, which occurs earlier for higher disorder
amplitudes. There have also been many studies of domain growth in spin glasses [12,13], where
the amplitude of disorder is such that the local exchange coupling may be either ferromagnetic
or antiferromagnetic. In spite of this attention, the nature of asymptotic domain growth in
both random magnets and spin glasses remains the subject of much controversy. The present
letter resolves this controversy in the context of random magnets. We present detailed Monte
Carlo (MC) results which show that asymptotic growth in these systems is consistent with
c© EDP Sciences
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a power law behavior, with the growth exponent (θ) depending on the temperature (T ) and
disorder amplitude (ε). Further, we present analytical arguments which clarify the functional
form of θ(T, ε) for systems with both nonconserved and conserved order parameters.

We study the random-bond Ising model (RBIM) with the following Hamiltonian:

H = −
∑
〈ij〉

JijSiSj , Si = ±1, (1)

where the exchange couplings Jij are drawn from a probability distribution, e.g., Gaussian,
uniform, bimodal, etc. We focus on the nearest-neighbor case, denoted by the subscript 〈ij〉.
A kinetic version of the RBIM is obtained by associating Glauber spin-flip kinetics (Si → −Si)
or Kawasaki spin-exchange kinetics (Si ↔ Sj) with the Hamiltonian in eq. (1). In this letter,
we consider the ferromagnetic case, where Jij > 0 always. The case where Jij can be both
> 0 (ferromagnetic) and < 0 (antiferromagnetic) is relevant to spin glasses.

An important study of the nonconserved RBIM is due to Huse and Henley (HH) [14].
HH argued that coarsening domains are trapped by energy barriers EB(R) 
 E0R

ψ, with
exponent ψ = χ/(2−ζ), where χ and ζ are the pinning and roughening exponents. For d = 2,
these exponents are known to be χ = 1/3 and ζ = 2/3 [15], yielding ψ = 1/4. For d = 3,
a perturbative calculation gives ψ 
 0.55 [14]. To obtain the corresponding growth law, it
is convenient to use the framework of Lai et al. (LMV) [16]. For curvature-driven growth in
nonconserved systems, the length scale obeys

Ṙ = a(R, T )/R , (2)

where a(R, T ) is the diffusion constant which depends (in general) upon both the length
scale and the temperature. In the presence of energy barriers, domain growth proceeds via
thermally activated barrier hopping with a(R, T ) 
 a0 exp[−EB/T ]. Replacing the HH energy
barrier scaling in eq. (2), we obtain the crossover behavior:

R(t) 
 R0(T, ε)h
(

t

t0

)
, (3)

with

R0(T, ε) =
(

T

E0

)1/ψ

, t0(T, ε) =
1

a0ψ

(
T

E0

)2/ψ

, (4)

and

h(x) =
(
2
ψ

x

)1/2

, x � 1,

= (lnx)1/ψ
, x � 1. (5)

The logarithmic growth law proposed by HH has motivated many experimental and nu-
merical studies of domain growth in random magnets. However, to date, there is no clear
confirmation of this growth law. For example, the experiments of Ikeda et al. [2] found that
there is no universal logarithmic law. Numerical studies have also found no evidence for a
HH-type law, valid over extended time windows and parameter regimes. On the contrary,
some experiments [4] and simulations [6] suggest power law growth with a variable exponent.

Let us next present results from our MC simulations, which were done on L × L lattices
(in d = 2) with periodic boundary conditions. The results presented here were obtained for
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ε = 1.0 ε = 2.0

Fig. 1 – Domain growth in the RBIM with Glauber kinetics. We show evolution pictures at t =
105 MCS for a 512× 512 lattice, after a quench from T = ∞ to T = 0.5. The up spins are marked in
black, and the down spins are unmarked. The snapshots correspond to different disorder amplitudes,
ε = 1, 2.

uniform Jij-distributions on the interval [1− ε/2, 1+ ε/2] or [1− ε′, 1], where ε and ε′ quantify
the degree of disorder. The limits ε = 0 (or ε′ = 0) and ε = 2 (or ε′ = 1) correspond to
zero and maximum disorder, respectively. Assigning random initial orientations to each spin,
we rapidly quench to T < Tc 
 2.269. All our statistical data is obtained with lattice sizes
L = 1024, as an average over 50 independent initial conditions and disorder configurations.
We also produced data for L = 256 and 512 (not shown) to ensure that our results are not
influenced by finite-size effects.

Figure 1 shows typical evolution snapshots (at t = 105 MCS) for different disorder am-
plitudes ε = 1, 2. As expected, the length scale at a given time decreases with increase in ε.
However, the domain morphology does not visually differ from that for the pure case. We
have confirmed (not shown here) that the scaled correlation function [C(r, t) vs. r/R(t)] is
independent of the disorder amplitude, and is numerically equivalent to that for the pure case
(ε = 0). This observation has earlier been made by Puri et al. [8] and Bray and Humayun [9].

Next, we consider the time dependence of the domain size, which is obtained as the distance
over which the correlation function decays to half its maximum value. In fig. 2, we undertake
a direct test of the HH law by first plotting R1/4 vs. t on a log-linear scale for different quench
temperatures and ε′ = 1, with Jij ∈ [1 − ε′, 1]. The data does not satisfy the asymptotic
HH growth law, which corresponds to a straight line on this plot. More generally, we have
attempted to fit the data to the logarithmic function, ln t = aRx + b. This function does
not give a good fit to the data. For acceptable fits, the exponent x depends strongly on the
temperature (cf. ref. [2]), in contrast with the prediction of a universal growth law. Similar
results are obtained if we fix T and vary ε, and we do not present these here.

We also tried to fit the data sets to the crossover scaling form described by eqs. (3)-(5),
the result for which is shown in the right portion of fig. 2. We record the following points of
disagreement with the proposed scaling: 1) The short-time behavior is not described well by
eq. (5), i.e., in the plot g(x) does not fit well to the scaling curve. 2) The proposed asymptotic
behavior, i.e., the curve f(x), does not fit the scaling curve well even for the largest times.
3) The temperature dependence of the crossover length R0(T ) and the crossover time t0(T )
is stronger than a power law, which is incompatible with the expected behavior in eq. (4).
The parameters E0 and a0 occurring in eq. (4) are expected to decrease with increasing
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Fig. 2 – Left: plot of R1/4 vs. t on a log-linear scale for ε′ = 1, i.e. Jij is uniformly distributed
between [0, 1], and different quench temperatures. We show data for 5 temperature values: T =
0.1, 0.2, 0.3, 0.5, 0.7. Right: scaling plot according to eqs. (3)-(5) (Jij as in the left figure). For each
temperature T the values for R0(T ) and t0(T ) have been chosen so as to obtain a smooth scaling curve
h(x). The functions g(x) ∝ x1/2 and f(x) ∝ (ln x)4 represent the expected asymptotic behaviors for
x � 1 and x � 1, respectively, according to eq. (5). The inset shows the temperature dependence of
the fit values R0(T ) and t0(T ) and their expected T -dependences according to eq. (4), which are T 4

and T 8, respectively, if a0 and E0 are only weakly (sublinearly) T -dependent.

temperature, and therefore R0 and t0 may be expected to increase faster than T 4 and T 8,
respectively. However, their putative T -dependence turns out to be much too strong. Note
that the crossover time t0 in the inset of fig. 2 varies over 20 decades when T varies over only
half a decade from 0.2 to 0.7, and we do not see why the pinning energy amplitude E0 or the
domain wall tension should have such a strong T -dependence. Based on observations 1)-3),
we believe that the crossover scaling form in eqs. (3)-(5) does not describe the data well and
we suggest here an alternative picture.

Several groups [4, 6] have reported that random magnets exhibit power law growth with
variable exponents. In fig. 3 (left), we plot R vs. t on a log-log scale for the data in fig. 2.
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Fig. 3 – Left: log-log plot of R vs. t for the length-scale data shown in fig. 2. Right: log-log plot of R
vs. t for T = 0.5 and different disorder amplitudes: ε = 0 (pure case), and ε = 0.1, 0.5, 1, 1.5, 2. Here
Jij is uniformly distributed over [1 − ε/2, 1 + ε/2].
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For low T , the plots are linear over 5 decades in time. For high T , the log-log plots exhibit
a crossover behavior. In fig. 3 (right), we present a similar plot for T = 0.5, and different
values of the disorder. Again, the data exhibits a power law behavior for large values of ε,
and crossover behavior for small values of ε. Our data is consistent with power law growth
with a variable exponent, at least for low T and high ε. We have obtained similar results for
domain growth in the dilute Ising model (DIM), and will present these elsewhere [17].

Let us understand the origin of growth exponents which depend on T and ε. For the
DIM, Henley [18] and Rammal and Benoit [19] have argued that the fractal nature of domain
boundaries results in a logarithmic R-dependence of trapping barriers. We propose that this
is generally applicable [20] and examine the implications thereof. At early times and small
length scales, we expect disorder-free domain growth. This suggests the barrier-scaling form

EB(R) 
 ε ln (1 + R) , (6)

where R is measured in dimensionless units. Substituting a(R, T ) 
 a0 exp[−EB/T ] in eq. (2),
we obtain

Ṙ = a0(1 + R)−ε/T /R. (7)

The solution of eq. (7) is the crossover function

R(t) 
 (2a0t)1/2, t � t0,


 [(2 + ε/T )a0t]
θ(T,ε)

, t � t0, (8)

with the growth exponent
θ(T, ε) = (2 + ε/T )−1. (9)

The early- and late-time behaviors in eq. (8) arise in the limits R � 1 and R � 1, respectively.
The crossover length and time can be identified by reformulating eq. (8) as eq. (3) with

R0(T, ε) =
1

(2θ)θ/(1−2θ)
, t0(T, ε) =

1
a0

1
(2θ2θ)1/(1−2θ)

, (10)

and

h(x) = x1/2, x � 1,
= xθ, x � 1. (11)

In fig. 4, we plot 1/θ vs. 1/T and ε for the data shown in fig. 3. The resultant linear plots
confirm the logarithmic barrier-scaling scenario proposed above. For high temperatures and
weak disorder amplitudes, recall that the length-scale data exhibits a crossover behavior. In
these cases, we estimate the asymptotic exponent by tracking the effective exponent θeff =
d(lnR)/d(ln t) as a function of time.

We note the following points: 1) When measuring the growth by alternative methods, we
get the same estimates for the growth exponents. For instance, we applied the following Monte
Carlo renormalization group approach. First, we scaled the lattice twice by taking 4 block spins
to reduce thermal noise. As a result, a 10242 lattice becomes a 2562 lattice. Then we scanned
horizontally and vertically through the lattice and measured the total number of domain walls.
Finally, we divided the system area by this number to get the average domain length. From
the time dependence, we extracted the exponents θ shown in fig. 4 (left), and we observe that
they agree well within numerical accuracy. 2) We checked that the correlation functions that
we calculated obey the expected dynamical scaling behavior: C(r, t) = c[r/R(t)] = c[r/tθ(T,ε)].
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Fig. 4 – Left: Exponent 1/θ vs. 1/T for the data shown in the left part of fig. 3 (circles), and obtained
for the same systems using estimates for the domain size via the lattice scaling method described
in the text (squares). Note that for T > 1 ≈ Tc(ε

′ = 1), i.e., for 1/T < 1 the system is in the
paramagnetic phase. Hence R cannot grow algebraically any more and no data for 1/θ are available
in this region. Right: Exponent 1/θ vs. ε for the data shown in the right part of fig. 3.

Given our results in the nonconserved case, we expect that the length-scale data for the
conserved case should also exhibit power law behavior with a variable exponent. We have
undertaken MC simulations of the RBIM with conserved kinetics, and the results will be pre-
sented elsewhere [17]. Here, we confine ourselves to discussing the implications of logarithmic
energy barriers for growth exponents in conserved systems.

In the absence of disorder, the domain scale obeys the Huse equation [21] Ṙ = D0/R2,
with the solution R(t) 
 (3D0t)1/3, which is referred to as the Lifshitz-Slyozov growth law.
As before, the presence of disorder renormalizes the diffusion constant D0 by an Arrhenius
factor. For logarithmic barriers as in eq. (6), the corresponding kinetic equation is

Ṙ = D0 (1 + R)−ε/T
/R2. (12)

The short- and long-time solutions of eq. (12) are obtained as follows: R(t) 
 (3D0t)1/3 for
t � t0 and R(t) 
 [(3 + ε/T )D0t]θ(T,ε) for t � t0, where

θ(T, ε) = (3 + ε/T )−1. (13)

The asymptotic exponent differs from that for the nonconserved case. This should be
contrasted with the HH scenario, where the asymptotic growth law is the same for the
nonconserved and conserved cases [1, 8], which is seen by incorporating the HH barrier-
scaling form in Ṙ = D0/R2. The crossover form of the solution of eq. (12) is eq. (3) with
R0(T, ε) = 1/(3θ)θ/(1−3θ) and t0(T, ε) = D−1

0 /(3θ3θ)1/(1−3θ), and h(x) = x1/3, for x � 1,
h(x) = xθ, for x � 1.

In conclusion, we have presented detailed MC results for domain growth in random magnets
for a wide range of temperatures and disorder amplitudes. Our results do not support the
HH scenario of logarithmic domain growth. (Of course, we cannot rule out the possibility of
a logarithmic regime at even later times than those investigated here.) Rather, they are in
agreement with results [4, 6] which exhibit power law growth with a variable exponent. This
scenario arises naturally in the context of logarithmic energy barriers, and the corresponding
functional dependence of θ on T and ε is in excellent agreement with our numerical results.
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The results in this letter provide a framework for the analysis of experiments and simulations
on domain growth in disordered magnets and binary mixtures.
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