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Glossary17

Combinatorial optimization The search for an optimal18

configuration in terms of a cost function on a discrete19

set of allowed configurations.20

Ground state The configuration of a model for a physi-21

cal system of many interacting degrees of freedom de-22

scribed by a Hamiltonian or energy function that has23

the lowest energy. Also dented as the global minimum24

of the energy of the system.25

Disordered system A physical system with frozen in or26

quenched inhomogeneities, usually modeled by an en-27

ergy function containing parameters that are random28

numbers obeying in prescribed probability distribu-29

tion.30

Universal properties Properties that do not depend on31

microscopic details of a physical system, like the criti-32

cal exponents at a continuous phase transition or fractal33

dimensions.34

Network flows A function defined on the edges of a graph35

that obeys mass balance constraints at each node.36

A number of polynomial optimization problems rele-37

vant for disordered systems can be formulated as net-38

work flow models.39

Definition of the Subject and its Importance40

Optimization problems in statistical physics occur when-41

ever the ground state of a classical model for a complex42

condensed matter system has to be determined, which is 43

necessary for understanding its. low temperature proper- 44

ties. In some cases calculating the ground state is an easy 45

task as for instance for the paradigmatic model for a fer- 46

romagnet: The configuration of all magnetic moments or 47

spinswith the lowest energy is the one,where all spins point 48

in the same direction. But usually the situation is much 49

more complex and the problem of calculating the statewith 50

the lowest energy is highly non-trivial. This occurs typ- 51

ically in systems with quenched disorder and/or frustra- 52

tion, which means that their Hamiltonian or energy func- 53

tion consists of competing terms that cannot be satisfied si- 54

multaneously. Powerful algorithms from computer science 55

have been devised to find the optimum of complex cost- 56

functions and in some cases this can even be achieved in 57

polynomial time. In recent years many of these algorithms 58

could be successfully applied to physically relevant model 59

systems: to polymers in randommedia, interface problems 60

in random ferromagnets, magnetic flux-lines in disordered 61

environments, spin glasses, and many more. 62

Introduction 63

Solid materials which contain a substantial degree of quen- 64

ched disorder, so called disordered systems, have been 65

an experimental and a theoretical challenge for physicists 66

for many decades. The different thermodynamic phases 67

emerging in random magnets, the aging properties and 68

memory effects of spin glasses, the disorder induced con- 69

ductor-to-insulator transition in electronic or bosonic sys- 70

tems, the collective behavior ofmagnetic flux lines in amor- 71

phous high temperature superconductors, and the rough- 72

ening transition of a disordered charge density wave sys- 73

tems are only a few examples for these fascinating phenom- 74

ena that occur due to the presence of quenched disorder. 75

Analytic studies of models for these systems are usu- 76

ally based on perturbation theories valid for weak disorder, 77

on phenomenological scaling pictures or onmean-field ap- 78

proximations. Therefore the demand for efficient numer- 79

ical techniques that allow the investigation of the model 80

Hamiltonians of disordered systems has always been high. 81

Three facts make life difficult here: ) The regime, where 82

disorder effects are most clearly seen, are at low tempera- 83

tures – and are even best visible at zero temperature; ) the 84

presence of disorder slows the dynamics of theses systems 85

down, they become glassy, such that for instance conven- 86

tionalMonte-Carlo ormolecular dynamics simulations en- 87

counter enormous equilibration problems; ) any numeri- 88

cal computation of disordered systems has to incorporate 89

an extensive disorder average. 90
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2 0 Optimization Problems and Algorithms from Computer Science

In recent years more and more model systems with91

quenched disorder were found that can be investigated92

numerically ) at zero temperature, ) without equilibra-93

tion problems, ) extremely fast, in polynomial time (for94

reviews see [,,]). This is indeed progress, which be-95

came possible by the application of exact combinatorial op-96

timization algorithms developed by mathematicians and97

computer scientists over the last few decades.This gift is not98

for free: first a mapping of the problem of finding the exact99

ground state of the model Hamiltonian under considera-100

tion onto a standard combinatorial optimization problem101

has to be found. If one is lucky, this problem falls into the102

class ofP-problems, forwhich polynomial algorithms exist.103

If not, the intellectual challenge for the theoretical physi-104

cist remains to reformulate the model Hamiltonian in such105

a way that its universality class is not changed but a map-106

ping on a P-problem becomes feasible.107

An optimization problem can be described mathemat-108

ically in the following way: let σ = (σ , . . . , σn) be a vec-109

tor with n elements which can take values from a domain110

Xn
� σi � X. The domain X can be either discrete, for in-111

stance X = �, � or X = Z the set of all integers (in which112

case it is an integer optimization problem) orX can be con-113

tinuous, for instance X = R the real numbers. Moreover,114

let H be a real valued function, the cost function or ob-115

jective, or in physics usually the Hamiltonian or the energy116

of the system.Theminimization problem is then:117

Find σ � Xn , which minimizesH !118

Amaximization problem is defined in an analogous way. It119

is sufficient to consider only minimization problems, since120

maximizing a function H is equivalent to minimizing −H.121

Minimization problems in which the set X is countable are122

called combinatorial [,,]. Optimizationmethods for real123

valued variables are treated mainly in mathematical litera-124

ture and in books on numerical methods, see e. g. [].125

Constraints, must hold for the solution, may be ex-126

pressed by additional equations or inequalities. An arbi-127

trary value of σ, which fulfills all constraints, is called fea-128

sible. Usually constraints can be expressed more conve-129

niently without giving equations or inequalities. A famous130

example is the Traveling Salesman Problem (TSP) [].131

The TSP has attracted the interest of physicist several132

times. For an introduction, see []. The model is briefly133

presented here. Consider n cities distributed randomly in134

a plane. Without loss of generality the plane is considered135

to be the unit square. The minimization task is to find the136

shortest round-tour through all cities which visits each city137

only once. The tour stops at the city where it started. The138

problem is described by 139

X = �, , . . . , n� () 140

141
H(σ) =

n
�

i=
d(σi , σi+) () 142

where d(σα , σβ) is the distance between cities σα and σβ 143

and σn+ � σ. The constraint that every city is visited only 144

once can be realized by constraining the vector σ to be 145

a permutation of the sequence [, , . . . , n]. 146

The optimum order of the cities for a TSP depends on 147

their exact positions, i. e. on the random values of the dis- 148

tance matrix d. It is a feature of all problems we will en- 149

counter here that they are characterized by various random 150

parameters. Each random realization of the parameters is 151

called an instance of the problem. In general, if we have 152

a collection of optimization problems of the same (general) 153

type,wewill call each single problem an instance of the gen- 154

eral problem. 155

Because the values of the random parameters are fixed 156

for each instance of the TSP, one speaks of frozen or 157

quenched disorder. To obtain information about the gen- 158

eral structure of a problem one has to average measurable 159

quantities, like the length of the shortest tour for the TSP, 160

over the disorder. 161

In this article we give an overview of methods how to 162

solve these problems, i. e. how to find the optimum. Inter- 163

estingly, there is no single way to achieve this. For some 164

problems it is very easy while for others it is rather hard, 165

this refers to the time you or a computerwill need at least to 166

solve the problem, it does not say anything about the elabo- 167

rateness of the algorithms which are applied. Additionally, 168

within the class of hard or within the class of easy prob- 169

lems, there is no universal method. Usually, even for each 170

kind of problem there are many different ways to obtain 171

an optimum. Once a problem becomes large, i. e. when the 172

number of variables n is large, it is impossible to find amin- 173

imum by hand. Then computers are used to obtain a solu- 174

tion. Only the rapid development in the field of computer 175

science during the last two decades has pushed forward 176

the application of optimization methods tomany problems 177

from science and real life. 178

We will review some of the most fruitful applications 179

of polynomial algorithms from the realm of combinatorial 180

optimization to various problems in the statistical physics 181

of disordered systems. The next section presents the appli- 182

cation of Dijkstra’s algorithm for finding shortest paths in 183

weighted networks to themodel of a non-directed polymer 184

in a disordered environment with isotropical correlations. 185

Then, in the th and th section, we discussminimum cost 186

flow problems on weighted graphs and its solution via the 187



Unc
or

re
cte

d 
Pro

of

20
08

-0
4-

11

��

Meyers: Encyclopedia of Complexity and Systems Science — Entry  — // — : — page  — LE-TEX
��

�� ��

0
Optimization Problems and Algorithms from Computer Science 0 3

successive shortest path algorithm and apply it to the en-188

tanglement transition of elastic lines in a disordered envi-189

ronment and to the loop percolation transition in a vortex190

glass model. In the th section we focus on the minimum191

cut-maximum flow problem and discuss among its many192

applications the roughening transition of elastic media in193

a disordered environment.The th section is devoted to the194

random field Ising model and how its ground states can be195

computed with maximum-flow-minimum-cut techniques.196

The spin glass problem is presented in the th section with197

a mapping onto minimum weighted matching in two di-198

mensions and a brief outline of branch and cut methods199

for the higher dimensional case.The th section is devoted200

to finite temperature properties of the random bond Potts201

model and how its free energy can be computed in the limit202

of infinite Potts states. An outlook in the th section closes203

this chapter.204

Polymers in a Disordered Environment205

A well studied model of a single elastic line [], like an in-206

dividual polymer or a single magnetic flux line in a type-II207

superconductor, in a disordered environment is the fol-208

lowing: If one excludes overhangs (and by this also self-209

overlaps) of the elastic lines one can parametrize its con-210

figuration by the longitudinal coordinate z. The line con-211

figuration can then be described by the transverse coor-212

dinate r(z) as a function of z. The presence of disorder is213

usually modeled by a random potential energyV(r, z) and214

the ground state configuration of the line is highly non-215

trivial due to the competition between the elastic energy,216

that tends to straighten the line, and the random energy,217

that tries to bend the line into positions of favorable energy:218

Hsingle-line = Helastic +Hrandom

=
�

H


dz�

γ

	

dr
dz




+ V[r(z), z]� ,

()219

where H is the longitudinal length (not the proper length)220

of the line. The random potential energy is a Gaussian221

variable with prescribed mean and correlations ��V[r, z]222

V[r′, z′] = g(R − R′), where R = (r, z) and ��� de-223

notes the average over the disorder.224

A lattice version of this continuummodel is the directed225

polymer model: The lines correspond to directed paths on226

a hyper-cubic lattice that start at a specific lattice site, say227

(, , . . . , ) and proceed only in the (, , . . . , ) direction228

along the bonds.The energy contribution for a path passing229

bond i of the lattice is a positive random variable ei and the230

total energy of a path P is simply231

H

lattice
single-line = �

i�P
ei = �

i
eini , ()232

where ni =  if the path passes bond i (i. e. i � P) and ni =  233

otherwise. 234

One is interested in isotropically correlated disorder 235

and consider the problem on a non-directed (square) lat- 236

tice (i. e. paths can pass any bond in both directions) in or- 237

der not too exclude overhangs right from the beginning. In 238

case of uncorrelated disorder overhangs were shown to be 239

irrelevant [], but for isotropically correlated disorder this 240

is not clear. The latter is defined to decay algebraically with 241

the spatial distance of the bonds 242

��ei − ej = �Ri −Rj�
α− , () 243

where Ri spatial position of bond i and α is the correla- 244

tion exponent: Note that one expects short-range corre- 245

lations like ��ei − ej � exp(−�Ri − Rj��λ) with a finite 246

correlation length λ, to be irrelevant and only long-range 247

correlations like () to change the universality class of the 248

system. Increasing α imply stronger correlations, uncorre- 249

lated disorder corresponds to α � −�. The kind of corre- 250

lated disorder described by () can be realized by generat- 251

ing correlated random numbers are generated using a well- 252

established numerical procedure []. 253

Exact ground states of the Hamiltonian () or optimal 254

paths are calculated usingDijkstra’s algorithm (note that all 255

energies ei are positive). This simple polynomial algorithm 256

works as follows: Let V = �, . . . , Ld� be the set of lattice 257

sites and A = �(i , j)�i , j � V nearest neighbors� the set of 258

bonds. The algorithm increases successively a subset S of 259

sites for which the optimal path starting at the fixed site s 260

are known. Obviously initially S � = �s�. We denote the en- 261

ergy of the optimal path starting at s and terminating at i 262

with E(i) and since all optimal paths can be constructed via 263

a predecessor list, we keep track of this list, too, via an array 264

pred(i), denoting the predecessor site of site i in a shortest 265

path from s to i:$§ 266

algorithm Dijkstra 267

begin 268

S � = �s�; S � = V��s�; 269

E(s) � = , pred(s) � = ; 270

while �S� < �V � do 271

begin 272

choose (i , j) � E( j) � = mink ,m�E(k) 273

+e
(k ,m)�k � S,m � S, (k,m) � A�; 274

S � = S�� j�; S � = S � � j�; 275

pred( j) � = i; 276

end 277

end 278

In Fig.  we show examples of the set �i� of lattice sites that 279

are end-points of optimal paths starting from a fixed initial 280
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4 0 Optimization Problems and Algorithms from Computer Science

Optimization Problems and Algorithms from Computer Science,
Figure 1
Example for the growth front of the non-directed polymer for
uncorrelated disorder (a and b) and correlated disorder (c and d;
α = 0.4). The black pixels indicate the lattice sites of the (square)
lattice are connected via optimal paths to the offspring (center
of the top line) with energy less than a given value (from [13])

site and having a total energy E(i) less than a given value281

Emax. For uncorrelated disorder the surface of this set is282

roughly a semi-circle, whereas for strongly correlated dis-283

order the surface becomes topologically more complicated.284

The universal properties of the optimal paths are typi-285

cally described the scaling of two characteristic quantities:286

The average transverse fluctuations ��r and the average287

energy fluctuations ��E
. Both are expected to grow al-288

gebraically with the the longitudinal distance H between289

starting point and end point of the paths:290

��r � Hν and ��E
 � Hω , ()291

where ν is called the roughness exponent and ω the energy292

fluctuation exponent. For uncorrelated disorder (α�−�)293

one knows ν = � and ω = �. By computing the optimal294

paths for several thousands of samples for a given disorder295

correlation exponent α and for a given longitudinal dis-296

tances H and fitting the resulting data for transverse and297

energy fluctuations to the expected power laws we can ex-298

tract the exponents ν and ω (for details see []).The result-299

ing estimates in d show that the correlations are relevant300

for α >  and the roughness exponent increases linearly for301

α >  from its value for uncorrelated disorder ν = �. Al-302

though the number of overhangs in the optimal paths we303

computed in the non-directed case increased with α (i. e.304

increasing correlations) the fraction of bonds contributing305

to overhangs scaled to zero for all values of α we consid-306

ered. Hence overhangs appear to be irrelevant also in the307

presence of correlated disorder.308

Many Repulsive Elastic Lines in RandomMedia 309

When one puts interacting elastic lines together into a finite 310

system with a given density of lines they will show inter- 311

esting collective behavior. Examples are the entanglement 312

of magnetic flux lines in high-Tc superconductors in the 313

mixed phase [] or the entanglement of polymers in ma- 314

terials like rubber []. The degree of entanglement of the 315

lines usually manifests itself in various measurable prop- 316

erties like stiffness or shear modulus in the case of poly- 317

mers and in transport or dynamical properties formagnetic 318

flux lines in superconductors. A theoretical description of 319

these line systems can be based on the single-line Hamilto- 320

nian () plus an appropriate line interaction term: 321

Hmany-lines =
N
�

i=
H

(i)
single-line

+�

i< j
�

L


dz

�

L


dz′ Vint[Ri(z) − R j(z

′

)] ,

() 322

where Ri(z) = (ri(z), z) is the spatial position of the in- 323

finitesimal line segment dz of the ith line. If the interactions 324

Vint[Ri(z) − R j(z′)] are short ranged (i. e. in case of flux 325

lines the screening length small compared to the average 326

line distance) or just hard core repulsive, and the random, 327

δ-correlated disorder potential Vr[ri(z), z] in () is strong 328

compared to the elastic energy (� γ) this continuummodel 329

reduces to a lattice model reminiscent of the single-line lat- 330

tice model (): 331

H

lattice
many-lines = �

i
eini , () 332

where ni =  if a line passes bond i and ni =  otherwise 333

and the positive random variable ei is the energy cost for 334

a line segment to occupy bond i. The hard core constraint 335

is thus enforced on the bonds but for the sake of an easier 336

formal description we allow the lines to touch in isolated 337

points, the lattice sites.The lines live on the bonds of a sim- 338

ple cubic lattice with a lateral width L and a longitudinal 339

heightH(L � L �H sites) with free boundary conditions in 340

all directions. Each line starts and ends at an arbitrary po- 341

sition on the bottom respective top planes. The number N 342

of lines threading the sample is fixed by a prescribed den- 343

sity ρ = N�L. For a single lineN = , one recovers the non- 344

directed polymermodel ().The randombond energies are 345

uniformly distributed over the interval [, ]. 346

Note that the allowed configurations of the bond vari- 347

ables ni are only those that can be identified with lines 348

threading the samples (or loops inside the sample, which, 349

however, cost energy and therefore do not occur in the 350
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ground state), which means that the number of occupied351

bonds connected to a lattice site that lies neither on the top352

nor on the bottom plane has always to be even. If we con-353

nect all sites on the top to an extra site, called the source, an354

all sites on the bottom to another extra site, called the tar-355

get, than the latter statement remains true also for the top356

an bottom plane. We can now say that N lines start at the357

source node and terminate at the target node, or, in network358

flow jargon: The feasible configurations of the variables ni359

constitute a flow with zero excess on all lattice sites and an360

excess +N and −N for the source and target node, respec-361

tively.362

Thus the determination of the ground state configu-363

ration of the N-line problem with the Hamiltonian () is364

aminimum-cost-flow-problem, which can be solved with365

a successive shortest path algorithm [,,]. In essence one366

starts with the zero flow ni = , corresponding to zero lines367

in the system, and sends successively one unit of flow from368

the source to the target, corresponding to adding one line369

after the other to the system. This has to happen with the370

minimal energy, i. e. along optimal paths, which are cal-371

culated using Dijkstra’s algorithm that we encountered al-372

ready in the single line problem discussed in the last sec-373

tion. However, when trying to add a line to a system with374

a number, sayM, of lines already present, the existing line375

configuration sometimesmust be changed tominimize the376

total energy for M +  line solution. That becomes feasi-377

ble by allowing flow to be sent backwards on already oc-378

cupied bonds. By this operation one gains energy (whereas379

occupying an empty bond i always costs energy ei � ),380

whichmeans one has to operate on a network that has to be381

adapted to the existing flow configuration and has negative382

energies on all occupied bonds. Unfortunately Dijkstra’s al-383

gorithm works only for positive bond energies, and one has384

either to use a slower (label-correcting) algorithm to find385

the optimal paths in a graph with negative edge costs [] or386

one has to use the concept of node potentials, by which one387

can make all energies in the adapted network non-negative388

without changing the actual shortest paths. This procedure389

is described in full detail in [].390

The resulting line configuration is then analyzed. One391

computes the winding angle of all line pairs as indicated392

in Fig.  (c.f. []). For each z-coordinate the vector con-393

necting the two lines is projected onto that basal plane (left394

part of Fig. ). z =  gives the reference line with respect to395

which the consecutive vectors for increasing z-coordinate396

have an angle ϕ(z). If the two lines intersect one neglects397

the intersection point and interpolate between the last and398

the next point in such a way that the global winding angle399

is minimized. One defines two lines to be entangled when400

ϕ(z) > π. This choice is one that measures entanglement401

from the topological perspective [], and comes from the 402

requirement that an entangled pair of lines can not be sepa- 403

rated by a suitable linear transformation in the basal plane 404

(i. e. the lines almost always would cut each other, if one 405

were shifted).The precise definition of entanglement is not 406

of major relevance, and the one used is useful since it is the 407

computationally easiest. 408

Sets or bundles of pairwise entangled lines are formed 409

so that a line belongs to a bundle if it is entangled at least 410

with one other line in the set. The topological multi-line- 411

entanglement could be characterized by other measures 412

as well; the universal properties of the transition will not 413

depend on these. These line bundles are spaghetti-like – 414

i. e. topologically complicated and knotted sets of one- 415

dimensional objects. To study the size distribution of these 416

objects one projects these bundles on the basal plane, as in- 417

dicated in Fig. , where a bundle projects onto a connected 418

cluster. The probability for two lines to be entangled in- 419

creases with increasing system height. Consequently one 420

would expect that the bundle size increases with H, and 421

therefore also their projections, the clusters.This scenario is 422

exemplified in Fig. , for the largest height the largest clus- 423

ter spans from one side of the system to the other, i. e. it 424

percolates. 425

Hence, for a given line density ρ one expect that for sys- 426

tem heights larger than a critical value Hc an system span- 427

ning large entangled bundle occurs, containing an infinite 428

number of lines in the limit L��. One calls this an entan- 429

glement transition occurring at a finite systemheightHc. In 430

the projection plane this appears like a percolation transi- 431

tion and in [] it was shown that this transition is in the 432

same universality class as conventional bond percolation. 433

Vortex Glasses and Loop Percolation 434

Another application of the successive shortest path algo- 435

rithm for minimum-cost-flow-problems is finding the 436

ground state of the Hamiltonian 437

H = �

i
(ni − bi)



with the constraint ∀k � �

l n.n. of k
n
(k l) =  ,

() 438

where the integer variables ni live on the bonds i of a d-di- 439

mensional hyper-cubic lattice and bi � [−σ , σ] are real 440

valued quenched random variables with σ �  setting the 441

strength of the disorder.The constraint�l n.n. of k n(k l) =  442

means that at all lattice sites k the incoming flow has to bal- 443

ance the outgoing flow, i. e. the flow �ni� is divergence-less. 444

The physical motivation of studying models these kind of 445

models is the following: 446

TS Please note that this figure will be printed in gray in the final version.
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TS

Optimization Problems and Algorithms from Computer Science, Figure 2
Left: Ground state configuration of a N-line system with N = 9 defined by (8). The entry/exit points are fixed in a regular 3 � 3 array
for better visibility. Right: Definition of the winding angle of two flux lines. Right part, top: A configuration of three lines that are
entangled. Right part, bottom: The projection of the line configuration on the basal plane, defining a connected cluster

TS

Optimization Problems and Algorithms from Computer Science, Figure 3
Line configurations for different heights H (from left to right: H = 64, 96, 128), the lateral size L = 20, the line density is ρ = 0.3. Only
the largest line bundles are shown, indicated by a varying gray scale. Black denotes the largest cluster, which eventually percolates

In d the Hamiltonian () occurs for instance in the447

context of the solid-on-solid (SOS) model on a disordered448

substrate [].The SOS representation of a d surface is de-449

fined by integer height variables uk for each lattice site k450

of a square lattice. The disordered substrate is modeled via451

random offsets dk � [, ] for each lattice site, such that the452

total height at lattice site k is hk = uk + dk .The the total en-453

ergy of the surface is454

HSOS = �

(k l)
(hk − hl )


= �

˜
(k l)

�n ˜
(k l) − b ˜

(k l)�


()455

where the first sum runs over all nearest neighbor pairs456

(kl) of the square lattice and the second sum runs over457

all bonds ˜
(kl) of the dual lattice (being a square lattice,458

too), which connect the centers of the elementary pla-459

quettes of the original lattice. A dual bond ˜
(kl) therefore460

crosses perpendicularly a bond (kl) connecting neighbors k 461

and l on the original lattice. We define n ˜
(k l) = nk − nl 462

and d ˜
(k l) = dl − dk if l is either the right or the upper 463

neighbor of k (i. e. for k = (x , y) either l = (x + , y) or 464

l = (x , y + ) and n ˜
(k l) = nl − nk and d ˜

(k l) = dk − dl if l is 465

either the left or the lower neighbor of k (i. e. for k = (x , y) 466

either l = (x − , y) or l = (x , y − ). In this way the sum 467

over all four dual bond variables attached to one site of 468

the dual lattice corresponds to the sum of original height 469

variables around an elementary plaquettes in the origi- 470

nal lattice: (n
(x , y) − n

(x , y+)) + (n
(x , y+) − n

(x+, y+)) + 471

(n
(x+, y+) − n

(x+, y)) + (n
(x+, y) − n

(x , y)) = , which 472

implies that the flow �n ˜
(k l)� is divergence free as inferred 473

in (). 474

In d the Hamiltonian () is the strong screening limit 475

of the vortex glass model for disordered superconduc- 476
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tors [,]477

HVG = �

i , j
(ni − bi)Gλ(ri − r j)(nj − bj) , ()478

where the integer vortex variables ni live on the bonds479

of a simple cubic lattice and have to fulfill the constraint480

in () since they representmagnetic vortex lines that are di-481

vergence free. The real valued quenched random variables482

bi � [−σ , σ] are derived from the lattice curl of a random483

vector potential (σ �  being the strength of the disorder).484

The d vector ri denotes the spatial positions of bond i in485

the lattice and the sum runs over all bond pairs of the lattice486

(not only nearest neighbors). The lattice propagator Gλ(r)487

has the asymptotic form Gλ(r) � exp(−�r��λ)��r�, where λ488

is the screening length. In the strong screening limit λ � 489

only the on-site repulsion survives [] and gets490

H

λ�
VG = �

i
(ni − bi)

 ()491

which is theHamiltonian () in d that we intend to discuss492

here.493

The ground state of () can again be computed with-494

in polynomial time by a successive shortest path algo-495

rithm []. As for the N-line problem one starts with a con-496

figuration �ni� that optimizes the Hamiltonian in () but497

does not, in general, fulfill the mass balance constraint498

given in (). In the N-line problem that was simply the499

zero-flow ni = ,which does not fulfill the requirement that500

the source and the target have excess +N and −N, respec-501

tively. Here we start with ni the closest integer to the real502

number bi for each bond i. Since this solution violates the503

mass-balance constraint one successively sends flow from504

nodes that have an excess flow to nodes that have a deficit505

along optimal paths that are again found using node poten-506

tials (to make all costs non-negative) and Dijkstra’s algo-507

rithm. The details of this algorithm can be found in [,,].508

Figure  shows three typical ground state configura-509

tions for different strength of the disorder σ in d and in d.510

For small σ only small isolated loops occur, whereas for511

larger σ one finds loops that extend through the whole sys-512

tem, they percolate. A finite size scaling study of the un-513

derlying percolation transition [] yields a novel univer-514

sality class with numerically estimated critical exponents515

that differ significantly from those for conventional bond-516

or site-percolation [].517

Interfaces and Elastic Manifolds518

A system of strongly interacting (classical) particles or519

other objects, likemagnetic flux lines in a type-II supercon-520

ductor (as we discussed in Sect. “Many Repulsive Elastic521

Lines in RandomMedia” and for which the starting Hamil- 522

tonian would given by ()), or a charge density wave system 523

in a solid, will order at low temperatures into a regular ar- 524

rangement a lattice (crystal lattice or flux line lattice). Fluc- 525

tuations either induced by thermal noise (temperature) or 526

by disorder (impurities, pinning centers) induce deviations 527

of the individual particles from their equilibrium positions. 528

As long as these fluctuations are not too strong an expan- 529

sion of the potential energy around these equilibrium con- 530

figuration might be appropriate. An expansion up to nd 531

order is called the elastic description or elastic approxima- 532

tion, which in a coarse grained form (where the individ- 533

ual particles that undergo displacements from their equi- 534

librium positions do not occur any more and are replaced 535

by a continuum field ϕ(r) reads then 536

Hmanifold = Helastic +Hrandom

=
�

ddr �
γ

�∇ϕ(r)� + V(ϕ(r), r)� .

() 537

The random potential energy is a delta-correlated Gauss- 538

ian variable with mean zero, ��V(ϕ, r)V(ϕ′ , r′) = 539

Dδ(ϕ − ϕ′)δ(r − r′). The integration extends over the 540

whole space that parameterizes the manifold, for instance 541

d =  for an elastic line in a random potential, d =  for 542

an interface or a surface in a disordered environment etc. 543

Note that for d =  one recovers the single line Hamilto- 544

nian (). The many-line Hamiltonian () also allows such 545

an elastic description in the limit, in which the interactions 546

are strong and the the random potential is weak compared 547

to the elastic energy. In this limit the lines will only deviate 548

moderately from a regular, translationally invariant config- 549

uration (the Abrikosov flux line lattice). This case is called 550

an elastic periodic medium and one has to modify the φ- 551

part of the disorder correlator such that the Hamiltonian 552

has the correct translational symmetry []. 553

Elastic Manifold 554

The typical example for an elastic manifold in a dis- 555

ordered environment are domain walls in the d +  di- 556

mensional random bond ferromagnet H =−�
�i j� Ji jσi σj 557

(Ji j � , random) in which we fix all spins in the lower 558

(upper) plane, i. e. all σi with i = (x,. . . ,xd , y) and y =  559

(y = H), to be σi =+(−), c.f. Fig. . First one maps it onto 560

a flow problem in a capacitated network. One introduces 561

two extra sites, a source node s, which is connected to all 562

spins of the hyperplane y =  with bonds Js ,(x , . . . ,xd , y=) 563

= J
�
, and a sink node t, which is connected to all spins 564

of the hyperplane y = H with bonds Js ,(x , . . .,xd , y=H) = J
�
. 565

One chooses J
�
= �

(i j) Ji j , i. e. strong enough that the 566

interface cannot pass through a bond involving one of 567

TS Keep in mind that the figure will be printed in gray.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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TS

Optimization Problems and Algorithms from Computer Science, Figure 4
Examples of ground state configurations of the Hamiltonian (9) for varying disorder strengths σ (for particular disorder realizations).
Top: 2d, L = 50, the critical disorder strength is σc � 0.46; Bottom: 3d, L = 16, the critical disorder strength is σc � 0.31. The occupied
bonds (ni � 0) are marked black, the percolating loop is marked by light gray (red) TS3

the two extra sites. Now we enforce the aforementioned568

boundary conditions for the spins in the upper and the569

lower plane by simply fixing σs = + and σt = −. The570

graph underlying the capacitated network one has to con-571

sider is now defined by the set of vertices (or nodes)572

N = �, . . . ,H ċ Ld� � �s, t� and the set of edges (or arcs)573

connecting them A = �(i , j)�i , j � N , Ji j > �.574

The capacities ui j of the arcs (i , j) is given by575

the bond strength Ji j. For any spin configuration σ =576

(σ , . . . , σN) one defines S =�i � N �σi = +� and S =577

�i � N �σi = −� = N�S. Obviously σs � S and σt � S. The578

knowledge of S is sufficient to determine the energy of any579

spin configuration via H(S) = −C+�
(i , j)�(S ,S) Ji j where580

(S, S) = �(i , j)�i � S, j � S�. The constant C = �
(i , j)�A Ji j581

is irrelevant, i. e. independent of S. Note that (S , S) is the set582

of edges (or arcs) connecting S with S, this means it cuts N583

in two disjoint sets. Since s � S and t � S, this is a so called584

s-t-cut-set, abbreviated [S, S]. Thus the problem of finding585

the ground state configuration of an interface in the ran-586

dombond ferromagnet can be reformulated as aminimum 587

cut problem 588

minS⊂N �H′(S)� = min
[S ,S] �

(i , j)�(S ,S)

Ji j . () 589

in the above defined capacitated network (with H′ = (H + 590

C)�). It does not come as a surprise that this minimum 591

cut is identicalwith the interface between the (σi = +)-do- 592

main and the (σi = −)-domain that has the lowest energy. 593

Actually any s-t-cut-set defines such an interface, some 594

of them might consist of many components, which is of 595

course energetically unfavorable. 596

A flow in the network G is a set of nonnegative num- 597

bers xi j subject to a capacity constraint and a mass balance 598

constraint for each arc 599

  xi j  ui j

and �

� j	(i , j)�A

xi j − �

� j	( j, i)�A

x ji =

!

"
"
"

#

"
"
"

$

−v for i = s
+v for i = t
 else

() 600
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TS

Optimization Problems and Algorithms from Computer Science, Figure 5
Left: Sketch of a 2d (RBIM)with antiperiodic boundary conditions. Broken lines representweak bonds, full lines strong bonds, the spin
configuration with the lowest energy defines an interface, as indicated, and corresponds to the minimum cut in the corresponding
network flow problem. Right:An optimal interface in the 111-directionof a 3d RBIM corresponding to the ground state configuration
of a 2d elastic mediumwith scalar displacement field (from [23])

This means that at each node everything that goes in has to601

go out, too, with the only exception being the source and602

the sink. What actually flows from s to t is v, the value of603

the flow. The maximum flow problem for the capacitated604

network G is simply to find the flow x that has the maxi-605

mum value v under the constraint ().606

Let x be a flow, v its value and [S, S] an s-t-cut.607

Then, by adding the mass balances for all nodes in S608

one has v = �

(i , j)�(S ,S) xi j − �

(i , j)�(S ,S) x ji and since609

xi j  ui j and x ji �  the following inequality holds:610

v  �
(i , j)�(S ,S) ui j = u[S, S]. Thus the value of any flow x611

is less or equal to the capacity of any cut in the network.612

If one discovers a flow x whose value equals to the capac-613

ity of some cut [S, S], then x is a maximum flow and the614

cut is a minimum cut.The following implementation of the615

augmenting path algorithm constructs a flow whose value616

is equal to the capacity of a s-t-cut it defines simultane-617

ously. Thus it will solve the maximum flow problem (and,618

of course, the minimum cut problem).619

Given a flow x, the residual capacity ri j of any arc620

(i , j) � A is the maximum additional flow that can be sent621

fromnode i to node j using the arcs (i, j) and (j, i).The resid-622

ual capacity has two components: ) ui j − xi j , the unused623

capacity of arc (i, j), ) x j i the current flow on arc ( j, i),624

which one can cancel to increase the flow from node i to j625

ri j = ui j − xi j + x ji . The residual network G(x) with re-626

spect to the flow x consists of the arcs with positive residual627

capacities. An augmenting path is a directed path from the628

node s to the node t in the residual network. The capacity629

of an augmenting path is the minimum residual capacity of630

any arc in this path.631

Obviously, whenever there is an augmenting path in the 632

residual network G(x) the flow x is not optimal. This mo- 633

tivates the following generic augmenting path algorithm: 634

algorithm Ford–Fulkerson 635

begin 636

Initially set xi j � = , x ji � =  for all (i , j) � A; 637

do 638

construct residual network R with capacities ri j ; 639

if there is an augmenting path from s to t in G′ then 640

begin 641

Let rmin the minimum capacity of r along this path; 642

Increase the flow in N along the path 643

by a value of rmin; 644

end 645

until no such path from s to t in G′ is found; 646

end CE 647

This algorithm is polynomial in the number of lat- 648

tice sites if the distribution of capacities is discrete (bi- 649

nary for instance). In the general case it has to be im- 650

proved and there are indeed more efficient algorithms to 651

solve this problem in polynomial time. One of them is the 652

push/relabel algorithm introduced by Goldberg and Tar- 653

jan []. It determines the maximal flow by successively 654

improving a “preflow”. A preflow is an edge function f (e) 655

that obeys the range constraint   f (e)  w(e), but the 656

conservation constraint at each node is relaxed: the sum of 657

the f (e) into or out of a node can be nonzero at internal 658

(physical) nodes. The amount of violation of conservation 659

at each node v give “excesses” e(v). The basic operations of 660

the algorithm, push and relabel, are used to rearrange these 661

CE Added this end. Is it correct?

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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10 0 Optimization Problems and Algorithms from Computer Science

excesses. When the preflow can no longer be improved, it662

can, if desired, be converted to a maximal flow, proving the663

correctness of the algorithm. For details see [,]. It can664

be applied in the way sketched above to compute univer-665

sal geometrical properties of elastic manifolds in  and 666

dimensions [].667

Periodic Medium668

The presence of a periodic background potential, like669

a crystal potential, has a smoothening effect on the elastic670

manifold and tends to lock it into one of its minima. The671

competition between the random potential, that roughens672

the manifold, and such a periodic potential might lead to673

a roughening transition [,]. In d this is actually not674

the case [], but in d there is as we will see. We consider675

a lattice version of the Hamiltonian676

H = Hmanifold + Hperiodic

with Hperiodic = � ddr Vperiodic(ϕ(r)) ,
()677

where Vperiodic(ϕ) = − cos ϕ represents the periodic po-678

tential.679

We introduce a discrete solid-on-solid (SOS) type in-680

terface model for the elastic manifold whose continuum681

Hamiltonian is given in Eq. (). Locally the EM remains682

flat in one of periodic potential minima at ϕ = πh with683

integer h. Due to fluctuations, some regions might shift to684

a differentminimumwith another value of h to create a step685

(or domainwall) separating domains. Tominimize the cost686

of the elastic and periodic potential energy in Eq. (), the687

domain-wall width must be finite, say ξo . Therefore, if one688

neglects fluctuations in length scales less than ξo , the con-689

tinuous displacement field ϕ(r)can be replaced by the inte-690

ger height variable �hx� representing a ( + )d SOS inter-691

face on a simple cubic lattice with sites x � �, . . . , L�. The692

lattice constant is of order ξo and set to unity. The energy693

of the interface is given by the Hamiltonian694

H = �

�x,y�
J
(hx ,x);(hy ,y)�hx − hy � −�

x
VR(hx , x) , ()695

where the first sum is over nearest neighbor site pairs. Af-696

ter the coarse graining, the step energy J >  as well as the697

random pinning potential energy VR becomes a quenched698

random variable distributed independently and randomly.699

Note a periodic elastic medium has the same Hamilto-700

nian as in Eq. () with random but periodic J and VR in701

h with periodicity p []. In this sense, the elastic mani-702

fold emerges as in the limit p �� of the periodic elastic703

medium.704

To find the ground state, one maps the D SOS model 705

onto a ferromagnetic random bond Ising model in ( + )d 706

hyper-cubic lattice with anti-periodic boundary conditions 707

in the extra dimension [] (for the  space direction 708

one uses periodic boundary conditions instead). The anti- 709

periodic boundary conditions force a domain wall into 710

the ground state configuration of the ( + )d ferromagnet. 711

Note that bubbles are not present in the ground state. A do- 712

main wall may contain an overhang which is unphysical 713

in the interface interpretation. Fortunately, one can forbid 714

overhangs in the Ising model representation using a tech- 715

nique described in []. If the longitudinal and transver- 716

sal bond strengths are assigned with J� and VR� oc- 717

curring in Eq. (), respectively, this domain wall of the 718

ferromagnet becomes equivalent to the ground state con- 719

figuration of () for the interface with the same energy. 720

The domain wall with the lowest energy is then deter- 721

mined exactly by using again the max-flow/min-cost algo- 722

rithm. 723

In elastic media described by () the tendency of 724

the periodic potential to lock the displacements competes 725

with the roughening effect of the disorder. Analytically 726

a roughening transition was predicted in [] and the crit- 727

ical exponents could be numerically estimated in three di- 728

mensions [] with the mapping and algorithm described 729

above. 730

Random Field Ising Model 731

The random field Ising model (RFIM, for a review see [, 732

]) is defined 733

H = − �

(i j)
Ji jσi σj −�

i
hi σi () 734

with σi = % Ising spins, ferromagnetic bonds Ji j �  (ran- 735

dom or uniform), (ij) nearest neighbor pairs on a d-dimen- 736

sional lattice and at each site i a randomfield hi � R that can 737

be positive and negative.The first term prefers a ferromag- 738

netic order, which means it tries to align all spins. The ran- 739

dom field, however, tends to align the spins with the field 740

which points in random directions depending on whether 741

it is positive or negative. This is the source of competition 742

in this model. 743

Let us suppose for the moment uniform interactions 744

Ji j = J and a symmetric distribution of the random fields 745

with mean zero and variance hr . It is established by now 746

that in d (and higher dimensions) the RFIM shows fer- 747

romagnetic long range order at low temperatures, pro- 748

vided hr is small enough. In d and d there is no ordered 749

phase at any finite temperature.Thus in d one has a para-
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magnetic/ferromagnetic phase transition along a line hc (T)750

in the hr -T-diagram.751

The renormalization group picture says that the na-752

ture of the transition is the same all along the line hc(T),753

with the exception being the pure fixed point at hr =  and754

Tc & . J. The RG flow is dominated by a zero tempera-755

ture fixed point at hc(T = ). As a consequence, the critical756

exponents determining the critical behavior of the RFIM757

should be all identical along the phase transition line, in758

particular identical to those one obtains at zero temperature759

by varying hr alone.Thus to study the universal properties760

of the phase transition in the RFIM one needs to calculate761

its ground state.762

This optimization task is again equivalent to a maxi-763

mum flow problem [,], as in the interface model dis-764

cussed in the last section. Historically the RFIM was the765

first physical model that has been investigatedwith a maxi-766

mumflowalgorithm [].However, here theminimum-cut767

is not a geometric object within the original system.768

To map the ground state problem for the RFIM onto769

amax-flow-min-cut problem one proceeds in the sameway770

as in the interface problem: One adds to extra nodes s and771

t and attaches spins with fixed values there (see Fig. ):772

σs = + and σt = − ()773

One connects all sites with positive random field to the774

node s and all sites with negative random field to t:775

Jsi = �
hi if hi � 
 if hi < 

Ji t = �
�hi � if hi < 
 if hi � 

()776

The a network is constructed with the set of nodes777

N = �,� , Ld� � �s, t� and the set of (forward and back-778

ward) arcs A = �(i , j)�i , j � N , Ji j > �. Each of them has779

a capacity ui j = Ji j . The energy or cost function can the be780

written as781

E = − �

(i , j)�A
Ji jσi σj ()782

or, by denoting the set S = �i � N �Si = +� and S = N�S783

E(S) = −C +  �

(i , j)�(S ,S)

Ji j ()784

with C = �
(i , j)�A Ji j . The problem is reduced to the prob-785

lem of finding a minimum s-t-cut as in (). The difference786

to the interface problem is that now the extra bonds con-787

necting the two special nodes s and t with the original lat-788

tice do not have infinite capacity: they can lie in the cut,789

Optimization Problems and Algorithms from Computer Science,
Figure 6
Representation of the ground state problem for the RFIM as
an RBIM domain wall or minimum-cut problem. The physical
spins are the five nodes in the single row in the figure, while
the fixed external spins are s+ and s−. The physical RFIM cou-
pling J = 1.0. A spin with hi > 0 (hi < 0) is connected by an aux-
iliary coupling of strength hi (−hi) to s+ (s−). The weights of
each bond are indicated: the random fields are, from left to right,
h = −1.5, +4.0, −2.3, +1.2, and 0.15. In the ground state, the in-
terfacial energy between up-spin and down-spin domains is
minimized, i. e., the spins are partitioned into two sets withmini-
mal total cost for the bonds connecting the two sets. The dashed
curve indicates the minimal weight cut. The white (dark) nodes
indicate up (down) spins in the ground state configuration

namely whenever it is more favorable not to break a fer- 790

romagnetic bond but to disalign a spin with its local ran- 791

dom field. In the extended graph the s-t-cut again forms 792

connected interface, however, in the original lattice (with- 793

out the bonds leading to and from the extra nodes) the 794

resulting structure is generally disconnected, a multicom- 795

ponent interface. Each single component surrounds a con- 796

nected region in the original lattice containing spins, which 797

all point in the same direction. In other words, they form 798

ferromagnetically ordered domains separated by domain 799

walls given by the subset of the s-t-cut that lies in the orig- 800

inal lattice. 801

In passing we note that diluted Ising antiferromagnets 802

in a homogeneous external field (DAFF) map straightfor- 803

wardly onto a RFIM if the underlying lattice is bipartite. 804

The d DAFF on a simple cubic lattice is defined by 805

H = + �

(i j)
Ji j εi ε jσi σj −�

i
hi εi σi () 806

where σi = %, Ji j � , (ij) are nearest neighbor pairs on 807

a simple cubic lattice, and εi � �, �with εi =  with prob- 808

ability c, representing the concentration of spins. Because 809

of the plus sign in front of the first term in () all interac- 810

tions are antiferromagnetic, the model represents a diluted 811

antiferromagnet, for whichmany experimental realizations 812

exist (e. g. FecZn−c F). Now that neighboring spins tend 813
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12 0 Optimization Problems and Algorithms from Computer Science

to point in opposite directions due to their antiferromag-814

netic interaction a uniform field competes with this order-815

ing tendency by trying to align them all. On a bipartite lat-816

tice in zero external field the ground state would be antifer-817

romagnetic, which means that one can define two bipartite818

sublattices A and B. One defines new spin and field vari-819

ables via820

σ′i = �
+σi for i � A
−σi for i � B

h′i = �
+εi hi for i � A
−εi hi for i � B .

821

Since σ′i σ
′

j = −σi σj for all nearest neighbor pairs (ij) one822

can write () as823

H = − �

(i j)
J′i jσ

′

i σ
′

j −�
i
h′i σ
′

i ()824

with J′i j = Ji j εi ε j . This is again a RFIM and ground states825

can be computed with the max-flow technique.826

Themain focus of the application of themax-flow-min-827

cut algorithm to the RFIM is the phase transition in the828

three-dimensional model occurring at a critical disorder829

strength hc at zero temperature, which separates a param-830

agnetic phase for large disorder strength from a ferromag-831

netic phase. The maximum flow algorithm has first been832

used by Ogielski [] to calculate the critical exponents of833

the RFIMvia the finite size scaling.More accurate estimates834

were obtainedmore recently byMiddleton and Fisher [],835

where also an detailed discussion of the problems and con-836

flicting results about the RFIM universality class is pro-837

vided. For Gaussian random fields (with variance h) they838

find for the finite size scaling of magnetization m = [Si]av839

and specific heat c = N−dE�dT and840

m & L−β�ν ,

c & Lα�ν ,
()841

with the magnetization exponent x = β�ν = . % .842

the correlation length exponent ν = . % ., and the843

specific heat exponent α = −. % .. Note that themag-844

netization exponent is very close to zero, whichmeans that845

the transition is hard to discriminate fromafirst order tran-846

sition. Also the specific heat exponents is close to zero and847

slightly negative, implying a lack of divergence of the spe-848

cific heat at the transition.849

The Spin Glass Problem850

Spin glasses are the prototypes of (disordered) frustrated851

systems (see []). In the models discussed up to now,852

the frustration was caused by two separate terms of dif- 853

ferent physical origin (interactions and external fields or 854

boundary conditions). Spin glasses are magnetic systems 855

in which the magnetic moments interact ferro- or antifer- 856

romagnetically in a random way, as in the following Ed- 857

wards–AndersonHamiltonian for a short ranged Ising spin 858

glass (SG) 859

H = − �

(i j)
Ji jσi σj , () 860

where σi = %, (ij) are nearest neighbor interactions on a d- 861

dimensional lattice and the interaction strengths Ji j � R are 862

unrestricted in sign. In analogy to Eq. () one shows that 863

the problem of finding the ground state is again equivalent 864

to finding a minimal cut [S, S] in a network 865

minσ �H′(σ)� = min
[S ,S] �

(i , j)�(S ,S)

Ji j , () 866

again H′ = (H + C)� with C = �
(i j) Ji j . However, now 867

the capacities ui j = Ji j of the underlying network are not 868

non-negative any more, therefore it is not a minimum-cut 869

problem and thus it is also not equivalent to a maximum 870

flow problem, which we know how to handle efficiently. 871

It turns out that the spin glass problem is much harder 872

than the questions we have discussed so far. In general (i. e. 873

in any dimension larger than two and also for d in the 874

presence of an external field) the problem of finding the SG 875

ground state isNP-complete [], whichmeans in essence 876

that no polynomial algorithm for it is known (and also that 877

chances to find one in the future are marginal). Neverthe- 878

less, some extremely efficient algorithms for it have been 879

developed [,], which have a non-polynomial bound 880

for their worst case running-time but which terminate (i. e. 881

find the optimal solution) after a reasonable computing 882

time for pretty respectable system sizes. 883

TwoDimensions, Planar Graph 884

First we discuss the only non-trivial case that can be 885

solved with a polynomial algorithm: the two-dimensional 886

Ising SG on a planar graph. This problem can be shown to 887

be equivalent to finding a minimumweight perfect match- 888

ing, which can be solved in polynomial time. We do not 889

treat matching problems and the algorithms to solve them 890

in this lecture (see [,,]), however, we would like to 891

present the idea []. To be concrete let us consider a square 892

lattice with free boundary conditions. Given a spin config- 893

uration σ (which is equivalent to −σ) we say that an edge 894

(or arc) (i, j) is satisfied if Ji jσi σj >  and it is unsatisfied 895

if Ji j σi σj < . Furthermore we say a plaquette (i. e. a unit 896

cell of the square lattice) is frustrated if it is surrounded by 897
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Optimization Problems and Algorithms from Computer Science,
Figure 7
Two-dimensional Ising spin glass with �-J couplings: Thin lines,
are positive interactions, thick lines are negative interactions,�
means σi = +1,�means σi = −1, shaded faces are frustrated pla-
quettes, broken lines cross unsatisfied edges

an odd number of negative bonds (i. e. Ji j ċ J jk ċ Jk l ċ Jl i < 898

with i, j, k and l the four corners of the plaquette)). There is899

a one-to-one correspondence between equivalent spin con-900

figurations (σ and −σ) and sets of unsatisfied edges with901

the property that on each frustrated (unfrustrated) plaque-902

tte there is an odd (even) number of unsatisfied edges. See903

Fig.  for illustration.904

Note that905

H(σ) = −C +  �

unsatisfied edges
�Ji j � . ()906

which means that one has to minimize the sum over the907

weights of unsatisfied edges. A set of unsatisfied edges will908

be constituted by a set of paths (in the dual lattice) from909

one frustrated plaquette to another and a set of closed cir-910

cles (see Fig. ). Obviously the latter always increase the911

energy so that we can neglect them. The problem of find-912

ing the ground state is therefore equivalent to finding the913

minimum possible sum of the weights of these paths be-914

tween the frustrated plaquettes. This means that we have915

to match the black dots in the Fig.  with one another in916

an optimal way. One can map this problem on a minimum917

weight perfect matching problem (a perfect matching of918

a graph G = (N ,A) is a setM ' A such that each node has919

only has only one edge of M adjacent to it). This can be920

solved in polynomial time (see [] for further details).921

Note that for binary couplings, i. e. Ji j = %J, where922

Ji j = +J with probability p the weight of a matching is sim-923

ply proportional to the sum of the lengths of the various924

paths connecting the centers of the frustrated plaquettes, 925

which simplifies the actual implementation of the algo- 926

rithm. In [] the d %J spin glass and the site disordered 927

SG has been studied extensively with this algorithm. The 928

site disordered spin glass is defined as follows: occupy the 929

sites of a square lattice randomly with A (with concentra- 930

tion c) and B (with concentration  − c) atoms. Now define 931

the interactions Ji j between neighboring atoms: Ji j = −J if 932

on both sites are A-atoms and Ji j otherwise. 933

The main application of this algorithm is directed to- 934

wards studying domain walls in spin glasses since they pro- 935

vide informations on the low temperature behavior and the 936

stability of the ground state with respect to thermal fluctu- 937

ations. Domain walls can be induced by applying two dif- 938

ferent boundary conditions to the system (usually periodic 939

and anti-periodic), their energy is simply the difference be- 940

tween the energies of the ground states with the two dif- 941

ferent boundary conditions.The domain wall energy of the 942

two-dimensional spin glassmodelwith Gaussian couplings 943

scales like 944

∆E & Lθ , () 945

where the stiffness exponent is θ = −. (see [] for 946

a survey). The negativity of this exponent indicates the ab- 947

sence of stable spin glass phase at any non-vanishing tem- 948

perature in the d spin glass model. Recently also the frac- 949

tal properties of the domain walls in d spin glasses with 950

Gaussian couplings became important: They have a frac- 951

tal dimension of d f = .() and it was argued [] that 952

they might be a realization of a stochastic Loewner evolu- 953

tion (see [] for a review) realized in disordered systems. 954

Three Dimensions, Non-planar Graphs 955

Aswementioned, in any other case except the planar lattice 956

situation discussed above the spin glass problem is NP- 957

hard. In what follows we would like to sketch the idea of 958

an efficient but non-polynomial algorithm []. To avoid 959

confusion with the minimum cut problem we discussed in 960

connectionwithmaximumflows one calls the problem () 961

a max-cut problem (since finding the minimum of H is 962

equivalent to finding the maximum of −H). 963

Let us consider the vector space RA. For each cut [S, S] 964

define χ(S ,S) � RA, the incidence vector of the cut, by χ(S ,S)e 965

=  for each edge e = (i , j) � (S, S) and χ(S ,S)e =  other- 966

wise. Thus there is a one-to-one correspondence between 967

cuts in G and their �, �-incidence vectors in RA. The 968

cut-polytope PC (G) of G is the convex hull of all incidence 969

vectors of cuts in G � PC(G) = conv �χ(S ,S) � RA
� S ' A�. 970

Then the max-cut problem can be written as a linear pro- 971
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gram972

max �uTx � x � PC(G)� ()973

since the vertices of PC (G) are cuts ofG and vice versa. Lin-974

ear programs usually consist of a linear cost function uTx975

that has to be maximized under the constraint of various976

inequalities defining a polytope in Rn (i. e. the convex hull977

of finite subsets of Rn) and can be solved for example by the978

simplex method, which proceeds from corner to corner of979

that polytope to find the maximum (see e. g. [,,]).980

The crucial problem in the present case is that it is NP-981

hard to write down all inequalities that represent the cut982

polytope PC (G).983

It turns out that also partial systems are useful, and this984

is the essential idea for an efficient algorithm to solve the985

general spin glass problem as well as the traveling sales-986

man problem or other so called mixed integer problems987

(i. e. linear programs where some of the variables x are988

only allowed to take on some integer values, like  and  in989

our case) [,]. One chooses a system of linear inequali-990

ties Lwhose solution setP(L) contains PC (G) and forwhich991

PC(G) = convex hull �x � P(L)�x integer�. In the present992

case these are   x  , which is trivial, and the so called993

cycle inequalities, which are based on the observation that994

all cycles in G have to intersect a cut an even number of995

times.The most remarkable feature of this set L of inequal-996

ities is the following:997

The separation problem for a set of inequalities L con-998

sists in either proving that a vector x satisfies all inequal-999

ities of this class or to find an inequality that is violated1000

by x. A linear program can be solved in polynomial time1001

if and only if the separation problem is solvable in poly-1002

nomial time []. The separation problem for the cycle in-1003

equalities can be solved in polynomial time by the cutting1004

plane algorithm which, starting from some small initial set1005

of inequalities, generates iteratively new inequalities until1006

the optimal solution for the actual subset of inequalities is1007

feasible. Note that one does not solve this linear program1008

by the simplex method since the cycle inequalities are still1009

too numerous for this to work efficiently.1010

Due to the insufficient knowledge of the inequalities1011

that are necessary to describe PC (G) completely, one may1012

end up with a non-integral solution x�. In this case one1013

branches on some fractional variable xe (i. e. a variable with1014

x�e �� �, �), creating two subproblems in one of which xe is1015

set to  and in the other xe is set to . Then one applies the1016

cutting plane algorithm recursively for both subproblems,1017

which is the origin of the name branch-and-cut. Note that1018

in principle this algorithm is not restricted to any dimen-1019

sion, boundary conditions, or to the fieldless case. How-1020

ever, there are realizations of it that run fast (e. g. in d) and1021

others that run slow (e. g. in d) and it is ongoing research 1022

to improve on the latter, for an overview over the current 1023

status see []. 1024

Potts Free Energy and Submodular Functions 1025

The problem addressed in this chapter is not a low tem- 1026

perature problem but concerns the computation of the free 1027

energy of a Potts model (see [] for a review) at any tem- 1028

perature, including some phase transition temperatures. To 1029

transform the problemof computing the free energy into an 1030

optimization problem (i. e. find a minimum in a finite set), 1031

one needs to take some limit. Usually this is a zero temper- 1032

ature limit as it was for all applications discussed so far in 1033

this article. Here this will be the limit of an infinite number 1034

of states. 1035

Consider the q-state Potts model on a d-dimensional 1036

hyper-cubic lattice with periodic boundary conditions de- 1037

fined by the Hamiltonian: 1038

H = −�

�i j�
Ji jδ(σi , σj) , () 1039

where σi are q-state Potts variables (σi � �, . . . , q� located 1040

at lattice sites i, the sum goes over all nearest neighbor pairs 1041

�i j of the lattice, and Ji j >  are ferromagnetic couplings 1042

(not that δ(σ , σ′) is the Kronecker-delta, which means 1043

δ(σ , σ′) =  for σ = σ′ and δ(σ , σ′) =  for σ * σ′).The case 1044

q =  corresponds to the Ising model. In the random bond 1045

Potts model, which is of interest here, the couplings Ji j 1046

are random variables. In d   dimensions the Potts model 1047

has phase transition at some critical temperature T from 1048

a paramagnetic to a ferromagnetic phase.Thermodynamic 1049

properties of the q-state Potts model are computed via its 1050

partition function 1051

Z = �

�σ

exp

,

-

�

i j
−βJi jδ(σi , σj)

.

/

. () 1052

The first sum runs over all possible spin configuration, i. e. 1053

it involves qN terms, whereN is the number of spins in the 1054

system and β = �T is the inverse temperature. 1055

In the so-called random cluster representation [] the 1056

partition sumcanbewritten as a sumover all subsetsU ' E 1057

of the set of edges (or bonds) 1058

Z = �

�σ

0

i j
exp 1−βJi jδ(σi , σj)2

= �

�σ

0

i j
1 + vi jδ(σi , σj)2

1059

where vi j = exp(βKi j) − . Note that the Kronecker-delta 1060

can only take on the values zero and one by which it is 1061
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possible to identify exp(Jδ) =  + δ(exp(J) − ) =  + vδ.1062

Again one can regard the lattice as a graph G = (V , E),1063

where the sites and the bonds of the lattice are the verticesV1064

and the edges E of the graph. Then a careful book-keeping1065

of the terms in the development of the above expression1066

leads to:1067

Z = �

G′G
qc(G

′
)

0

e�G′
ve , ()1068

where G′ denotes any subgraph of G, i. e. a graph, possibly1069

not connected (but all vertices are kept), where some edges1070

of G have been deleted (there are m subgraphs where m1071

is the number of edges of G). c(G′) is the number of con-1072

nected components of the subgraphG′. For example for the1073

empty subgraph G′ = 3 the number of connected compo-1074

nents is the number of sites, while for G′ = G it is one.The1075

product in () is over all the edges in G′ with the con-1076

vention that the product over an empty set is one. If the1077

parameter β is small (i. e. high temperature) then the pa-1078

rameters vi j are small and, summing in (), only the sub-1079

graphs with few edges provides an approximation to the1080

partition function: this is a high temperature development.1081

Note also the way the parameter q appears in (): it can be1082

extended to non integer values, relating the Potts model to1083

other problems (percolation, etc . . . ) [].1084

Following [] one canmap the computation of the par-1085

tition function Z of any ferromagnetic Potts model in the1086

limit q �� onto an optimization problem by introducing1087

another parametrization of the couplings with new vari-1088

ables we defined by1089

ve = qwe .1090

Inserting this expression in () one gets Z =�G′G1091

qc(G
′
)+�e�G′ we , and defining f (G) = c(G) + �e�G we :1092

Z = �

G′G
q f (G′) .1093

In the limit q �� only the subgraphs G� maximiz-1094

ing f (G) will contribute, and computing the partition1095

function of the Potts model in the infinite number of1096

states limit amounts to finding the subgraphs G′ of the1097

graph G maximizing the function f , i. e. minimizing the1098

function []:1099

fP(G
′

) = −4c(G′) + �

e�G′
we5 . ()1100

It turns out that this function has a property which allows1101

to minimize it very efficiently: it is a submodular function.1102

Submodular Functions 1103

Theconcept of a submodular function in discrete optimiza- 1104

tion appears to be in several respects analogous to that of 1105

a convex function in continuous optimization. In many 1106

combinatorial theorems and problems, submodularity is 1107

involved, in one form or another, and submodularity often 1108

plays an essential role in a proof or an algorithm.Moreover, 1109

analogous to the fast methods for convex function mini- 1110

mization, it turns out that submodular functions can also 1111

be minimized fast, i. e. in polynomial time. 1112

Submodularity is a special property of set functions, 1113

which are defined as follows: Let V be a finite set and 1114

V = �X � X ' V� be the set of all the subsets ofV . A func- 1115

tion f � V � R is called a set function. 1116

Now a set function f is submodular if for all subsets 1117

A ' V and B ' V : 1118

f (A) + f (B) � f (A6 B) + f (A� B) . () 1119

It is simple to show that a function f is submodular if 1120

and only if for any subsets S ' R ' V and for any x � V : 1121

f (S � �x�) − f (S) � f (R � �x�) − f (R) . () 1122

This means intuitively that adding an element to a “small” 1123

ensemble S (since S ' R) has more effect than adding to 1124

a “large” ensemble R. 1125

The function () fP(A) = − (c(A) +w(A)) is sub- 1126

modular, because the function −c(A) is submodular (and 1127

the function w(A) is modular: Take two sets of edges A ' B 1128

and an edge e. Inspecting the three possible cases: e � A, 1129

e 7 A and e � B , e 7 A and e 7 B one sees that c(A� �e�)− 1130

c(A)  c(B � �e�) − c(B), which is the reverse of (), so 1131

that the function −c is a submodular function. Note that 1132

c(E′) with E′ ' E counts the number of connected com- 1133

ponents of the graph G′ that contains all vertices V of the 1134

complete graph but only the edges in E′. Thus adding an 1135

edge will never increase the number of components. 1136

On the other hand it is straightforward to see that the 1137

functionw(G) = �e�G we verifiesw(A� C)+w(A6 C) = 1138

w(A) +w(C). It is a so-called modular function. Conse- 1139

quently the function () fP is a submodular function. In 1140

summary we are looking for the sets of edges minimizing 1141

the submodular function fP forwhich a strongly polynomial 1142

algorithm has been recently discovered. 1143

In passing we note that we encountered other exam- 1144

ples of submodular functions already in the preceding sec- 1145

tions, namely the function that defines the costs of cuts in 1146

a graph with positive edge weights, which occurs the in- 1147

terface problem and the random field Ising model in the 1148

last sections: Take a graph G = (V , E) and define C to be 1149

a function of the subsets of the V and C(U ' V) is the 1150
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number of edges having exactly one end in U. This func-1151

tion can be generalized to the case where the edges are di-1152

rected and weighted, i. e. each edge carries an arrow and1153

a positive number.The function C(U ' V) is then the sum1154

of the weight of the edges having the beginning vertex in U1155

and the ending vertex not in U. This kind of function is1156

generally called a “cut” and is submodular.1157

Minimization of Submodular Function1158

The minimization of any submodular function can be1159

done in polynomial time. This was first published in ref-1160

erence [] in . In this paper the authors utilize the so-1161

called ellipsoidmethod.However thismethod is not a com-1162

binatorial one and is far from being efficient. In that respect1163

this result was not quite satisfactory at least for the prac-1164

tical applications. Eighteen years later, Iwata–Fleischer–1165

Fujishige [], and independently Schrijver [] discovered1166

a combinatorial methodwhich is fully satisfactory from the1167

theoretical, as well as from the practical, point of view.1168

The general method uses a mathematical program-1169

ming formulation. The problem is algebraically expressed1170

as a linear program, i. e. a set of variables yS associated to1171

each subset S ⊂ V is introduced , these variables are sub-1172

jected to constraints and a linear function F of these vari-1173

ables is to be minimized. The constraints include a set of1174

linear equations and the condition that each of the yS is1175

zero or one. This last condition is in general extremely dif-1176

ficult to realize. However, it turns out that a theorem due1177

to Edmonds [] indicates this condition can be simply1178

dropped, and that automatically the set of values yS which1179

minimize F will all be zero or one! Actually only one vari-1180

able yS� =  will be non zero and it is precisely associated to1181

the optimal set. Combined with the dual version of this lin-1182

ear program, it provides a characterization of the optimal1183

set.1184

The general algorithm mentioned above can be applied1185

to minimize (), however, due to the specific form of the1186

function to minimize, a more suitable method does exist.1187

For this a property that is true for any submodular function1188

is useful. To emphasize that the function f to minimize is1189

defined on all the subsets of a set E we will label f with the1190

index E as fE . Let us now consider a subset F ' E; one can1191

define a set function on F by fF(A) = fE(A) for any A ' F.1192

If the function fE is submodular then its restriction fF is1193

also submodular. We have the following property:1194

Let F ' E and e � E, if AF is an optimal set of the set1195

function fF defined on F, then there will be an optimal set1196

AF��e
 of the function fF��e
 defined on F � �e� such that1197

AF ' AF��e
.1198

To make the notation simpler we denote the function 1199

fF��e
 on F � �e� by f. Let A be an optimal set of fF on F 1200

and B an optimal set of f on F � �e�. One has 1201

f(A� B)  f(A) + f(B) − f(A6 B) () 1202

since f is submodular. But f(A) = fF(A) and f(A6 B) = 1203

fF(A6 B) since both A and A6 B are in A. Since A is 1204

an optimal set one has fF(A)  fF(A6 B) and conse- 1205

quently f(A) − f(A6 B)  . Inserting this last inequal- 1206

ity into () one finds that f(A� B)  f(B)which proves 1207

that A� B is one of the optimal sets (Q.E.D.). 1208

Thisproperty has an important consequence. Indeed let 1209

us suppose that the optimal set has been found for a sub- 1210

set F of E. Then all the elements of E which have been se- 1211

lected as belonging to the optimal set of F will still belong 1212

to one optimal set of all the sets G 9 F . In other words, let 1213

us find the optimal set for �e , e�where e and e are arbi- 1214

trary elementsof E; then if we find that any of these two ele- 1215

ments belongs to the optimal set, it will belong to one opti- 1216

mal set for F ' E! Such an algorithm whichmakes a defini- 1217

tive choice at each step is called a greedy algorithm. 1218

Based on this observation an efficient algorithm for the 1219

minimization of () was developed in [], see also []. 1220

Results 1221

The algorithm based on the ideas mentioned before and 1222

presented in detail in [,], was applied to various two 1223

dimensional and three dimensional lattices. A realization 1224

of the disorder is chosen accordingly to a probability dis- 1225

tribution. In practice all the weights w(e) on the edge e are 1226

rational numbers with a common integer denominator q. 1227

In other words, we choose an integer p(e) for each edge and 1228

set w(e) = p(e)�q. To work only with integers one maxi- 1229

mizes the product qf : 1230

q f (A) = qC(A) + �

e�A
p(e) . 1231

It is clear that if q is small compare to all the p(e), then all 1232

the weightsw(e) will be large and the optimal set will be the 1233

set of all edges. On the contrary if q is large all the weights 1234

will be small and the optimal set will be empty. These two 1235

situations are easy to handle. Between this two limits the 1236

optimal set grows, and for a precise value qc of q, which 1237

depends on the lattice, the optimal set percolates.This value 1238

corresponds to a phase transition. Depending on the lattice 1239

under consideration and on the distribution of the random 1240

variables p(e) this transition can be first or second order. 1241

In Fig. , one optimal set is shown for a lattice where 1242

each edge carries a weight / or / with probability one 1243

half (i. e. it is a critical point). The edges from the optimal 1244
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Optimization Problems and Algorithms from Computer Science,
Figure 8
A512 � 512 lattice. The edges of the optimal set belonging to the
percolating cluster are shown in black, and the edges of the op-
timal set not belonging to the optimal set are in gray (from [60])

set belonging to the percolation cluster are shown in black,1245

while the others are shown in gray. The percolation clus-1246

ter, which is the largest connected component in the op-1247

timal subgraph G′ ' G is fractal with a fractal dimension1248

d f = . that is related to the critical exponent x = β�ν1249

for the magnetization of the random bond q �� Potts1250

model () in two dimensions via x =  − d f = .. Sur-1251

prisingly this agrees within the error bars with themagneti-1252

zation exponent x = ( −
:

)� of the random transverse1253

Ising chain [], which is a one-dimensional quantum spin1254

model. A discussion of this observation and details of the1255

computations can be found in [].1256

Future Directions1257

We have reviewed several applications of polynomial opti-1258

mization algorithms from computer science to disordered1259

systems in statistical physics. They were used extensively in1260

the recent years to compute numerically universal proper-1261

ties like critical exponents, domain wall exponents and ge-1262

ometrical features like roughness and stiffness with much1263

higher precision than with Monte-Carlo methods, which1264

suffer notoriously from equilibration problems. A num-1265

ber of important issues, whichwere controversially debated1266

within different analytical could be clarified, numerically,1267

in this way – as for instance the nature of the low tempera-1268

ture phase of the superrough phase in the two-dimensional 1269

Bragg glass [,], the absence of a stable glass phase in the 1270

strongly screened vortex glass model [] and the issue of 1271

many states in various two-dimensional glassymodels []. 1272

Other questions still remain to be answered, as for exam- 1273

ple the phenomenon of an apparent non-universality in the 1274

three-dimensional random field Ising model []. 1275

NP-hard problems occurring in the statistical physics 1276

of disordered systems, still remain a challenge: Examples 1277

are the computation of ground states of spin glass mod- 1278

els on non-planar graphs, like the three-dimensional spin 1279

glass or the random field Potts model for three or more 1280

Potts states []. Stochastic optimization techniques like 1281

hysteretic optimization [] or extremal optimization [] 1282

have reached a high level of sophistication but naturally 1283

suffer from the lack of a proof of optimality of the result- 1284

ing solution. Progress in the development of exact and ef- 1285

ficient algorithm that can handle sufficiently large system 1286

sizes to perform a reliable finite size scaling analysis is be- 1287

ing made [] and highly rewarding. 1288

The cross-fertilization between computer science and 1289

statistical physics is also fruitful in the other direction: 1290

Phase transitions that occur in some combinatorial op- 1291

timization problems like the satisfiability problem (SAT) 1292

were studied intensively in recent years by physicists and 1293

remarkable progress has been achieved in understanding 1294

it and inventing efficient algorithms. These developments 1295

were not covered in this article, excellent introductions can 1296

be found in []. 1297
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