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a b s t r a c t 
Blood vessel networks of living organisms continuously adapt their structure under the influence of 
hemodynamic and metabolic stimuli. For a fixed vessel arrangement, blood flow characteristics still de- 
pend crucially on the morphology of each vessel. Vessel diameters adapt dynamically according to inter- 
nal and external stimuli: Endothelial wall shear stress, intravascular pressure, flow-dependent metabolic 
stimuli, and electrical stimuli conducted from distal to proximal segments along vascular walls. Pries 
et al. formulated a theoretical model involving these four local stimuli to simulate long-term changes of 
vessel diameters during structural adaption of microvascular networks. Here we apply this vessel adapta- 
tion algorithm to synthetic arteriovenous blood vessel networks generated by our simulation framework 
“Tumorcode”. We fixed the free model parameters by an optimization method combined with the re- 
quirement of homogeneous flow in the capillary bed. We find that the local blood volume, surface to 
volume ratio and branching ratio differs from networks with radii fulfilling Murray’s law exactly to net- 
works with radii obtained by the adaptation algorithm although their relation is close to Murray’s law. 

© 2019 Elsevier Ltd. All rights reserved. 
1. Introduction 

Life depends crucially on the efficiency of transport networks 
and therefore it is essential to understand how they are function- 
ing and why they are efficient ( Banavar et al., 1999 ). In particular, 
the vasculature of all mammalians demonstrates how nature 
efficiently transports and distributes nutrients at minimal costs. 

Cecil Murray observed blood vessel networks in 1926 and 
proposed a formula describing observations on the thickness of 
the branches ( Murray, 1926 ). In his theoretical derivation of the 
formula, he considered two energies with opposed dependency 
on the vessel radius r: the energy required to drive the flow 
and the energy required to maintain the metabolic demands of 
the surrounding tissue. To drive the flow, the system needs to 
overcome the viscous drag that is proportional to 1/ r 4 in case of 
Hagen–Poiseuille flow and to maintain the metabolic demands, 
a constant volume of “fresh” blood is required in a first approx- 
imation. By minimizing the sum of these two energies, he found 
that the sum of the cubes of the daughter vessel’s radii equals the 
cube of a parent vessel’s radius. In case of a simple junction with 
one mother vessel of radius r c and two daughter vessels of radius 
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r a and r b , this reduces to: 
r 3 c = r 3 a + r 3 b (1) 

Since his assumptions are rather general, they hold true for the 
respiratory system of animals and insects, xylem in plants and di- 
verse other kinds of transport networks as well ( Stephenson et al., 
2015 ). Murray’s law is based on an optimality criterion and 
suggests the intriguing question how the vasculature of living 
organisms achieves this optimality? The blood vessel wall is 
formed by endothelial cells with a surrounding layer of smooth 
muscle cells. Because the muscular layer adjusts the vessel caliber 
continuously during growth, maturation, in response to exercise, 
wound healing and diseases, the vasculature is non-stationary with 
regulatory mechanisms that are still under investigation. While 
the vascular reactions to shear stress have been known for a long 
time ( Thoma, 1893; Wetterdal, 1920 ), recent studies showed that: 
1) The shear stress is linked to the local intravascular pressure 
( Pries Axel R. et al., 1995 ); 2) the vascular diameter is controlled 
by the metabolic needs of the tissue (local oxygen partial pressure, 
metabolic signaling substances) ( Adair et al., 1990; Berne, 1964; 
Berne et al., 1983; Björnberg et al., 1989 ) and the metabolites 
remaining in blood after the exchange ( Ellsworth, 2004 ); 3) 
electrical signals are conducted along the blood vessel wall by 
endothelial and smooth muscle cells via gap junctions ( Segal and 
Duling, 1986; de Wit et al., 2003; Bagher and Segal, 2011 ) and 
4) in case of hypertension, the vasculature switches to inward 
remodeling ( Jacobsen et al., 2003; Pries and Secomb, 2008 ). 

https://doi.org/10.1016/j.jtbi.2019.109989 
0022-5193/© 2019 Elsevier Ltd. All rights reserved. 
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Beginning in 1995, Pries Axel R. et al. (1995) published a series 

of papers ( Pries et al., 1998; 2001; 2003; Pries and Secomb, 2008; 
Pries et al., 2009 ) where they constructed a feedback loop between 
the discussed mechanisms and the blood vessel radii. Provided 
the resulting radius adaption dynamics leads to a stable state, this 
algorithm determines the blood vessel radii of a given network 
topology, in particular the relation between mother and daughter 
vessel radii at each junction without referring to Murray’s law. 

In this manuscript we explore the application of the adaptation 
algorithm to in silico arteriovenous networks and analyze the 
emerging vessel radii and blood flow characteristics. Initially, the 
networks created by our in-house simulation framework Tumor- 
code ( Fredrich et al., 2018 ) are consistent with Murray’s law. The 
vessel adaptation algorithm modifies each single vessel radius and 
we analyze the resulting distribution of radii. After validating our 
implementation by comparison with existing data in Section 3.1 , 
we optimize the free model parameters for a fixed vessel network 
in Section 3.2 with respect to a maximally homogeneous blood 
flow in the capillary bed. In Section 3.3 , we compare the distribu- 
tion of radii from the initial networks with the one emerging after 
the application of the vessel adaptation algorithm to them. 
2. Methods 
2.1. The adaptation algorithm 

Pries et al. (1998) presented a theoretical model to simulate 
vessel radii of arteriovenous networks. They constructed a feedback 
loop between the spatial position of the vessels (topology) and 
their biological functions including hydrodynamics, shear stress 
and metabolism of the surrounding tissue. For an elaborated re- 
view and some applications of the model see Secomb et al. (2012) . 
In the following, we describe the vessel adaptation algorithm of 
Pries et al. (1998) . 

Considering a vessel of radius r during a time step !t , its 
adaption or change !r = S tot r !t is proportional to the sum of 
five signals S tot = ∑ 5 

i =1 S i which are defined below. 
S 1 - Shear stress. Based on the correlation between wall shear 
stress and vessel radius, the adaptation algorithm reduces the 
vessel radius whenever the wall shear stress ( τw ) falls below 
1 dyn/cm 2 = 10 − 4 kPa and extends the radius otherwise, i.e: 
S 1 = log 10 ( τw ) (2) 

S 2 - Blood pressure. Pries Axel R. et al. (1995) studied the inter- 
action of the transmural pressure P and the wall shear stress τ e 

Table 1 
Parameters of the adaptation model. The values in the right col- 
umn are used in Pries et al. (1998) . 

Signal Free Fixed 
S 3 k m Q ref = 40 nl/min 
S 4 k c L = 1500 µm, 

S 0 = 40 
S 5 k s 

proposing a “pressure-shear” hypothesis 
τe (P ) = 100 − 86 exp (− 5000 { log 10 [ log 10 ( P ) ] } 5 . 4 ) (3) 

The functional form of the shear-pressure dependency is sig- 
moidally increasing from 14 dyn/cm 2 for pressures of 10 mmHg–
100 dyn/cm 2 for pressures at 90 mmHg ( Eq. (3) ). With this 
S 2 = − log 10 [ τe (P ) ] (4) 
S 3 - Metabolic demand. Similar to the idea of Murray (see Section 
1 Introduction), the metabolic demand needs to be maintained at 
all times. Since oxygen is transported as cargo by the red blood 
cells (RBC), a constant volume flow of RBCs is required to sustain 
a constant oxygen supply. Given the volume flow of blood Q with 
hematocrit H, the volume flow of RBCs is HQ and maintained at a 
reference value Q ref by the metabolic signal S 3 . 
S 3 = k m log 10 (Q ref 

HQ + 1 ) (5) 
The definition of S 3 results in a strictly positive signal where 

the amplitude increases stronger for vessels with a lower flow rate 
( HQ <  Q ref ) compared to vessels with a higher flow rate ( HQ >  Q ref ) 
than the reference flow Q ref . In contrast to the biologically moti- 
vated reference flow, k m is an unknown model parameter (com- 
pare Table 1 ). 
S 4 - Topological position. S 4 is sensitive to the position of the ves- 
sel within the entire network structure. The signal propagates from 
the capillary bed to the most upstream vessel in the arterial branch 
and to the most downstream vessel in the venous branch. While 
the downstream propagation of metabolic waste to the draining 
vein is reasonable, the upstream signaling is less obvious, but re- 
cent studies confirmed that vessels communicate via electrical sig- 
nals within their endothelial layer ( Segal and Duling, 1986; de Wit 
et al., 2003; Bagher and Segal, 2011 ). In principle the algorithm 
works with arbitrary number of vessels per intersection. For sim- 
plicity, we limit the discussion to Y-shaped intersections ( Fig. 1 ) 
where a vessel c has two downstream connections (to vessel a 
of length x a and to vessel b of length x b ) in an arterial branch 
and two feeding vessels (vessel a of length x a and vessel b of 

(a) arterial

c

a

b

(b) venous

c

a

b

Fig. 1. Recursive propagation of the conducted signal at a vessel junction. Left: Arterial case. Right venous case. Arrows indicate the direction of information propagation. 
See Eq. (6) . 
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length x b ) in a venous branch. The conducted or topological sig- 
nal is calculated in a recursive fashion by the weighted sum of the 
metabolic signals (S 3 ) along the direction of information propaga- 
tion ( Eq. (6) ). The weighting factor is proportional to the exponen- 
tial of the normalized length of the vessel segments ( x a L and x b 

L ). 
S 4 ,c = S 3 ,a + S 3 ,b + S 4 ,a exp ( − x a /L ) + S 4 ,b exp ( − x b /L ) (6) 

Since the recursive summation might result in excessive values, 
the signal is damped by a reference value S 0 such that the com- 
plete conducted signal for a single vessel becomes: 
S 4 = k c S 4 ,c 

S 4 ,c + S 0 (7) 
Note that the constant k c , the reference value S 0 and the 

normalization length L are unknown model parameters (compare 
Table 1 ). 
S 5 - Shrinking tendency. The introduction of a strictly positive 
metabolic (S 3 ) and conducted signal (S 4 ) necessitates a negative 
counterbalance. Its biological motivation is the tension in the 
endothelial layer which leads to a contraction of the vessel radius 
in the absence of all other signals. In the formula of the adaptation 
model this is embedded by subtracting a overall constant k s . 
S 5 = − k s (8) 
2.2. The artificial blood vessel networks. 

We construct artificial 3D arteriovenous networks by means 
of our simulation framework Tumorcode ( Fredrich et al., 2018 ). 
We report the complete methodology in Rieger et al. (2016) and 
summarize only the main steps here. First, at least one arterial and 
one venous root node have to be distributed in space and assigned 
with a hydrodynamic boundary condition (either a blood pressure 
value or a flow rate) before straight or Y- shape elements are 
appended until the arterial and venous branch merge by the capil- 
laries. Second, the position of the capillaries within the volume is 
optimized towards a homogeneous capillary volume density using 
a hierarchical iteration scheme. For the scope of this paper, we 
consider only a root node configuration (RC) where one artery is 
opposite to one vein on the same axis ( Fig. 2 , compare also RC5 
in Fig. 4 of Welter et al., 2016 ) and a single hierarchical iteration. 
Since the construction algorithm in the Tumorcode fixes the radii 
of all capillaries (2.5 µm in presented case) and determines the 
radii of all intermittent vessels between root nodes and capillaries 
by Murray’s law, all radii at the intersections fulfill Murray’s law 
by construction. Therefore we label them M-networks in contrast 
to the A-networks which obtain their vessel radii by applying the 
adaptation algorithm to the M-networks . 

Fig. 2. Schematic root node configuration (RC) for construction the arteriovenous 
networks. Red (left): arterial root, blue (right): venous root. 

2.3. Parameter optimization 
Inspecting Section 2.1 , we count six unknown model pa- 

rameters as summarized in Table 1 . Considering the additional 
hydrodynamic boundary condition at the two root nodes, we end 
up with 8 degrees of freedom for the model. To find the unknown 
parameters, we presume that a properly working vasculature 
requires a homogeneous flow inside the capillary bed to maintain 
the nutrient exchange and apply a computational optimization 
technique where the variance of the volume blood flow inside all 
capillaries ( Q capillaries ) is used as cost function 
f = V ar(Q capil l aries ) (9) 

We used particle swarm optimization (PSO) ( Kennedy and Eber- 
hart, 1995 ) to minimize the cost function f defined in Eq. (9) . Al- 
though there is no guarantee to find the best solution, PSO finds 
at least a “robust” solution i.e. a solution that is robust against 
varying the initial conditions. In our case, the initial conditions are 
the values of the parameters k m , k c and k s . During the PSO, we 
vary these parameters in the range of 0.5–4.0 for each fixed set of 
hydrodynamic boundary conditions. The hydrodynamic boundary 
conditions are the arterial inlet flow and the venous outlet pres- 
sure which we also varied in a systematic way (see supplemental 
text). 

The numerical values of Q ref = 40 nl/min , L = 1500 µm and 
S 0 = 20 were kept fix at the values reported in Pries et al. (1998) . 

All exact numbers, computational details and the implementa- 
tion are reported in a supplemental text to this manuscript. 
2.4. Definition of biophysical quantities 

Given a blood vessel network inside a volume V that consists 
of N tubes with radii r i and lengths l i , two quantities of interest 
are the regional blood volume (rBV) and the surface to volume 
ratio (s2v). 
2.4.1. Regional Blood Volume (rBV) 

The regional blood volume measures the percentage of blood 
within the volume. 
r BV = ∑ N 

i =1 π r 2 i l i 
V (10) 

2.4.2. Surface to volume ratio (s2v) 
The surface to volume ratio measures the ratio between the 

surface of an object and the volume included by this surface. 
Since nutrient exchange happens across the vessel surface, the 
exchange is proportional to the surface and therefore the s2v is an 
interesting quantity. 
s 2 v = 1 

N 
N ∑ 

i =1 
2 π r i l i 
π r 2 

i l i (11) 
3. Results 
3.1. Reproducing available data 

We applied our implementation of the adaptation algorithm 
to a experimentally determined rat mesentery network. Since 
the hydrodynamic boundary conditions were measured, we in- 
corporated them accordingly. The same procedure was done in 
Pries et al. (1998) (Network I). Unfortunately, the used time step 
!t is not documented. We used !t = 0 . 1 and the other adaptation 
parameters in Table 2 . To verify our implementation, we repro- 
duced two figures comparing the shear stress, vessel diameters, 
and the adaptation signals S 1 , S 2 , S 3 and S 4 before and after 
application of the algorithm. 
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Fig. 3. Left column (black and white): reprint of Fig. 4 and 5 from Pries et al. (1998) with permission. Right column (colored): reproduced by our implementation/ software. 
(A): Values obtained with experimentally determined vessel diameters, (B): values obtained by simulated vessel adaptation. Top and second from top row: Distribution of 
shear stress and diameter for a rat mesentery network with 546 segments (162 arterioles, 167 capillaries and 217 venules). Hemodynamic parameters were calculated using 
the network flow model based on measured network morphology and topology. Last before bottom row: hydrodynamic stimuli derived from shear stress ( τ w ) and blood 
pressure (P) are plotted as functions of pressure. Last row: the metabolic (M) and conducted stimuli (C) are plotted as functions of flow rate, to show functional dependence 
of these stimuli. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Parameters used to adapt vessel radii of rat mesentery net- 
work with Tumorcode. Parameter labeled by ∗ is not shown in 
Pries et al. (1998) . 

k c k m k s Q ref S 0 !t L 
2.74 0.83 1.79 40 nl/min 20 0.1 ∗ 1500 µm 

Due to the lack of quantitative data in Pries et al. (1998) we 
cannot compare directly, but our figures are in qualitative agree- 
ment with the original ( Fig. 3 ). For the hydrodynamics (top row 
and second from top row of Fig. 3 ), we observe that the shear 

stress saturates with increasing blood pressure (top row) and the 
diameter varies for veins in a broader range than for the arteries 
with the same pressure (second row). The adaptation tends to 
increase the radius of the capillaries (coral labeled points in right- 
most image of second row). For the distribution of the adaptation 
signals S 1 and S 2 (last before bottom row of Fig. 3 ), we find 
vessels in the adapted network with a higher blood pressure than 
100 mmHg and therefore we extended the pressure axis (x-axis) to 
120 mmHg. For the distribution of the adaptation signals S 3 and S 4 
(bottom row of Fig. 3 ), we find that adaptation shifts the spectrum 
towards increased flow. In agreement with model assumptions, 
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(a) (b)

Fig. 4. Results of the particle swarm optimization (PSO). (a) Contour plot of the logarithm of the cost function f ( Eq. 9 ) used for the PSO. x-axis: flow boundary condition 
at the arterial inlet. y-axis: pressure boundary condition at the venous outlet. The cross shows the boundary conditions used in Section 3.3 ; (b) Distribution of optimized 
choice for k m , k c and k s . Only the convergent hydrodynamic boundary conditions are considered. The median value is write above the corresponding line. 

(a) (b)

Fig. 5. Biophysical variables influenced by the adaptation algorithm. Distribution is obtained from a single configuration of vessels in space ( Section 3.2 ), but different radii 
distributions obtained during particle swarm optimization. We considered the 248 convergent boundary conditions here. (a) Distribution of regional blood volume ( rBV ); 
(b) Distribution of surface to volume ratio ( s2v ) in 1/µm. 
the metabolic signal/ demand (S 3 ) is higher for low flow segments 
and the conducted signal (S 4 ) increases for segments with higher 
flow that are more up or downstream respectively. 
3.2. Single topology, varying boundary conditions 

As already discussed in Pries et al. (1998) , there are two possi- 
ble outcomes when applying the adaptation scheme in a repeated 
manner: either one reaches a steady state where the changes 
of radii become arbitrary small with each iteration or the radii 
changes increase to unrealistic values which also implies unrealis- 
tic values for pressure and flow, and are not further consider. 

In the remaining, we switch from the rat mesentery network 
to synthetic arteriovenous networks constructed by Tumorcode. 
We start with a single fixed topology and apply the optimization 
procedure described in Section 2.3 . Thereby we identified the 
hydrodynamic boundary conditions and parameters that result in 
convergence of the adaptation algorithm with the fixed network 
topology (see Fig. 4 (a)) and achieved an optimal homogeneity in 
the blood flow of the capillaries. Interestingly, the distribution of 

optimization parameters ( Fig. 4 (b)) indicates the same relation 
between the parameters (k m <  k s <  k c ) as found by Pries et al. in 
their three samples of rat mesentery networks ( Pries et al., 1998 ). 

To estimate the biological relevance of the optimized net- 
works, we analyze two biophysical variables ( Section 2.4 ): The 
regional blood volume ( Fig. 5 (a)) and the surface to volume ratio 
( Fig. 5 (b)). The total regional blood volume varies within a phys- 
iological regime from 2% up to 10% (left column in Fig. 5 (a)). To 
estimate the contributions from arteries, capillaries and veins to 
the total rBV, we segmented them in Fig. 5 (a). 

The results for the surface to volume ratio are shown in similar 
fashion ( Fig. 5 (b)). As expected, the surface to volume ratio is 
highest for small capillaries, smaller for arteries and the smallest 
for the large veins. 
3.3. Varying topology, fixed boundary conditions 

In contrast to the previous section, we now 1) keep the hy- 
drodynamic boundary conditions and adaptation parameters fixed 
and 2) vary the topological arrangement of the vessels i.e. we 
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(a) (b)

Fig. 6. Biophysical variables influenced by the adaptation algorithm. Distribution is taken from 10 different arrangements of vessels in space with radii obtained by 1) 
construction by Tumorcode (blue) and 2) application of the adaptation algorithm with a fixed set of parameters ( Table 2 , orange). (a) Distribution of regional blood volume 
( rBV ); (b) Distribution of surface to volume ratio ( s2v ) in 1/µm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Table 3 
Mean value and standard error of the mean for rBV and s2v averaged over the 10 considered 
networks. 

All types Artery Vein Capillary 
rBV Tumorcode 0.80 ± 0.03 0.227 ± 0.006 0.532 ± 0.03 0.039 ± 0.001 

Adaptation 3.3 ± 0.2 0.80 ± 0.03 2.4 ± 0.2 0.076 ± 0.003 
s2v Tumorcode 0.605 ± 0.002 0.672 ± 0.004 0.439 ± 0.002 0.8 ∗

Adaptation 0.412 ± 0.001 0.443 ± 0.003 0.293 ± 0.002 0.586 ± 0.003 
∗ Note that the radius of a capillary is fixed in synthetic networks constructed by Tumorcode. 

Data also visualized in Fig. 6 . 
grow different networks with same root node configuration. Based 
on the results of the PSO (red cross in Fig. 4 (a)), we decided to 
use a pressure of 2.8 kPa at venous outlet and a volume flow 
rate of 2 · 10 7 µm 3 /s at the arterial inlet to create 10 independent 
realizations of arteriovenous networks ( M-networks ) of lateral 
size 1500 µm (see Section 2.2 ). 
3.3.1. Biophysical quantities 

We apply the adaptation algorithm with the parameter set 
listed in Table 2 to the 10 samples. Hence we constructed 10 
A-networks which we compare regarding their regional blood 
volume rBV ( Fig. 6 (a)) and their surface to volume ratio s2v 
( Fig. 6 (b)) to the M-networks (numerical values listed in Table 3 ). 

For the A-networks , the overall rBV is more than 4 times 
higher than for the M-networks (left column of Fig. 6 (a)). In each 
case, the contribution of the veins to the rBV is the highest (66% 
for Tumorcode and 72% for Adaptation). For the M-networks , the 
overall s2v ratio is about 1.5 times higher than for the A-networks 
(left column of Fig. 6 (b)). The s2v is highest at the capillary bed 
followed by the arteries and the veins. 

The observed behavior follows from the hierarchical structure 
of the vascular network. Considering a fixed volume and vessels 
with fixed segment length (as in our case), the s2v scales propor- 
tional to the inverse of the radius and the rBV scales proportional 
to the vessel radius squared ( Section 2.4 ). Since capillaries are 
smaller than arteries and veins in a hierarchical structure, the 
s2v increases and the rBV decreases when going from the upper 
(artery, vein) to the lower level (capillary), as observed. 

Essentially, the M-networks feature systematically smaller 
vessel radii increasing the s2v ratio at the cost of higher flow 
resistance. 

3.3.2. Adaptation signals 
Similar to Fig. 3 , we plot: a) The hydrodynamic characteristics 

(top and next to top row in Fig. 7 ), b) the hydrodynamic signal 
(last before bottom row in Fig. 7 ), and c) the conducted and 
metabolic signals (bottom row in Fig. 7 ) for one representative of 
the A-networks in Fig. 7 . For the other nine networks, the plots 
look qualitatively similar. 

Before adaptation, there is no correlation between the wall 
shear stress and the pressure, and since the signal S 1 (positive 
values of last before bottom row) depends only on the logarithm 
of the shear stress, there is also no functional dependence of S 1 
on the pressure. After the adaptation however, the dependence of 
the shear stress and the signal S 1 on the pressure becomes more 
pronounced (right column of Fig. 7 ): Veins approach a plateau 
with increasing pressure and the arteries with decreasing pressure. 
For the shear stress, the plateau is between 50–100 dyn/cm 2 and 
for the signal S 1 around 2. The diameter depends on the pressure 
as expected for our networks: starting with the vessels of the 
smallest diameter (the capillaries), the diameter increases as we 
raise the pressure along the arterial branch and decrease the 
pressure along the venous branch (second row of Fig. 7 ). The 
negative values in the last before bottom row of Fig. 7 present the 
signal S 2 ( Eq. 4 ). Here we notice that the values for S 2 are more 
restricted for veins (between − 1.2 and − 1.7) than for arteries 
(between − 1.1 and − 2.0). The metabolic and conducted signal 
(bottom row of Fig. 7 ) shift their maximum / minimum from 0.01 
nl/min to increased flows at about 1 nl/min. 
3.3.3. Visual inspection 

Although the distribution of radii changes from the M- 
networks (bottom left of Fig. 8 ) to A-networks (bottom right 
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Fig. 7. The characteristics for a single arteriovenous network. Left column: Without adaptation. Right column: convergent adaptation with parameters listed in Table 2 . A 
graphical representation of this particular network is shown in Fig. 8 . From top to bottom we compare the shear stress, the vessel diameter, the hydrodynamic signals (S 1 
and S 2 of Section 2.1 ) and the metabolic and conducted signal (S 3 and S 4 of Section 2.1 ). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 8. Color coded vessel properties for one representative of the ensemble of synthetic arteriovenous networks. Left column: radii distribution from Tumorcode (Murray’s 
law). Right column: Radii distribution after adaptation. From top to bottom: Pressure in mmHg, volume flow (logarithmic scale) in µm 3 /s, radius in µm. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
column of Fig. 8 ), the distribution of the blood pressure does 
not change because of the fixed boundary conditions (colors of 
top row in Fig. 8 ). The shear force is proportional to the flow 
and therefore the distribution of the shear force looks similar to 
the distribution of flow as show in the center row of Fig. 8 . In 
the bottom row of Fig. 8 , we colored the vessel by their radii to 
highlight changes of the vessel radii by the adaptation algorithm. 

Finally, Fig. 9 shows data that is only available in the adaptation 
case (metabolic signal and conducted signal). In agreement with 
model assumptions, the metabolic signal is highest at the thin 
capillaries and the conducted signal is highest at the most distal 
points. 
3.4. Murray’s law 

The networks created by Tumorcode fulfill Murray’s law by 
construction ( Section 2.2 ). Here we check for a single network 
(shown in Fig. 8 ) whether it still fulfills Murray’s law after the 
application of the adaptation algorithm. 

In Fig. 10 we plot for each bifurcation the cubic root of the sum 
of daughter vessel radii cube against the radius of the mother ves- 
sel. If the mother and daughter vessel radii would fulfill Murray’s 

law, the data points would lie on the straight line, which they do 
remarkably closely. Applying Murray’s law locally at each bifurca- 
tion in large networks results in a complicated dependence of the 
vessel radius on the global vessel arrangement. Nevertheless the 
distribution of the differences between the radii of two daughter 
vessels in M-networks displays characteristic features like discrete 
peaks at specific difference values, as shown in Fig. 11 . This can be 
understood as follows: since the network construction algorithm 
of Tumorcode uses a fixed capillary radius and a discrete vessel 
length (on a lattice), repeated application of Murray’s law leads 
more often to the same proportions at an intersection. To illustrate 
this, we use a hypothetical capillary bed as shown in Fig. 12 . For 
the bifurcations b 1 , b 2 and b 3 ( Fig. 12 ), we calculate the quantity 
used in the histogram shown in Fig. 11 : The differences of the 
daughter vessel radii normalized by the mother vessel radius. 

b 1 b 2 b 3 
2 . 5 µm − 2 . 5 µm 

3 . 15 µm = 0 . 0 3 . 15 µm − 2 . 5 µm 
3 . 61 µm = 0 . 18 3 . 61 µm − 2 . 5 µm 

3 . 97 µm = 0 . 28 
The three highest peaks of the histogram are located around the 

calculated values (0.0, 0.18 and 0.28). 
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Fig. 9. Adaptation signals ( Section 2.1 ) for one representative of the ensemble of synthetic arteriovenous networks. Left column: Metabolic signal (S 3 ) Right column: con- 
ducted signal (S 4 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. The black diagonal represents Murray’s law for α = 3 . The data points are 
taken from the A-network shown in Fig. 8 in the right column. Blue dots are venous 
intersections (431) and red dots are arterial intersections (475). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

On the other hand, the distribution of the differences between 
the radii of daughter vessels in A-networks is much smoother and 
lacks discrete peaks. The adaptation algorithm adjusts each vessel 
radius and removes the initial vessel radii discretization, resulting 

in a radii distribution in A-networks that differs significantly from 
M-networks . The more remarkable is the observation that the 
radii still obey Murray’s law very closely. 
4. Discussion 

We compared arteriovenous networks constructed by the Tu- 
morcode ( M-networks , radii obey Murray’s law by construction) 
with networks having the same topology, but with vessel radii 
obtained by the adaptation algorithm ( A-networks ). 

The most interesting result is that structural adaptation leads 
to a network that differs significantly from one generated by strict 
application of Murray’s law, yet the adapted network satisfies 
Murray’s law quite closely. Small but systematic deviations from 
Murray’s law at each bifurcation level (compare Fig. 10 ) accumu- 
late over subsequent levels and result in generally larger vessel 
radii in A-networks compared to M-networks and consequently 
in global differences in regional blood flow (rBV) and surface to 
volume ratio (s2v). A quantitative analysis of rBV ( Fig. 5 (a), 6 (a) 
and Table 3 ) and s2v ( Fig. 5 (b), 6 (b) and Table 3 ) confirms that 
the A-networks carry more blood while the M-networks show a 
higher surface to volume ratio — especially at the capillary level 
— at the expense of an elevated flow resistance. 

Moreover, the adaptation algorithm smoothens the distribution 
of the differences of the radii of the two daughter vessels at each 

(a) Tumorcode (b) Adaptation

Fig. 11. Normalized distribution of differences between two daughter vessels at a Y- shaped intersection. The used topology is the same for both cases and shown in Fig. 8 . 
Left column: before adaptation (vessel radii fulfilling Murray’s law by construction in Tumorcode). Right column: same topology as left column but vessel radii adapted with 
parameter set listed in Table 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Schematic view on capillary bed as constructed by the Tumorcode Soft- 
ware. The vessels indicated in coral are capillaries with radius r cap = 2.5 µm. At bifur- 
cation b 1 , b 2 and b 3 the upstream vessel radii r 1 , r 2 and r 3 are calculate by Murray’s 
law with exponent 3. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
bifurcation. This observation demonstrates that for a given net- 
work topology more than one radii distribution can fulfill Murray’s 
law, at least very closely. The reproduction of Murray’s law by 
structural adaptation is particularly remarkable since the algorithm 
produces radii variation due to signals involving chemical energy 
(metabolic signal), the tension of endothelial layer (shrinking 
tendency) and non-local contributions (conducted signal). It is 
interesting to find a relation close to Murray’s law although drag 
and flow are not directly used in the adaptation model. Instead, 
our choice of the objective function in the optimization procedure 
( Section 2.3 ) is based on a requirement for optimal homogeniza- 
tion of the capillary flow. Among several other objective functions, 
we found that minimizing the overall variance of the capillary 
flow achieves convergence of the adaptation algorithm for our 
synthetic arteriovenous networks. 

It would be interesting to study structural adaptation in the 
case of pathological networks such as blood vessel networks 
modified by a growing tumor ( Carmeliet and Jain, 20 0 0 ), involving 
angiogenesis, vessel regression and collapse. We tried to include 
the adaptation algorithm into our model of tumor vascularization 
( Welter and Rieger, 2010; Rieger et al., 2016; Welter et al., 2016 ), 
implemented in Tumorcode ( Fredrich et al., 2018 ). Using a con- 
vergent set of adaptation parameters for a given arteriovenous 
network (as analyzed in this manuscript), the convergence was 
not achieved when the network topology is subsequently altered 
during tumor growth. The potential reasons for the failure of 
convergence are analyzed in a supplemental text. A successful 
application of the adaptation algorithm in the presence of vascular 
remodeling was reported in Secomb et al. (2013) : Angiogenesis 
combined with vascular pruning based on low oxygen saturation 
resulted in stable radii distributions. The application of structural 
adaptation amended by angiogenesis and pruning to vascular 
remodeling in growing tumors is topic of future research. So far, 
there seems to be no consensus in the field how to include struc- 
tural adaptation into vascular tumor growth. The discussion of the 
stability of networks with low generation shunts in the appendix 
of Pries et al. (1998) proves that the adaptation algorithm cannot 
be stable without the conducted signal. However, some mathe- 
matical models of vascularized tumor growth include vessel radius 
adaptation ( McDougall et al., 2006 ), but no conducted signal, 
although it is an integral component of the structural adaptation 
theory, at least in the non-cancerous setting. 

The signals introduced by the adaptation algorithm are based 
on biological relevant processes which provide an input for 

mathematical modeling. Currently the signals are modeled with 
parameters (compare Table 1 ), but in the future the variations in 
endothelial cell membrane potential along a vessel or its metabolic 
uptake might become experimentally measurable fixing the free 
parameters of the adaptation model used here. 
5. Data availability 

We support open science by sharing our software and the 
created raw data at www.zenodo.org . 
5.1. Software 

A developer version of the Tumorcode software tool 
( Fredrich et al., 2018 ) is hosted at www.github.com/thierry30 0 0/ 
tumorcode . For the presented manuscript, we worked with the 
Pre-release v1.1.0-alpha.1 (Adaptation) version of the code which 
we also archived ( Fredrich and DaWelter, 2019 ). 
5.2. Data 

We store the results of executed simulations, the used settings 
and parameters, the network topologies and the images in a single 
compressed archive ( Fredrich, 2019 ). 
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