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Abstract – We investigate the propagation of a local perturbation in the two-dimensional
transverse-field Ising model with a time-dependent application of the mean-field theory based
on the BBGKY hierarchy. We show that the perturbation propagates through the system with a
finite velocity and that there is a transition from Manhattan to Euclidian metric, resulting in a
light cone with an almost circular shape at sufficiently large distances. The propagation velocity
of the perturbation defining the front of the light cone is discussed with respect to the parame-
ters of the Hamiltonian and compared to exact results for the transverse-field Ising model in one
dimension.
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Introduction. – The relaxation process of isolated
many-body quantum systems has gained tremendous in-
terest in recent years (see, for example, refs. [1–3] for an
overview). Here one especially tries to answer the fol-
lowing two questions: I) How does a perturbation propa-
gate through a system driven out of equilibrium? II) Does
the system evolve towards a stationary state and, if yes,
what is its nature? With respect to the first question
one is interested in the propagation velocity of a local
perturbation. Lieb and Robinson have shown that for
non-relativistic many-body quantum systems described by
translation-invariant Hamiltonians with only finite-range
interaction terms there is an upper bound of the velocity,
the so-called Lieb-Robinson bound (LRB), which depends
only on the parameters of the Hamiltonian and is indepen-
dent of the wave function of the system [4]. Thus, even for
highly entangled states with long-range interactions a lo-
cal perturbation needs a finite time to reach distant points
of the system and the existence of a light cone emerges.
While in one-dimensional systems the light cone is fully
determined by the propagation velocity of the perturba-
tion, in higher-dimensional systems its geometry has to
be studied as well, i.e., one has to answer the question to
which metric the propagation of the perturbation through
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the system obeys. While for continuum models one would
expect the Euclidian metric

dEucl(r) =

√√√√ D∑
i=1

r2i , (1)

for systems on orthogonal lattices with interactions only
between nearest neighbours one may think of the Manhat-
tan metric

dManh(r) =
D∑

i=1

|ri|. (2)

For short distances the application of the Manhattan met-
ric seems reasonable for lattice systems, but for larger
distances the system should more and more resemble a
continuum, thus there should be a transition from the
propagation of the perturbation through the system ac-
cording to the Manhattan metric to a propagation ac-
cording to the Euclidian metric also for lattice systems
with only nearest-neighbour interactions. One can only
expect to observe this transition in higher-dimensional
systems, as for one-dimensional systems there is no dif-
ference between the Euclidian and the Manhattan metric
and the question concerning the propagation of a pertur-
bation through the system reduces to the determination
of its velocity.

Former studies on the propagation of a perturba-
tion through a quantum system mainly focused on
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one-dimensional systems. These systems include the one-
dimensional Bose-Hubbard model (BHM) [5], the one-
dimensional Bose gas [6], the spin-(1/2) Heisenberg XXZ
chain [7] and the transverse-field Ising model (TFIM) with
long-range interactions [8,9] as well as the BHM with long-
range interactions [9]. In experiments on trapped ions a
finite propagation velocity of a perturbation could also
be observed [10,11]. Considering higher-dimensional sys-
tems Cevolani et al. in [12] generalized their results for
the TFIM and the BHM with long-range interactions in
one dimension from [9] to arbitrary lattice dimensions D.
Their results for the TFIM rely on a spin wave analy-
sis within quadratic approximation, which can be applied
deep in the paramagnetic phase. Navez et al. have stud-
ied the entanglement dynamics of two distant qubits by
analyzing correlations in the 2D-TFIM using the large co-
ordination number expansion [13]. In [14] Carleo et al.
have investigated the spreading of density-density corre-
lations in the BHM on a 1D chain and on a 2D square
lattice with only nearest-neighbour interactions. For the
model in two dimensions the geometry of the light cone
was studied. Carleo et al. have found that the perturba-
tion propagates according to the Manhattan metric, but
the studies only considered short distances on the lattice,
thus the question of the geometry of the light cone at large
distances remains still open for lattice systems with only
nearest-neighbour interactions.

In this paper we answer this question, considering the
2D-TFIM with only nearest-neighbour interactions on the
square lattice, a well-known many-body standard model of
quantum mechanics, for which we study the propagation of
a local perturbation. In contrast to the 1D-TFIM, which
is integrable and can be solved analytically by a transfor-
mation to a system of free fermions [15], the 2D-TFIM on
the square lattice is non-integrable and cannot be solved
exactly. There is no transformation to a system of free
fermions diagonalizing its Hamiltonian and its relaxation
process cannot be described with a semiclassical theory
with non-interacting quasiparticles either [16,17]. For this
reason we use a time-dependent application of mean-field
theory based on the BBGKY (Bogoliubov-Born-Green-
Kirkwood-Yvon) hierarchy, which gives an accurate de-
scription of the propagation of the perturbation through
the lattice and can be applied to the system deep in the
ferromagnetic phase. From our numerical data we derive
a functional relationship between the propagation velocity
of the perturbation and the parameters of the Hamiltonian
and study the shape of the light cone, i.e., answer the ques-
tion as to whether the Euclidian or the Manhattan metric
has to be applied to the 2D-TFIM.

The model. – We study the 2D-TFIM with nearest-
neighbour interactions on a square lattice of size L × L
with periodic boundary conditions (PBC), defined by the
Hamiltonian

Ĥ = −J

2

∑
〈R,R′〉

σ̂x
Rσ̂

x
R′ − h

2

∑
R

σ̂z
R. (3)

J is the coupling constant between nearest neighbours and
h the transverse field. In the following we set J = 1 and
just vary the transverse field h. To describe the state of
the system we use the x-basis, in which σ̂x

R measures the
orientation of the spin at site R and σ̂z

R inverts it.

Time evolution. – We prepare the system in a generic
non-eigenstate of its Hamiltonian and compute the time
evolution of the single-particle Bloch vector

SR(t) = 〈σ̂R〉t (4)

of each spin of the system with a time-dependent applica-
tion of the mean-field theory based on the BBGKY hier-
archy [18]. The method is very flexible with respect to the
initial state of the system and allows us to study large sys-
tem sizes with more than 104 spins (system size 101×101).
Its accuracy can be controlled by the order of the BBGKY
hierarchy.

The equations of motion of the Bloch vector of the spin
at site R are derived from the Ehrenfest theorem:

Ṡx
R = hSy

R, (5a)

Ṡy
R = J

2∑
k=1

[〈σ̂z
Rσ̂

x
R+ek

〉t + 〈σ̂z
Rσ̂

x
R−ek

〉t

] − hSx
R, (5b)

Ṡz
R = −J

2∑
k=1

[〈σ̂y
Rσ̂

x
R+ek

〉t + 〈σ̂y
Rσ̂

x
R−ek

〉t

]
(5c)

with e1 = (1, 0) and e2 = (0, 1). This system of dif-
ferential equations is not closed, as the two-spin correla-
tors are unknown and cannot be computed in a simple
way. To obtain a closed system of differential equations,
in first-order BBGKY hierarchy the general mean-field
approximation

〈σ̂y/z
R σ̂x

R±ek
〉t ≈ 〈σ̂y/z

R 〉t〈σ̂x
R±ek

〉t = S
y/z
R Sx

R±ek
(6)

is used, leading to the equations of motion of the Bloch
vector in first-order BBGKY hierarchy:

Ṡx
R = hSy

R, (7a)

Ṡy
R = J

2∑
k=1

[
Sz

R Sx
R+ek

+ Sz
R Sx

R−ek

] − hSx
R, (7b)

Ṡz
R = −J

2∑
k=1

[
Sy

R Sx
R+ek

+ Sy
R S

x
R−ek

]
. (7c)

The equations of motion in second-order BBGKY hierar-
chy can be derived reinserting the two-spin correlators in
eqs. (5b) and (5c) into the Ehrenfest theorem. The expec-
tation values of three Pauli spin operators in the resulting
system of nine differential equations are subsequently bro-
ken up according to

〈ÂB̂Ĉ〉t ≈ 〈ÂB̂〉t〈Ĉ〉t + 〈ÂĈ〉t〈B̂〉t + 〈B̂Ĉ〉t〈Â〉t

− 2〈Â〉t〈B̂〉t〈Ĉ〉t. (8)
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Sx
R(t) = 1 −

(
h

4J

)2

·
[
1 − cos(4Jt)

]
+

(
h

4J

)4

·
[
16
9

cos(6Jt) − 7
3

cos(4Jt) +
16
3

cos(2Jt) + 6Jt sin(4Jt) − 43
9

]

−
(
h

4J

)6

·
[
13
32

cos(8Jt) +
34
3

cos(6Jt) +
137
18

cos(4Jt) +
26
9

cos(2Jt) +
5
4
Jt sin(8Jt)

+
113
3
Jt sin(4Jt) + 48Jt sin(2Jt) + 24J2t2 cos(4Jt) + 3J2t2 − 2135

96

]

+
(
h

4J

)8

·
[

13
960

cos(12Jt) − 12287
8100

cos(10Jt) +
481817
19200

cos(8Jt) +
401333
5400

cos(6Jt) − 7469867
129600

cos(4Jt)

+
6062303
16200

cos(2Jt) − 196
135

Jt sin(10Jt) +
6817
480

Jt sin(8Jt) +
4936
45

Jt sin(6Jt) +
269717
4320

Jt sin(4Jt)

+
30251

45
Jt sin(2Jt) +

281
48

J2t2 cos(8Jt) − 224
9
J2t2 cos(6Jt) +

13213
72

J2t2 cos(4Jt) − 388
3
J2t2 cos(2Jt)

− 4801
144

J2t2 +
65
18
J3t3 sin(8Jt) − 3J3t3 sin(4Jt) +

1993
432

J3t3 sin(2Jt) +
36
3
J4t4 cos(4Jt) +

4
3
J4t4

− 71623969
172800

]
+ O(h10) (9)

The expansion to even higher-orders follows [18,19],

see eq. (9) above

In order to check the accuracy of the approximation
we compare the predictions in first- and second-order
BBGKY hierarchy to the corresponding results of real-
time Variational Monte Carlo (rt-VMC) as described
in [20] and of time-dependent perturbation theory. For
this comparison we consider a spatially homogeneous ini-
tial state

|ψor〉 = | ↑↑↑ . . . ↑↑〉x (10)

and compute Sx
R(t) with the help of rt-VMC and in the

8th-order perturbation theory given by eq. (9). Note that
Sx

R(t) is independent of R as the Hamiltonian as well as
the initial state are translation-invariant. Figure 1 shows
the comparison of the time evolution of the mean-field pre-
diction to the rt-VMC results and the results of the pertur-
bation theory for h up to 0.6. For these quench protocols
the system does not leave the ferromagnetic phase as was
shown in [20] and the values of the transverse field are well
below the critical value hcrit ≈ 3.044 J for the system in
equilibrium at T = 0 [21–23]. There is a good agreement
between the results of the different methods already in
first-order BBGKY hierarchy, which becomes even better
in second order. This agreement is conserved for times
much larger than the time interval shown in fig. 1.

Higher orders of BBGKY hierarchy are mandatory to
address questions like the nature of the stationary state
of the system and the occurrence of thermalization in the
non-integrable 2D-TFIM. We have performed the compu-
tations up to second-order BBGKY hierarchy and have
found that to answer the question of thermalization even
higher orders would be necessary. We assume that our
method will give an adequate description of the stationary
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Fig. 1: (Colour online) Comparison between the results for
the x-component of the single-particle Bloch vector Sx

R(t) of
the time-dependent mean-field theory (a) in first- and (b) in
second-order BBGKY hierarchy (continuous lines) to results
of rt-VMC (+) and time-dependent perturbation theory of the
8th order (×). The colour code is as follows: − h = 0.1,
− h = 0.2, − h = 0.3, − h = 0.4, − h = 0.5, − h = 0.6.

state of the system if sufficiently high orders are applied,
but compared to other techniques the algorithm becomes
inefficient and the computations to set up the system of
differential equations are very challenging and currently
out of reach. For this reason we have set up a real-time
Variational Monte Carlo (rt-VMC) method to study the
stationary state and the occurrence of thermalization in
the 2D-TFIM, which is restricted with respect to the sys-
tem size and the initial state of the system but able to de-
scribe the stationary state with high accuracy [20]. For the
description of the propagation of the perturbation through
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Fig. 2: (Colour online) Δx
r(t) for different times t in the system of size 101 × 101 with J = 1 and h = 0.6. At t = 0 the spin

at the site (0, 0) is orientated down, while all the other spins of the system are orientated up. For later times the perturbation
propagates through the system with a finite velocity according to the Euclidian metric at large distances, defining a light cone
with a circular shape.

the system, on the other hand, the first-order BBGKY
hierarchy is sufficient with only slight improvements by
the second order.

Results. – We apply a local perturbation in the system
by preparing it in an initial state with one single spin down

|ψlp〉 = | ↓↑↑ . . . ↑↑〉x. (11)

Due to the PBC we may set the initial perturbation at
the site (0, 0). In order to decide when the perturbation
has covered the distance r = (rx, ry), we consider the
difference

Δr(t) = 〈ψlp|σ̂r(t)|ψlp〉 − 〈ψor|σ̂r(t)|ψor〉 (12)

to the time evolution starting from the completely ordered
state in eq. (10). As the perturbation propagates through
the system with a finite velocity, Δr(t) vanishes for
times when the perturbation has not covered the distance
r yet.

We define the time tarrival(r) when the perturbation has
covered the distance r as the time for which Δr(t) be-
comes non-zero for the first time. Figure 2 shows snap-
shots of the x-component Δx

r(t) at different times t for a
101×101 system with h = 0.6. The initial local perturba-
tion propagates through the system with a finite velocity,
defining a light cone. The region which has already been
passed by the front of the perturbation shows complex
amplitude patterns due to interference effects. The light
cone geometry of the time-dependent propagation of the
initial local perturbation is visualized in fig. 3(a), where

we show tarrival(r) for different positions of the system.
While for short distances the quadratic shape rotated by
π/4 indicates that the Manhattan metric holds as reported
for the Bose-Hubbard model in [14], for larger distances
the shape of the light cone converges to a circular shape
like in the Euclidian metric. This means that for large
distances the coarseness of the lattice becomes less im-
portant and the system behaves like a continuum model
as one would expect. In addition to this fig. 3(b) shows
tarrival(r) as a function of d(r) along the axis and along the
diagonal. The distance is measured both in the Euclidian
and in the Manhattan metric. While for the propagation
along the axis there is no difference between the two met-
rics, the degree of the agreement between the slopes of
tarrival(r), which corresponds to the inverse velocity of the
perturbation, for the propagation along the diagonal and
for the propagation along the axis indicates which metric
has to be applied. As can be seen in the main panel of
fig. 3(b) for large distances the Euclidian metric is bet-
ter suited to describe the propagation of the perturbation
through the system. The observed deviations are due to
the finite system size and the way tarrival is determined.
At short distances, on the other hand, the inset shows a
very good agreement for the Manhattan metric.

Considering a system with non-uniform couplings be-
tween its sites one can alter the shape of the light cone. If
one for example considers a system with coupling strength
Jx between nearest neighbours in the x-direction and Jy

between nearest neighbours in the y-direction, one would
expect a faster propagation of the perturbation in the
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Fig. 3: (Colour online) (a) Time of arrival of the perturbation
for h = 0.6 in time-dependent mean-field theory of first-order
BBGKY hierarchy for a subset of the 101 × 101 system. For
short distances the propagation of the signal follows the Man-
hattan metric, while for larger distances the coarseness of the
lattice becomes less important and the propagation of the sig-
nal is close to the Euclidian metric with an almost circular
wavefront like in a continuum model. (b) Time of arrival plot-
ted as function of the distance along the axis and along the
diagonal. For the diagonal the distance is measured in the Eu-
clidian and in the Manhattan metric, while for the axis there
is no difference between the two metrics. For large distances
(main panel) the Euclidian metric gives a much better descrip-
tion of the propagation of the perturbation along the diagonal
compared to the propagation along the axis, while for short dis-
tances the agreement to the Manhattan metric is better than
that to the Euclidian metric (inset).

direction of the stronger coupling resulting in an elliptic
light cone.

The results for tarrival allow us to determine the propa-
gation velocity of the perturbation via

v(h) =
d(r)

tarrival(h, r)
. (13)

Considering the propagation along the axis we can cir-
cumvent the question whether the distance d(r) has to be
measured in the Euclidian or the Manhattan metric, as for
r = (r, 0) we have dEucl(r) = dManh(r) = r. We use the
corresponding results for tarrival to define the propagation

(a)

0

100

200

300

400

500

600

700

0 10 20 30 40 50

t a
rr

iv
al

(h
,(

r,
0)

)

r

+ h = 0.1

+ h = 0.2

+ h = 0.3

+ h = 0.4

+ h = 0.5

+ h = 0.6

(b)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5 0.6

v
(h

)
h

+ First order BBGKY hierarchy

× Second order BBGKY hierarchy

Fig. 4: (Colour online) (a) Time of arrival of the perturba-
tion along the axis for different values of the transverse field
h in time-dependent mean-field theory of first-order BBGKY
hierarchy in the 2D-TFIM. (b) Velocity of the perturbation
along the axis in the 2D-TFIM in time-dependent mean-field
theory of first- (+) and second-order BBGKY hierarchy (×).
The propagation velocity increases with v2D(h) ∝ h2 (dashed
lines).

velocity v of the perturbation as a function of the trans-
verse field h. Figure 4(a) contains results for tarrival along
the axis as a function of the distance r for values of the
transverse field up to h = 0.6 in first-order BBGKY hi-
erarchy. tarrival grows linearly with r, i.e., the perturba-
tion propagates uniformly through the lattice. Its velocity
is given by the inverse slope of the best fit straight line.
In second-order BBGKY hierarchy we find similar curves.
In fig. 4(b) we show v as a function of the transverse
field h in first- and in second-order BBGKY hierarchy.
For the considered values of the transverse field there are
only small differences between the results. In both cases
v grows quadratically with h, i.e.,

v2D(h) ∝ h2. (14)

The quadratic dependence of the propagation velocity v
of the perturbation on the transverse field h in the 2D-
TFIM is in striking contrast to the field dependence of the
propagation velocity in the 1D-TFIM, which is piecewise
linear [16,17]:

v1D(h) =

{
h, for h ≤ J,

J, for h > J,
(15)

i.e., in the ferromagnetic phase the propagation velocity
of the perturbation grows linearly with the transverse field
h and in the paramagnetic phase it has a constant value
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given by the coupling constant J . Thus, for the values of
h for which we can determine the propagation of the per-
turbation in the 2D-TFIM with the time-dependent mean-
field theory the propagation velocity for a given value of
h is much lower than in the 1D-TFIM. This difference be-
tween the velocities of the perturbation can be explained
in terms of quantum spin wave theory. In [24] it has been
shown that for the TFIM with weak transverse fields, i.e.,
the system deep in the ferromagnetic phase, for dimen-
sions D ≥ 2 the spin wave energy grows quadratically
with h, while for D = 1 there is a linear growth. As
the velocity of the propagation of a perturbation is given
by the gradient of the spin wave energy with respect to
the wave number k, the velocity of the perturbation also
grows quadratically with h for D ≥ 2 and only linearly
with h for D = 1. The differences can also be understood
in the following way. As we considered the system deep in
the ferromagnetic phase, the coupling between the spins
is the dominant contribution to its energy. While in 1D
the number of broken bonds in the system, the so-called
kinks, is not changed when the spin neighbouring to the
initial spin down is flipped, in the 2D-TFIM and in higher
dimensions the described spin flip leads to the creation of
new kinks, which is energetically unfavourable deep in the
ferromagnetic phase. In the paramagnetic phase we expect
this effect to be less important and thus the difference be-
tween the velocity of the propagation of the perturbation
between the 1D- and the 2D-TFIM should reduce.

Conclusion and outlook. – Using time-dependent
mean-field theory of first- and second-order BBGKY hi-
erarchy we have shown that a local perturbation in the
2D-TFIM propagates with a finite velocity through the
system and obeys the Euclidian metric for large distances
from its initial position, resulting in a light cone with a
circular shape. This result could have been expected as
for large system sizes and large distances the effect of
the coarseness of the lattice should vanish and the sys-
tem should behave like a continuum. On short distances,
on the other hand, we have found that the Manhattan
metric holds as one would expect from the lattice struc-
ture of the Hamiltonian. For the values of the transverse
field which we can simulate, the system does not leave
the ferromagnetic phase. The propagation velocity of the
perturbation increases with h2 and is much lower than in
the 1D-TFIM, for which the propagation velocity increases
linearly with h in the ferromagnetic phase. This can be un-
derstood taking into account results of the quantum spin
wave theory and that in the 2D-TFIM the propagation of

the perturbation creates additional kinks which are ener-
getically unfavourable in the ferromagnetic phase. Future
studies should aim at increasing the values of the trans-
verse field for which the time evolution of the system can
be simulated, thus allowing to study the propagation of
the perturbation also in the paramagnetic phase.
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Schützhold R., EPJ Quantum Technology, 1 (2014) 12.

[6] Geiger R., Langen T., Mazets I. E. and Schmied-

mayer J., New J. Phys., 16 (2014) 053034.
[7] Bonnes L., Essler F. H. L. and Läuchli A. M., Phys.
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[18] Vardi A. and Anglin J. R., Phys. Rev. Lett., 86 (2001)

568.
[19] Pucci L., Roy A. and Kastner M., Phys. Rev. B, 93

(2016) 174302.
[20] Blaß B. and Rieger H., Sci. Rep., 6 (2016) 38185.
[21] Pfeuty P. and Elliott R. J., J. Phys. C: Solid State

Phys., 4 (1971) 2370.
[22] du Croo de Jongh M. S. L. and van Leeuwen

J. M. J., Phys. Rev. B, 57 (1998) 8494.
[23] Rieger H. and Kawashima N., Eur. Phys. J. B, 9 (1999)

233.
[24] Filatova L. D. and Tsukernik V. M., Phys. Status

Solidi (b), 70 (1975) 47.

60002-p6


