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Stochastic search processes are ubiquitous in nature and are expected to become more efficient when
equipped with a memory, where the searcher has been before. A natural realization of a search process with
long-lasting memory is a migrating cell that is repelled from the diffusive chemotactic signal that it secretes
on its way, denoted as an autochemotactic searcher. To analyze the efficiency of this class of non-
Markovian search processes, we present a general formalism that allows one to compute the mean first-
passage time (MFPT) for a given set of conditional transition probabilities for non-Markovian random
walks on a lattice. We show that the optimal choice of the n-step transition probabilities decreases the
MFPT systematically and substantially with an increasing number of steps. It turns out that the optimal
search strategies can be reduced to simple cycles defined by a small parameter set and that mirror-
asymmetric walks are more efficient. For the autochemotactic searcher, we show that an optimal coupling
between the searcher and the chemical reduces the MFPT to 1=3 of the one for a Markovian random walk.
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The term search processes encompasses all phenomena
in which an agent scans a domain, looking for a target to
reach. Search for prey and/or wild food resources by
animals, known as foraging [1–3], is one of the major
examples of such processes. They can take various forms
(blind or guided, individual or collective, random or
deterministic, etc.), but they all aim at being efficient, that
is, at minimizing the overall cost of the searching process.
Several definitions for such a cost exist, depending on the
context, but it often simply reduces to the total duration of
the search. In terms of statistical physics, the efficiency is
usually quantified using first-passage time distributions:
Given all possible trajectories of the process considered,
what is the probability that the agents will find the target in
a certain amount of time? Optimizing the search efficiency,
therefore, translates into minimizing of the first-passage
time. The main statistical estimate is the mean first-passage
time (MFPT), although there are situations in which the
whole FPT distribution is relevant [4,5].
Many biological organisms, from bacteria to mammals,

have evolved in such a way that their searching strategies
are optimized in a certain way [6]. Modeling these
phenomena in quantitative terms is a challenge that has
motivated many studies. Recently, various ways to trans-
form simple blind random walks into efficient search
processes have been suggested. Among other works,
Bénichou and co-workers have, e.g., shown that alternating
periods of diffusive and ballistic motion can dramatically
reduce first-passage times [7,8], and this strategy has
actually been observed in various animal species. The
effect of resetting on mean first-passage times and its
efficiency as a search strategy have also been recently
investigated [9,10]. Other aspects such as the impact of

confinement [11,12] or the topology of the scanned domain
[13] have also been studied in different contexts.
Memory of a stochastic process is also expected to affect

the MFPT [14–18]. A natural realization of a search process
with a long-lasting memory is a migrating cell that is
repelled from the diffusive chemotactic signal that it
secretes on its way, denoted as an autochemotactic searcher.
Chemotaxis, a process in which a migrating cell changes its
motion direction due to a chemical gradient of a chemical
cue in its immediate surrounding, has been extensively
studied, by biologists as well as chemists and physicists
[19–30], and is, for instance, used by immune cells to guide
themselves toward areas of infection or to tumors [31].
Experimental as well as theoretical studies of autochemo-
taxis are currently intensively studied in biophysics, as it
can help to understand the efficiency of a variety of
biological processes [32–38]. Mathematically, these search
processes are non-Markovian, since the searcher uses the
chemical information it has released along its past path in
order to move ahead.
A systematic study of the first-passage properties of

stochastic non-Markovian search processes with n-step
memory has not been performed yet, which is what we
will present here: We will analyze the efficiency of non-
Markovian search processes, in general, and of the autoch-
emotactic, in particular, and present results for the optimal
search strategies. We first introduce a general formalism
that allows one to compute the MFPT for a given set of
conditional transition probabilities for non-Markovian
random walks on a lattice, which is based on the backward
equation for the MFPT and on the conditional probability
for the walker to go in a certain direction given its n past
directions. In the special case n ¼ 1 with additional
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constraints, we recover the results for the persistent random
walk introduced in Ref. [39] by Tejedor and co-workers.
Then we use this formalism to determine for a given n the
optimal conditional transition probabilities that minimize
the MFPT. Finally, we analyze the search efficiency of the
autochemotactic walker and determine the optimal cou-
pling of the searcher to the self-generated chemotactic
concentration field.
In this Letter, we consider a minimal model for a non-

Markovian searcher: a random walk on a discrete lattice of
lateral size L and with transition probabilities depending on
the steps it made before. Formally, this stochastic process
is defined by the hierarchy of conditional transition
probabilities pðekjei0 ;…; ein−1Þ, where ek is the jump
direction in the next step and fei0 ;…; ein−1g the jump
directions of the last n steps. This allows one to write a
backward equation of motion for the average first-passage
time Tnðr; rT ; ei0 ;…; ein−1Þ to reach the target at position rT
for a walker starting at position r with the n past directions
fei0 ;…; ein−1g:

Tnðr; rT ; ei0 ;…; ein−1Þ ¼ 1þ
X
k

pðekjei0 ;…; ein−1Þ

× Tðrþ ek; rT ; ei1 ;…; ein−1 ; ekÞ:
ð1Þ

The sum runs over all z nearest-neighbor sites the searcher
can jump to, with z the coordination number of the lattice.
A sketch of Eq. (1) is shown in Fig. 1. We assumed periodic
boundary conditions, which is equivalent to an infinite
lattice with periodically arranged targets. In addition,
Eq. (1) also holds for reflecting boundary conditions if
one assumes that the target is placed at the center of the
domain and that the probabilities pðekjei0 ;…; ein−1Þ are
mirror symmetric as we discuss in more detail below.
Finally, Eq. (1) is obviously not correct if r ¼ rT , for which
the average passage time is trivially 0. In this case, the
right-hand side yields the average return time on the site rT ,
equal to V ≡ Ld [40]. By applying a discrete Fourier

transformation f̃ðqÞ ¼ P
r∈L fðrÞe−iq·r with qi ¼

2πni=L and ni ∈ ⟦0; L − 1⟧ and properly accounting for
the case r ¼ rT , a closed set of linearly coupled equa-
tions for T̃nðq; rT ; ei0 ;…; ein−1Þ for all possible paths
fei0 ;…; ein−1g is obtained, which can be cast into a matrix
equation.
Let sn be a vector of size zn containing all possible paths

fei0 ;…; ein−1g and t̃n a vector of equal size whose entries
are defined as t̃nαðq; rTÞ ¼ Tnðq; rT ; snαÞ. The solution of
the matrix equation then is

t̃nðq; rTÞ ¼ V½δðqÞ − e−iq·rT �½I − PnEnðqÞ�−1un: ð2Þ

Here, un is a vector of size zn, all entries of which are equal
to 1, EnðqÞ is a square diagonal matrix whose elements are
the complex exponentials eiq·ek , and Pn is a square matrix
containing all conditional probabilities pðekjei0 ;…; ein−1Þ.
Note that this matrix has only znþ1 nonzero elements,
whose positions in the matrix depend on the ordering of the
vector sn [41].
Fourier inversion and averaging over all possible initial

positions yields

htni ¼
X
q≠0

½I − PnEnðqÞ�−1un: ð3Þ

The mean first-passage time is finally computed by sum-
ming all entries of this averaged vector hti, weighted by the
probability of the respective paths. These weights are found
using the identity

pðei0 ;…; ein−1Þ
¼

X
i−1

pðein−1 jei−1 ; ei0 ;…; ein−2Þpðei−1 ;…; ein−2Þ ð4Þ

together with the normalization constraint
P

i0;…;in−1 ×
pðei0 ;…; ein−1Þ ¼ 1. These equations can again be cast
into a matrix form: Mnpn ¼ vn. Here, pn is a vector
containing all entries of pðei0 ;…; ein−1Þ. Mn is equal to
I − PT

n except for the last row, all elements of which are 1.
Finally, vn is a vector containing only zeros except the last
element being 1. The mean first-passage time is, therefore,
obtained as the dot product hTni ¼ pn · htni. This general
formalism allows one to infer the mean first-passage time of
any non-Markovian random walk, provided the n-step
conditional probability pðekjei0 ;…; ein−1Þ is known [42].
One intuitively expects that the number of steps n kept in

memory has a major impact on the search efficiency. As the
case n ¼ 0 consists in a blind random walk, the asymptotic
case n → ∞ corresponds to a walk where the walker
remembers all the sites it has visited and could, thus,
elaborate a strategy to never visit twice the same site. To
quantify this effect, one determines the optimal search
strategy that maximizes the search efficiency for a certain

FIG. 1. Sketch of a lattice walk illustrating the backward
equation (1). The dotted lines indicate all possible sites the
walker can jump to from its current position r, given its past
path ei0 ;…; ein−1 .
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value of n by finding the set of conditional probabilities
pðekjei0 ;…; ein−1Þ that minimizes the MFPT. For a lattice
with coordination number z, using the normalization
constraint and assuming isotropic walks, this consists in
finding the global minimum of a function of zn−1ðz − 1Þ
variables. Using a method of coordinate descent with
constraint [44] for the MFPT optimization, we obtain the
following for a square lattice (z ¼ 4). (i) For n ¼ 1, the
optimal search strategy is found to be mirror symmetric.
More specifically, the probabilities pl and pr of turning left
or right are found to be equal, while the probability of going

forward is given pf ¼ qð1Þ0 ¼ 1–2pr;l. The optimal one-
step memory process is, therefore, found to prevent going

backward. Note that qð1Þ0 depends on the system size L and
approaches 1 as L → ∞. (ii) For n ¼ 2, the optimal strategy
is mirror asymmetric and follows the diagram shown in
Fig. 2. Only one step in the cycle is chosen probabilisti-

cally, with probability pð2Þ
0 that also depends on the system

size. The resulting MFPT turns out to be much lower than
the optimal one-step memory process, as it is reduced by a
factor of ∼0.75. If mirror symmetry is imposed, the optimal

search process is governed by two parameters, qð2Þ0 and qð1Þ0 .
However, this constraint makes the MFPT almost equal to
the one-step case. (iii) For n ¼ 3, the optimal strategy is
again mirror asymmetric and governed by only one

probabilistic parameter pð3Þ
0 . The corresponding diagram

is shown in Fig. 2 and the MFPT is again reduced by a
factor of ∼0.86 with respect to n ¼ 2. In all these cases, the
MFPT scales proportionally to L2 as L → ∞, while it

scales as L2 lnL for a diffusive blind random walk [13].
This explains the monotonically decreasing trend of the
curves in Fig. 2. More precisely, it appears that hT1i ≃ L2,
hT2i ≃ 3L2=4, and hT3i ≃ 2L2=3 as L → ∞ for the optimal
strategies, although the values of these prefactors are to this
day not fundamentally understood.
In addition, the dependence of the probabilities pðnÞ

0 and

qðnÞ0 on the system size obeys a power law of the form

pðnÞ
0 ¼L→∞

1 − aL−1 for n > 1. The origin of this scaling and
of the particular value for a can be understood by decom-
posing the optimal search procedures for n > 1 into two

elementary building blocks, i.e., a preferred path SðnÞ
0 and

an alternative one SðnÞ
þ (see the left panel in Fig. 2). As the

best strategy is to avoid visiting twice the same site, it is

preferable to repeat the primary, longer path SðnÞ
0 over the

entire length of the system and then turn to the alternative
one in order to avoid looping on itself. By imposing

kðnÞc lðnÞc ¼ L, where lðnÞc is the end-to-end distance of the

path SðnÞ
0 and kðnÞc is the value of k for which the probability

of repeating k consecutive times the path SðnÞ
0 is 1=2, we

obtain at first order in 1=L the fairly accurate estimation

pðnÞ
0 ≃ 1 − lðnÞc = lnð2ÞL (see the thin full lines in the inset in

Fig. 2, right panel).
As a comparison, the optimal MFPT found with our

method is significantly lower than the result obtained by
Tejedor et al. in Ref. [39], where a 2D search with a one-
step memory is considered, and the probability of going
forward is favored by an amount ϵ to the three other

FIG. 2. Optimal search strategies on a two-dimensional lattice for n ¼ 1, 2, 3 (left panel). In the diagrams, the sum of all arrows
coming out of one box is equal to 1; therefore, only the necessary coefficients are shown, and all others can be deduced from the
normalization constraint. For n ¼ 2, 3, the mirror-asymmetric strategies can be decomposed into successions of two different cycles,
indicated by the loops (the dashed loops correspond to the least probable cycles). The corresponding MFPT normalized by the MFPT for
a blind random walk [45], together with the optimal parameters in the inset, is shown as a function of the system size (right panel). For
comparison, the optimal MFPT found by Tejedor et al. in Ref. [39] is plotted.
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directions. The gray dashed line in Fig. 2, also scaling as
∝ L2, corresponds to the value of ϵ that minimizes the
MFPT in this model.
For n > 3, the minimization procedure becomes com-

putationally expensive, but nothing indicates that mirror-
symmetric search strategies would become more favorable.
In the limit of infinite memory, the optimal strategy can be
simply guessed. For n ≥ L2, the walker can, in fact, simply
scan all sites by going row by row, which is a highly mirror-
asymmetric process for which the MFPTwould be equal to
ðL2 − 1Þ=2. Note that, for d ¼ 3, both the MFPT for a blind
walk and the optimal one with infinite memory scale
proportionally to L3 [13,39]. We, therefore, expect to
observe the same scaling for finite values of n.
These results prove that memory can be useful to

enhance the search efficiency of random walks. Such
effects, although they might not be perfectly optimized,
actually exist in some real systems, such as, e.g., chemo-
tactic walks.
Next, we consider the autochemotactic searcher and

focus on chemorepulsive searcher-cue interactions, since
they avoid repeated visits of already scanned areas and
thereby increase the search efficiency. A simple lattice
model for an autochemorepulsive walk can be constructed
as an adaptation of the true self-avoiding walk with
chemical diffusion [46,47]. A concentration field c is
defined on the lattice and diffuses at each time step
according to a discretized diffusion equation, with diffusion
constant Dc. After the diffusive step, the searcher moves
from site i to site j with probability

pi→j ¼
�
1þ

X
k≠j exp ½−βðck − cjÞ�

�
−1
; ð5Þ

where the sum runs over all neighbors of i, except j. Here, β
quantifies the coupling between the walker and the con-
centration field: For β → 0, the process reduces to a
unbiased blind random walk, while the limit β → ∞
corresponds to the case where the walker always jumps
to the neighboring site with the lowest concentration.
Finally, once the walker has jumped to the site j, it adds
an amount δc to the concentration field at this site.
Because the profile of the concentration field at a

certain time depends on the entire path of the walker,
this model is obviously a non-Markovian process. We
determine the conditional probabilities after n steps,
pðekjei0 ;…; ein−1 ; t ¼ nÞ, starting from a zero concentra-
tion field, ci ¼ 0 on all sites i. These probabilities for all
possible n-step paths are then used as inputs for the
formalism introduced in the previous paragraph, and the
MFPT can therefore be estimated. This approach is
obviously more accurate for larger values of n, but the
exponential computational cost forbids one to implement it
for very large values. Still, relatively low values of n can
predict the qualitative behavior of the MFPT.

Figure 3 shows the mean first-passage time of the
autochemorepulsive walk for a two-dimensional lattice
of size L ¼ 100, using the formalism presented in this
Letter, together with simulation results (each point accounts
for 104 trajectories) [48]. From both theory and simula-
tions, it appears clearly that, for a certain value of Dc, there
exists an optimal value for β that minimizes the search time.
At low values of β, the MFPT slowly decreases as the
process goes from a blind random walk to a smarter walk in
which the chemical information from the environment is
used. However, as β gets larger, the MFPT abruptly
increases. This effect can be understood as follows:
After the walker has jumped to a certain site, and because
it has released some cue behind it, the chemical concen-
tration is expected to be lower on the forward site than on
the left and right sites and even more than on the backward
site. For large values of β, as the walker jumps on the
neighboring site with the lowest concentration with prob-
ability p ∼ 1, it will thus tend to go forward, and so over
very long distances, turning its motion into an almost
ballistic behavior. Fully ballistic trajectories are obviously
not efficient for a search process, which we observe here
with the very large values for the MFPT for β → ∞. This
transition from diffusive to ballistic behavior can be
quantified by the persistence length lp, defined as the
mean number of consecutive steps in the same direction,
and which is shown in Fig. 4 (numerical vs analytical
estimates [49]). It confirms that the walker’s persistence
length strongly increases for large values β. To optimize its
search, an autochemotactic particle must find the right
balance between a blind search that makes use of no

FIG. 3. MFPT as a function of β for an autochemorepulsive
walk, with Dc ¼ 0.1 and L ¼ 100, from simulation (full lines
with error bars were computed via jackknife resampling [50]) and
theory for various values of n (dotted lines). Inset: sketch of the
autochemorepulsive searcher. The size of the arrows corresponds
to pi→j and the color code to concentration values of cj.
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chemical information and a strong coupling with the cue
that makes it go in a straight line.
In order to compare the optimal strategy of the autoch-

emotactic search with the optimal n-step search strategies
we discussed in the first part, we compute the conditional
probabilities pðekjei0 ;…; ein−1Þ of the optimal autochemo-
tactic search in the stationary regime as follows: The
number of steps in a particular direction ek following a
particular n-step path fei0 ;…; ein−1g is sampled, and its
average over the four possible values of ek yields the
corresponding transitional probability. Note that these
stationary probabilities will be different from the proba-
bilities computed for our theoretical estimation, where the
n-step path was initialized with a zero concentration
field. Also note that the autochemotactic walk is not
fully described by the n-step conditional probabilities
pðekjei0 ;…; ein−1Þ but by an infinite hierarchy of condi-
tional probabilities, which we truncate after n steps.
For the optimal point fDc ¼ 0.1; L ¼ 100; β ¼ 0.01g,

this analysis performed with n ¼ 2, 3 shows that the
autochemotactic search for the optimal value of β does
not mimic the optimal search strategies in Fig. 2 [51]. A few
major differences can be noticed. First, while the optimal
strategies allow only very few transitional probabilities to
be different from 0 and 1, the best autochemotactic search is
intrinsically more random, as more of those quantities have
intermediate values. Second, the autochemotactic walk is
by definition mirror symmetric. Finally, the optimal strat-
egy for n ¼ 3 allows the walker to turn in the same
direction twice in a row, but this move is never observed
in the best autochemotactic search. As a comparison, we
show in Fig. 3 the value of the MFPT obtained using the
optimal n-step strategies presented in the previous para-
graphs, for n ¼ 2, 3. For Dc ¼ 0.1, the optimal value for β
in the autochemotactic does not beat the optimal asym-
metric strategies, but it does result in a slightly lower MFPT
than the optimal symmetric strategy with a two-step
memory. The autochemotactic walk can, therefore, still
be considered as an efficient search strategy.

The results presented in this Letter clearly indicate that
non-Markovian features of search processes can be tuned in
order to maximize search efficiency. Optimal search strat-
egies are found to be mirror asymmetric and more efficient
with longer memory. However, search processes in nature
are not necessarily as optimal, but the physical parameters
that govern them can still be adjusted to improve effici-
ency. The formal and systematic tool introduced in this
Letter should be useful for other biologically relevant
applications, many of which present non-negligible non-
Markovian effects.
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