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Abstract. The phase transition of the three-dimensional random field Ising model with a
discrete (LA) field distribution is investigated by extensive Monte Carlo sintulations, Values
of the critical exponents for the correlation length, specific heat, susceptibitity, disconnected
susceptibility and magnetization are determined simultaneously via finite size scaling. While
the magnetization appears to be discontinuous, the specific heat appears to saturate, indicating
no latent heat. Sample-to-sample fluctuations of the susceptibilty are consistent with the droplet
picture for the transition.

The three-dimensional ferromagnetic Ising model with a random field (RFIM) shows a
phase transition to long-range order at a critical temperature for a sufficiently small field
strength [1]. However, the nature of this transition is still unclear; even the question of
whether it is first- [2] or second-order [3,4] remains unsettled. The droplet theory of
Villain [5] and Fisher {6] (see also Bray and Moore [7]) develops a self-consistent picture
of the transition as well as a set of scaling relations between the critical exponents. Existing
numerical studies have been unable to test the validity of these scaling relations because
not all the exponents were calculated for any of the relations. The aim of this paper is to
determine all critical exponents within a single numerical simulation in order to test the
scaling relations predicted by the droplet picture.

The droplet picture makes other predictions that are relevant to our simulations. One is
that at and below the transition temperature T, the susceptibility is expected to have large
sample to sample fluctuations [8]. We therefore need to average over a large number of
samples to get good statistics. Another prediction is thermally activated dynamical scaling
[5,6] resulting in a dramatic slowing down in the critical region. This means very long
equilibration times. For these reasons we had to confine ourself to modest lattice sizes and
the critical exponents will be obtained via finite-size scaling,

The Hamiltonian of the system is given by

H==> 88~ kS (1)

& §
where §; = 1 are Ising spins and the first sum runs over all nearest-neighbour pairs on an
L x L x L simple cubic lattice with periodic boundary conditions. The random fields A;

in the second sum, running over all sites, take random values with the discrete probability
distribution

P(hi) = §8(hi — ;) + 38(hi + B, . 2)
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The Monte Carlo (MC) simulations were performed on a transputer array using 40 T414
transputers. We were able to obtain high performance by using a multi-spin coding algorithm
described in [9], in which each transputer simulates 32 physically different systems in
parallel, each with a different random field realization. This is somewhat different from
the implementation of multi-spin coding which was applied to the RFIM in [10]. For each
run at fixed temperature, T, and field strength, k,, we performed a disorder average over
1230 samples. An average over such a large nomber of sampies is necessary because the
susceptibility is highly non-self-averaging, as mentioned before. The simulations were done
for fixed ratio A, /T at different temperatures.

To check equilibration we simulated two replicas of the system: one starting from an
initial configuration with all spins up and one with all spins down. We assumed that the
system has reached equilibrium when the magnetization measured for both replicas is the
same (within the error bars). The time needed for equilibration of all 1280 systems varied
much with the system size and temperature—in the case of the largest size (L = 16) we used
up to 0.5 x 10° MC-steps for equilibration and 1.5 x 10% MC-steps for measurements. All of
the samples were equilibrated for L < 10. For larger sizes the number of non-equilibrated
samples generally varied between 1% and 3%. The contribution of these samples was
estimated to be less than the error bars in the points so no significant error was made by
including them. The only exception to this was for L = 16, k. /T = 0.5 for which 5%
of the samples were not equilibrated which gave a significant error in the susceptibility,
though not for the other quantities. We therefore ignored this data point when analysing the
susceptibilty,

For each sample and each replica {(a, b) we recorded the average magnetization per spin
(Mo}, its square (M?2,), the average energy per spin {E,,) and its square (E;,). The
angular brackets, {...}, denote a thermal average for a single random field configuration.
From these data we get the specific heat per spin, C, the susceptibility x, the disconnected
susceptibility, ygis. and the order parameter, m, as follows:

[Clav = N{[{ENw — EP1 }/T? Imlay = IKM) [T

[Xlaw = N{[(Mz)]av - [(M>2]a\r}/r [xdislev = N[(M>2]av

where [- . .];, denotes the average over different random field configurations.
Defining ¢ = T — T, (the deviation from the critical temperature), then the finite-size
scaling functions for the above quantities read

T2HClyy = LYY C( LYY [mlay = LA LY
T [X}w = L¥"RGLYY) [xaisl = LY {ais(r L")

where « is the specific heat exponent, 8 the order parameter exponent, v the correlation
length exponent and # and 7 describe the power-law decay of the connected and disconnected
correlation functions, see, e.g., [1]. Note that the susceptibility exponent is given by
¥ = (2 — n)v. According to the droplet picture {8], the average susceptibility diverges
everywhere below T, because there is a small probablity that a given sample will have
two degenerate minima with different values of the magnetization. If, by analogy with the
above expressions, we write [yla ~ L2 for T < T, then one finds [8] that n = 0.5 in
d=3.

The scaling function €(x) has a maximum at some value x = x*. For each lattice size
we estimate the temperature T*(L), where T?[C].y is maximal. Since r*(L) L'® = x* we
obtain in this way the critical temperature T, and the correlation length exponent v from

tLY=T*(L) - Te = x*L~\/v, (5

(3)

4
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We denote the value of T*(L)?C at this temperature T*(L) by C* and similarly for the other
quantities in (4). In the vicinity of x* the scaling function C(x) can be approximated by a
parabola. Therefore three temperatures near the maximum of the specific heat are enough to
determine the values of T*(L) as well as [C*],, etc. Our results for the exponents obtained
in this way are summarized in table 1, For illustration, we show the results for T*(L),
[C* avs D¢ avs [m*)av and [y lav for &,/ T = 0.35 in figure 1{a)}-(d). Several comments
need to be made.

Table 1. The critical exponents obtained via finite-size scaling according to the procedure
described in the text.

/T
Exponent 0.25 0.35 0.5
T 3.9+0.1 3554005 3.05+005
" p 16£03  14:£02
P ]E="°‘5°i°'°5 -1.0£03 ~15+03
) 0.60£0.03 056+003 0.6+0.1
H 097008 1.00£006 104008
@=2—TF4n 16401 1.6£0.1 1.6£0.1
8 0 0 0
@ -4+ /2 0:£0.05 0£0.05 00,05
d — 8w 23+05 20406
2~a 30+£03  35+03

(i) The higher the field strength the harder it is to equilibrate the samples. However,
the lower the field the less pronounced is the random field behaviour for small lattice sizes
because of crossover from pure Ising model behaviour. Therefore investigation of larger
as well as smaller ratios, 4, /T, did not seem 1o us to be advisable. If the transition is of
second order and no tricritical point occurs along the critical line (¢, 2.} the exponents
should be universal, i.e. independent of the vaiue of &, /T.

(ii) The shift of 7*(L) with respect to T, becomes smaller for low field strength, so it is
harder to determine the exponent v. In case of &,/T = (.25 it was not possible to perform
an acceptable fit for T*(L) according to (5). The values of v obtained for the other ratios
k. /T are somewhat higher than that obtained in [4], where v = 1.0 £ 0.1.

(iiiy We did not find any indication of a divergence, even logarithmic, of the specific
heat, so o is negative. This is different from what is found experimentally [1, 11], where
the specific heat diverges logarithmically, corresponding to ¢ = 0. Furthermore, in our
simulations « seems to get more negative with increasing ratio 4,/T. This may indicate
that it is difficult to determine o when « is negative because non-singular (but temperature-
dependent) background terms can give a significant contribution to the specific heat.

(iv) The order parameter [m*J.y shows only a very small size dependence, and does not
approach zero but limyqo[m*lay & 0.52, 0.50 and 0.47 for &,/T = 0.5, 0.35 and 0.25,
respectively (see the inset of figure 1(d)). This indicates that 8 = 0 s0 the magnetization
has a discontinuity, This seems surprising in view of our resulis for the specific heat since
the specific heat usually diverges as L [13] at a first-order transition, because of the latent
heat, whereas our specific heat data seem to saturate for large L. Perhaps the latent heat is
so small that L behaviour would only be seen for larger sizes. Another possiblity is that
the correlation length actually diverges and there is strictly ne latent heat, even though the
order parameter has a discontinuity. This behaviour, though rare, does occur: an example is
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Figure 1. The results of least-squares fits to data obtained by the procedure described in the
text for &, /T = 0.35. The paints indicated by diamonds (&) correspond to lattice sizes L=4,
6, 8, 10, 12, 16—from right to left in (@) and (b) and left to right in (c) and (4). With the
exception of the susceptibility we also inserted data for L = 24 with squares ((0), which we
obtained by using the same algotithm but on a CRAY Y-MP instead of the transputer array and
which are averaged over only 64 samples. The L = 24 data were not used for the least-squares
fits. (@) The temperature T*(L) of the specific heat maximum versus L~Y* with v = 1.64
and T, = 3.552, see equation (5). (p) Specific heat C*)ay = L*¥*C(x*) versus L1/ with

= 1.04 and v as in (a), see equations (4) and (5). The specific heat appears to saturate for
L — oo at a value of limz—eolC*lew = 25.3. () Susceptibility [x"lw = L2 7%(x*) in a
log-log plot. The slope of the straight line is 2 —  with # = 0.53. The irset shows the second
moment [x*?1a, of the probability distribution P(x) in a log-log plot. The slope of the straight
line is { = 3.82. () Disconnected susceptibility [y}, Jav = L7 74i(x™) in 2 log-log plot. The
slope is 4 — % with = 1.0. The inset shows the magnetization [m*]yy = L™5/VA(x*} as 2
function of a L (the scale of the x axis is logarithmic) The straight Line is the extrapolation to
[m* fev (L = o0}, which is clearly non-zero and so g = 0.

the one-dimensional Ising model with long-range interactions which fall off with distance as
1/r? [14]. In such cases one may prefer not to denote the transition as first order, since there
are well defined critical exponents. (At a conventional first-order transition, the correlation
length is finite at the transition, so one cannot define asymptotic critical exponents, though
it may be possible to define effective exponents if the correlation length is very large at T¢.)

(v) For the exponent n we get a best estimate that is slightly higher than %, which is the
value obtained below T, as discussed above, and also the value at T, if the transition is first
order [8]. However, the value n = 0.5 is not excluded by our data. For k,/T = 0.5 we had
to exclude the size L = 16 from the analysis since 5% of our samples were not equilibrated
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and the contribution of these samples was larger than the error bars. Our estimates for 5
are consistent with that obtained in [3}: = 0.5 £ 0.1.

(vi) The exponent 7 for the disconnected susceptibility tums out to be equal to one, so
that the scaling relation

B=(d—-4+mv/2 (6)
is fulfilled (as indicated in table 1). We also see that the Schwartz—Soffer [12] inequality
<2 )

holds as an equality within the error bars. In [4] it was found that § = 1.1+ 0.1,

{vi) In the droplet picture [5,6] & = 2 —7+ 1 is called the violation of the hyperscaling
exponent. The hyperscaling relations then have the spatial dimension, d, replaced by d — ¢,
e.g.

2—a=(d—-0W. (8)

As indicated in the table this equality seems nof to be fulfilled, although the error
bars are quite large and our estimate for o might be affected by temperature-dependent
background terms, as discussed above, The estimates of both sides of this equation cannot
be made without knowing both o and v but for 4,/ T = 0.25 we only determined the ratio.
The entries in table 1 for 2 — o and (d — 8)v are therefore left blank for k./T = 0.25.

(viii} One of the main predictions of the droplet picture [5,6] is a long tail in the
distribution of the susceptibility x for samples of size L at T = T, [8]. An analysis of this
distribution extracted from our results for the 1280 samples confirms the existence of this
long tail. Figure 2 shows the histograms for the probability distribution P(x) close to the
temperature T* (T = 380 for L = 8 and T = 3.75 for L = 16) for h./T = 0.35. The
second moment of this distribution [x"zlav, shown in the inset of figure 1(c), scales like
L%, with & = 3.8 % 0.1 (for h,/T = 0.35), which is larger than the square of the mean
L4 ~ 12 but somewhat smaller than the predicted value ¢ = 6 — 5 — n ~ 4.4 [8]. We
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Fligure 2. The histograms for the probability distribution P(y) of the susceptibility for L = 8
(left-hand plot) and L = 16 (right-hand plot) with i/ T = 0.35. The temperatures are chosen
to be as close to T*(L) as possible: T =3.80 for L =8 and T = 3.75 for L == 16, The y axes
of the inserts are scaled differently to emphasize the long tail of the distribution, This featire
originates in the rare samples with the extremely large values of the susceptibility scaling with
the volume of the system (since 4 — 77 =~ 3).
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attribute this difference in { to the number of samples being too small to catch a sufficient
number of rare samples which dominate the higher moments,

In conclusion, while the data for the magnetization and disconnected susceptibility
indicate fairly convincingly that the magnetization has a discontinuity, the specific heat
seems to saturate to a finite value and so there is no detectable latent heat. This may arise
either because the transition is first order in the conventional sense (so the latent heat, though
present, is too small to detect and the estimated exponents are only effective exponents) or
because the transition has a divergent correlation length (so true asymptotic exponents can
be defined) and yet also has a discontinuity in the order parameter. It is interesting to ask if
the order of the transition might be different for a different random field distribution, since
mean-field theory predicts [15] that the transition becomes first order for large fields for the
+h distribution, but not, for example, for the Gaussian distribution. Since the multi-spin
coding technique that we used does not work for a continuous distribution of fields, the
answer to this question will require an even larger computing effort. Nevertheless we are
currently attempting to carry out similar calculations for the Gaussian distribution,

Our results are consistent with the Schwartz-Soffer inequality, equation (7), being
satisfied as an equality, and support the scaling relation, equation (6). The scaling relation
involving the specific heat, equation (8), does not seem to be satisfied, though our values for
& may only be effective exponents, particularly since we find « is negative and so a more
detailed determination of non-singular background terms might be necessary to determine
o accurately. Our results do support the prediction of the droplet theory that there are large
sample-to-sample variations in the susceptibility at T..
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