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Abstract. We present numerical and analytical results for a special kind of one-dimensional
probabilistic cellular automaton, the so-called Domany-Kinzel automaton. It is shown that the
phase boundary separating the active and the recently found chaotic phase exhibits re-entrant
behaviour. Furthermore exact results for the p3 = O-line are discussed.

Cellular antomata have been an intensive research field in recent years [1,2] due to their
computational simplicity and the wide range of applications in various areas Even in one
dimension a particular probabilistic variant (Domany—Kinzel automaton) of the originally
deterministic cellular antomata shows a rich phase diagram including directed percolation
and other critical phenomena [3,4]. Only recently 2 new phase in this model has been
explored numerically exhibiting chaotic behaviour [5,6,9]. This region of the diagram, up
to a deterministic corner-point, is not accessible to exact treatments up to now.

Nevertheless sophisticated approximation methods, which systematically go beyond
mean-field theory, have been applied successfully [7]. In the so-called tree-approximation
[8] one finds re-entrant behaviour in two directions, which is not yet fully understood. This
phenocmenon has never been observed in numerical simulations up to now [5, 9]. Therefore,
one might ask whether this re-entrant behaviour is a real feature of the model or just an
artifact of the tree-approximation. This issue is the main topic of the present letter, where we
try to clarify this point with an alternative approximation method (the cluster-approximation)
as well as with large scale Monte-Carlo simulations (up to 3 x 108 sites). To state the final
results already here: the cluster-approximation again yields re-entrant behaviour in two
directions and the simulations show clear evidence for re-entrance near the tricritical point.

The model we consider is defined as follows: The Domany-Kinzel PCA consists of a
one-dimensional chain of N binary variables, (n;, ..., 2y), n; taking on the values {0, 1}
{empty, occupied). All sites are updated simultaneously (i.e. parallel) at discrete time steps
and the state of each site at time ¢ + 1. depends only upon the state of the two nearest
neighbours at time f according to the following rule;

Wns | miat, i) = %{1 — @np = D1 = 2py (it + 1ic) +22p1 — Pl (D)

where W(n; |'7;41, ni-1) is the (time-independent) conditional probability that site i takes
on the value n; given that its neighbours have the values n;; and n;_; at the previous time
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step. p1(p2) is the probability that site i is occupied if exactly one (both} of its neighbours
is (are) occupied. If neither neighbour is occupied, the site { will also become empty,
therefore the state with all sites empty is the absorbing state of the PCA.

The (p1, p2)-phase diagram, as it is known up to now, consists of three different phases.
Most of it (small enough p;} is dominated by the frozen phase, where all initial conditions
eventually lead into the absorbing state. In other words, the activity
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tends to zero for r — oo within the frozen phase. For large enough p; one enters the
active phase, where, starting from a random initial condition, the system ends up in a state
with a finite density of active sites. Within this active phase one can distinguish between
a chaotic and a non-chaotic part. This difference can be seen by starting with two slightly
different (random) initial conditions n(0) and n/(0) subjected to the same external noise
(local updating rules). Calculating the normalized distance &(r) of these two systems
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during the update of the replicated systems according to the rule displayed in equation
(2) of [7] one observes a sharp transition from the chaotic phase, characterized by
limyy 00 () = duw > 0, to the active phase with dc = 0 (in the following we call the
active/non-chaotic phase simply the active phase). The underlying picture is that in the
latter case the system is characterized by only one attractor, which nevertheless depends
strongly on the external noise. In other words, in this phase the noise (and not the initial
condition) dominates the dynamics completely. This is not true for the chaotic phase, where
the system memorizes the initial state even after infinite time.

First we present analytical results obtained by the application of the so-called cluster-
approximation already known in different contexts {12, 13] as probability path method [10]
or local structure theory [11]. In this way we check earlier results [7] derived with a
different approximation scheme (the tree-approximation, see [8]). The problem with the
dynamical rules defined above is that one cannot write down the probability distribution of
the stationary state since no simple detailed balance condition can be derived. Therefore, in
principle, it is necessary to solve the dynamics completely in order to obtain the equilibrium
properties. This is not possible in general.

One way out of this dilemma is to take into account systematically all possible
correlations between m neighbouring sites (m-cluster approximation) and to treat interactions
over longer distances by conditional probabilities. More formaily, given the probability

P(ny,...,ny,) for the configuration (n),...,R,) in an m-cluster-approximation the
probability for configuration (n4, ..., n;) with I > m is approximated to be:
l—m .
P(ns, .y = Pl mnd [ [ Ploisas oo mismnt | im). @)
i=1

Here f’(n.-.i.l, vevs Riam—1 | Ripm) denotes the conditional probability to find site m 4-i in
state n;., given that the m — 1 sites to the left are in the state (mi41,..., Migm—1). A
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factorization of this kind can describe the stationary state exactly only if the interactions
extend over not more than m sites. A natural choice for the conditional probability P is

- P(#it1s v s Rigm)
Pn; sreey Foibm— ] =
(i1 Bigm—1 | Rigm) Pltiet - n i ramet) ®)
with
P(ipty s ligmet) = D P@itts ey Pigm). (©)
Bip=0,1

Simple examples of one-dimensional systems which can be described exactly by a finite
value of m are the p-spin-Ising-models where one needs m = p for the exact equilibrium
distribution (m = p = 2 being the standard one-dimensional Ising model with next-
neighbour interactions only) [14]. Another example is the parallel asymmetric exclusion
process where again m = 2 leads to the exact result for the stationary state [13].

The phase diagram resulting from a calculation based on the cluster approximation
with m = 2 is shown in figure 1. Since during one update step, according to the rules
(1), the even (odd) sites only depend on the odd (even) sites at the timestep before we
performed two timesteps at once to deal with sites of only one fixed parity. One firstly
observes that m = 2 is still far from the exact solution for the stationary state. Unfortunately
higher approximations are very hard to obtain due to the exponentially growing number of
equations to be analysed simultaneously (especially for the distance 4(f) with two replicated
systems), Furthermore even for m = 2 the resulting equations cannot be solved analytically
with final closed expressions but have to be iterated until one finds a fixed point of the
system of equations. In order to obtain a better localization of the phase boundaries we

applied the same method described below to analyse the numerical data from the Monte-
Carlo-simulations,

2—cluster—approx.
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Figure 1. The phase diagram calculated via the 2-
Pt cluster-approximation. For details see text.

As can be seen from the figure we find re-entrant behaviour both in p) and p;-direction
comparable to the result from the tree approximation [7]. It seems that the tricritical point
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Table 1.

1/m §21

1 05200

0.5 0.6666 == 0.001

03333  0.723:+0.001
0.25 0.745 == 0.001
0.2 0.760 &= 0.001

has moved upwards, but a detailed analysis of the results suggests that it remaing on the
P2 = O-line. For the frozen/active-phase boundary one can go to larger clusters with higher
values of m. In table 1 the critical values p7(p, = 0) of m < 5 are given.

A simple least-square fit leads to a limiting value for pj of about 0.810 which is
significantly larger than the known values from the simulations [9].

In order to test the predictions of both approximation schemes mentioned above we
performed large-scale Monte-Carlo simulations of the Domany—Kinzel cellular automaton
with probabilities p; and p; in the vicinity of the two end-points of the phase boundary of
the chaotic phase (i.e.: (p},0) and (1, p3)}, where re-entrance could occur according to the
above calculations.

The system-sizes were up to N = 3 x 10° sites with periodic boundary conditions, and
the number of iterations #,,, were maximally 10°. In this way one avoids self-correlations
(finite size effects), since after + updates those sites separated by a distance smaller than ¢
are correlated. Therefore #,,, has to be smaller than N. By choosing N much larger than
Lmax One improves the statistics significantly (for obvious reasons, since one can divide the
system into many statistically independent subsystems). Therefore no finite-size effects are
present in our data (which was checked by comparing results for different system sizes) and
we need not perform a (non-trivial) extrapolation of the finite system N — oo, Furthermore
the probability that the system gets trapped by the absorbing state (n; = 0) after time ¢
increases with decreasing system size. This renders the simultaneous limit N —» o0 and
t = 0o to a delicate point, which we also avoid by our approach.

Looking at the data obtained from the simulations it turned out to be rather unreliable
to try to discriminate between two phases by looking at the long-time limit of the order
parameter (activity a(t) or distance d{)). Apart from the two phase-boundaries we expect
exponential decay of a(¢) and d(z) to their asymptotic values. Exactly on the phase-
boundary we expect the spectrum of relaxation times to extend to infinity and thus the
decay to become algebraic. This behaviour is illustrated in figure 2: the activity as a
function of time is depicted in a log-log plot for increasing values of py(p, = 0). We see
that below a certain value the curves bend downwards, whereas above this value the curves
bend upwards reflecting exactly the behaviour explained above. The curve in the middie
corresponding to p; = 0.810 is closest (as defined quantitatively by a least-square fit) to a
straight line. To determine p$ more accurately we performed longer runs with larger system
sizes and depict the results in figure 3. The middle curve, corresponding to py = 0.8095, is
nicely approximated by an algebraic decay with an exponent —0.155. This exponent agrees
well with the universal order parameter exponent 8/v; = —0.157 & 0.002 determined in
reference [4].

From figure 3 we determined p§ to be 0.8095 o4z 0.0005. This is the most accurate
estimate of p{ so far. Surprisingly it is significantly larger than the value 0.799 = 0.002
obtained with a different method but with system sizes of around N = 640 [9]. It seems
that in the latter reference the long transient times (~ 10000) together with the small system
sizes lower the critical value due to larger correlations in the system as known from similar
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Activity for p.2 = 0 (N = 10°6)

g
Figure 2. Time-dependence of the activity for
P2 = 0 and various values of p|. The systern
size is N = 10%. Concerning the statistical error
we observe that all runs using different random
0 00 2000 numbers yield curves that are indistinguishable
t on this scale.
Actvity for p_2 = 0.0in the vicinty of p_14¢ (N = 3*1046)
p 1 =0B100 —— '
pi =0.8085 ===
P =0.8080 r-eer
0.45 * 14-1.55) ——
g
o1} e Fignre 3, Determination of pf: The system
size is 3 - 105, p2 = 0 and p; = 0.8090
(lower curve), p1 = 0.8095 (middle curve)
. . and (.8100 (upper curve). The straight line in
10 00 1600 10000 the middle is the function 0.49 - r~0-155, we
t

conclude that p§ = 0.8095 = 0.0005.

systems [13]. As we have mentioned above the finite size scaling analysis of small systems
is by no means straightforward and cannot be done without further ad hoc assumptions,
from which our methed is free. Hence, from our point of view, the results we quote seem
to be more reliable. Note that there is no overlap even of the error bars of the two critical
values.

In figure 4 we show the same scenario for p; = 0.04. By the same arguments as above
we now locate the critical value of py (i.e. the value at which the transition from vanishing
to finite activity takes place) to be 0.805 &= 0.002, which is significantly lower than p§. For
larger increasing values of p the phase boundary between frozen and active phase bends
down monotonically to smaller values of p, terminating at the point (p; = 0.5, p; = 1)
which is exactly known since the whole p, = 1-line is exactly solvable.

In figure 5 a comparison of the two curves for () at p; = 0.8090, which is below
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Activity for fy_2 = 0.04 (N w« 1046}
T
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, . , Figure 4. Time-dependence of the activity for
0. 10 100 1000 p2 = 0.04 and various values of p;. The system
t size is N = 105

Py, for pz = 0 and pz = 0.03 is shown. Note that (0.8090,0) lies within the frozen phase.
The upper curve bends upwards, which means that (0.8090,0.03) lies within the chaotic
phase, This is indicated by the schematic phase diagram depicted in the insert of figure 5
and which has been supported by simulations of various parameters (p;, p2) in this region.
The two black dots represent the two curves shown and along the arrow connecting them
one finds clear evidence for re-entrant behaviour. The phase boundary of the chaotic phase
therefore bends to the left up to values around p; = 0.03 and for larger values of p, it
bends monotonically to the right until it terminates at the point (1, pS). One reason for the
fact that this phenomenon was not seen in earlier simulations is that it is in fact a marginal
effect observable only in high-precision simulation-data.

Distance for p1 = 0.B0% < p_14a (N = 3*10%6)

pR=000 —
P2=000 —

Figure 5. Time-dependence of the distance for
p1=0809 < pfand p2 = 0.00 (lower curve),
pz = 0.03 (upper curve). The system size is
N =3 105 The curve for pz = 0.03 shows
that (0.809,0.03) is well inside the chaotic
region, whereas (0.809,0.00) lies within the
frozen phase. This fact strongly supports re-
entrance. The emerging phase diagram in the
vicinity of the tricritical point is depicted in
the insert—the two black dots represent the
parameter values for the two curves shown,

aiy

We also performed large scale simulations around the other endpoint of the chaotic/active



Lefter to the Editor L429

phase boundary. Here it is quite evident that the re-entrant behaviour parallel to the p;-axis
at (1, p) is in fact an artifact of the approximation schemes and not existent in the actual
system.

Concerning the question of the conjugate field for the order-parameter of the chaotic
phase posed in reference [15] one can make, on the p, = O-line, exact staternents. Since
both the activity and the chaos order parameter obey exactly the same evolution equations
[7] it is easy to conclude that the conjugated fields should also be equivalent. For the
activity one chooses independent random numbers at each site and each timestep (on the
p2 = O-line this is just the role of py). Accordingly one chooses for the chaotic order
parameter independent random numbers at each site and each timestep (rule k; in [15]).
The absorbing state now corresponds to identical variables states in the two replicas vielding
the same update since the same noise has to be applied for equal configurations in the two
systems. This picture remains valid for p; > 0 although the evolution equations are no
longer identical, but the absorbing state has the same properties. Note that on the line
P2 = 0 the critical exponents of the order-parameter are also the same, If universality holds
away from this line this statement should also be true for p; > 0 (for p» = 1 it is known
that the critical exponents are different [4]).

In summary we have shown in this letter that, contrary to previous findings, the chaotic
phase in fact shows re-entrant behaviour in the vicinity of the tricritical point as predicted
by approximative analytical methods. The effect was not seen before since it is relatively
small and large scale simulations have to be made to detect it. On the other hand, near the
p1 = 1-line the predicted re-entrant behaviour is absent.

Furthermore one can see that simulations of small systems with long transient times
can lead to erroneous conclusions about the locations of the critical point as well as the
shape of the phase boundary since it is difficult to estimate the error due to self correlations.
Therefore the error-bars in [9] seem to neglect these systematic errors and should be larger
(which could lead to an agreement with our results). Finally we have seen that the conjugate
field to the chaotic order parameter can directly be identified from the equivalence to the
activity order parameter on the p; = O-line,
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