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Abstract. The critical exponents forT → 0 of the two-dimensional Ising spin-glass model
with Gaussian couplings are determined with the help of exact ground states for system sizes up
to L = 50 and by a Monte Carlo study of a pseudo-ferromagnetic order parameter. We obtain:
for the stiffness exponenty(= θ) = −0.281±0.002, for the magnetic exponentδ = 1.48±0.01
and for the chaos exponentζ = 1.05± 0.05. From Monte Carlo simulations we get the thermal
exponentν = 3.6 ± 0.2. The scaling predictiony = −1/ν is fulfilled within the error bars,
whereas there is a disagreement with the relationy = 1 − δ.

1. Introduction

It is now widely believed that the bond-disordered two-dimensional Ising spin-glass
model with short-range interactions does not have a phase transition at any non-vanishing
temperature [1, 2]. At zero temperature the spin glass is in its ground state (i.e. the
spin configuration with the lowest possible energy), which might be degenerate or unique
depending on the probability distribution of the spin interactions. This ground state is
unstable with respect to thermal fluctuations and any non-vanishing temperature destroys
this long-range spin-glass order. By decreasing the temperatures on the other hand the
spatial correlations grow resulting in a divergence of the spin-glass susceptibility at zero
temperature. This scenario is characterized by a set of critical exponents that depend on
certain features of the bond distribution. Experiments on Rb2Cu1−xCoxF4 clearly confirmed
this picture [3] and reported values for the critical exponents, which are compatible with
those predicted by the numerical investigations.

The latter has been pursued in four different ways: Monte Carlo simulations at finite
temperatures [4, 5], high temperature series expansion [6], transfer matrix calculations [7–
9] and exact determination of ground states via combinatorial optimization [12–15] or
replica optimization [15]. A scaling theory by Bray and Moore [16] establishes relations
between exponents quantifying the stiffness of the ground state and the critical exponents
characterizing the temperature-dependent divergence of various thermodynamic quantities
like correlation length or susceptibility.

With the most recent numerical studies a controversy has arisen on the critical exponents
of the two-dimensional Ising spin glass with Gaussian couplings: a Monte Carlo study by
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Liang [5] (using a Swendsen–Wang-type cluster algorithm) and a numerical transfer matrix
calculation by Kawashimaet al [9] yield a value for the thermal exponentν which is
significantly different from the early estimates [4, 6–8]. Moreover, Kawashimaet al [15]
also study the ground-state magnetization of this model in an external field and report a
value for the magnetic field exponent, which is, using a scaling relation [16], incompatible
with the stiffness exponent found in domain-wall renormalization-group studies.

This observation and the progress in algorithmic developments motivated us to revisit
the critical exponents of the two-dimensional Ising spin-glass model. In this paper we
present a synopsis of a zero-temperature (ground-state)and a finite-temperature (Monte
Carlo) approach to estimate the numerical values for these critical exponents. For the
former we report results obtained from exact ground states for the largest system sizes
possible to date, resulting in the most reliable estimates for the stiffness exponenty and
magnetic field exponentδ reported so far. For the Monte Carlo simulations we propose a
pseudo-ferromagnetic order parameter that is defined by a projection of spin configurations
onto the exactly known ground state and show that the thermal exponentν is identical to
the values that have been obtained by Bhatt and Young [4] studying the Edwards–Anderson
(EA) order parameter. In the context of domain growth and non-equilibrium dynamics this
concept has already been introduced and proven to be useful by direct comparison with the
so called replica overlap [19].

The two-dimensional Ising spin-glass model with a Gaussian distribution of couplings,
which we consider throughout this paper, is defined by the Hamiltonian

H =
∑
〈ij〉

JijSiSj − h
∑

i

Si Si = ±1 (1)

where 〈ij〉 denotes all nearest-neighbour pairs on aL × L square lattice with periodic
boundary conditions and the random interaction strengths obey a Gaussian probability
distribution with mean zero and variance one. The parameterh denotes an external magnetic
field strength.

The outline of the paper is as follows. In the next section we present our results
from exact defect energy calculations, which provides us with an estimate for the stiffness
exponenty. In section 3 we present a conventional finite-size scaling analysis of Monte
Carlo data. In contrast to earlier investigations we used exact ground-state configurations
instead of replica systems in order to establish an order parameter. Section 4 focuses on
the exact calculation of ground-state magnetizations in an external field and its finite-size
scaling properties. Section 5 presents a study of the sensitivity of the ground state with
respect to slight perturbations of the coupling strength. The last section is a summary plus
discussion.

2. Defect energy

2.1. Scaling theory

The scaling theory by Bray and Moore [16] starts with a coarse-grained picture for the spin
interactions. It hypothesizes the following scaling ansatz for an effective couplingJ̃ (L)

among (block) spins on length scaleL at an infinitesimal temperature:

J̃ (L) ∼ JLy (2)

where J denotes the variance of the original bond distribution. For positive stiffness
exponenty (sometimesθ ) the coupling becomes stronger on larger length scales, which
means that it is harder to flip collectively a connected set of spins of linear dimension
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L. Thus thermal fluctuations are irrelevant and the spin-glass ordered state persists at low
temperature. A negative exponenty, as we expect ford = 2, on the other hand indicates
the instability of the spin-glass ground state. In this case the spin-glass transition takes
place only at zero temperature andy is related to the thermal exponentν determining the
divergence of the correlation lengthξ ∼ T −ν :

The temperature dependence of the correlation lengthξ nearT = 0 can be inferred from
equating the two energy scales set by the effective coupling constant and the temperature.
At low temperatures where (2) holds one then has

ξ ∼ T 1/y (3)

and therefore

y = −1/ν. (4)

In this way the exponenty, which we calculate in this section, has to be compared withν

determined in finite-temperature Monte Carlo simulations discussed in the next section.

2.2. Algorithm and results

The problem of finding a spin configuration with lowest energy can be transformed into
the problem of finding a maximum weight cut in a special weighted graph, that represents
the interaction structure of the spin-glass system [12]. This is known under the name max-
cut problem and is in general a NP-hard problem [10]. If the graph is planar, as in the
two-dimensional case withfree or fixed boundary conditions, the problem is solvable in
polynomial time [11]. If one has periodic or anti-periodic boundary conditions or if an
external field (representable as an extra node to which all other nodes are connected) is
present the graph is not planar any more even in two dimensions. Hence, the situation we
are studying here is indeed an NP-hard problem.

The results of this section and of sections 4 and 5 are based on the application of a
so-called branch and cut algorithm to the ground-state problem [12]. This algorithm always
finds an exact ground state of the given spin-glass system. For further details about this
algorithm and its implementation see [17, 13]. An important feature of this approach is,
that the returned solutions are proved to be optimal. Exact ground states of grid sizes up to
100× 100 can be determined in a moderate amount of computation time. The 100× 100
instances take between 1.5 and 8 h, 4 h on average. Up to grid sizes of 50 each run takes
less than 15 min [13].

The NP-hardness is not a serious problem as long as the system sizesL one studies are
not in the region where the exponential dominates, and for really largeL, where it does
dominate, the exponent is very small. In the rangeL 6 32 our empirical CPU times can
be fitted by a power law (τ ∝ L3.5). For bigger systems there enters an exponential term
≈ 1.2L inside the used size range. Note that these are only empirical observations but no
rigorous bound for the complexity. For comparison Kawashima and Suzuki [15] reported
about a replica optimization method which approximates ground states efficiently. They
achieved an average CPU-timeτ(L) for systems of linear sizeL which can be fitted by a
power law likeτ ∝ L5.3 inside the same size range (L 6 32). Although Kawashima and
Suzuki only approximate the ground states while we always find optimal solutions, their
CPU-times are similar to ours. On average, their biggest systems (32× 32) took 260 s,
while we needed 160 s for 40× 40 spin glasses (1500 s for 60× 60). Kawashima and
Suzuki used a VAX 6440, our computations were carried out on a SPARC 10/612.

One can determine the defect energy by investigating the sensitivity of the ground-state
energy to boundary conditions [16, 18], which can be quantified by a stiffness exponent
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Figure 1. Defect energyEd as a function of the
system sizeL in a log–log plot. The straight line
is a least-square fit giving the exponenty = −0.281.

measuring the extra energy of a defect line through the whole sample. The block coupling
J ′ is then given byJ ′ = √

(Ep − Ea)2, whereEp andEa are the ground-state energies of
the system under periodic and anti-periodic boundary conditions, respectively. We compute
this value in the following way. First we solve the given spin-glass system to optimality
under periodic boundary conditions, i.e. we find an exact ground-state configurationωp and
its energyEp = E(ωp). Then we choose two neighbouring ‘columns’ of spins and multiply
all couplings by−1 that link these two spin sets. By this modification of the couplings we
impose anti-periodic boundary conditions to the original system. With this slightly changed
objective function we rerun our branch and cut code to find a ground-state configurationωa

with energyEa = E(ωa).
Due to the very small magnitude ofEa−Ep it is necessary to have a very large number

of samples to obtain stable statistics. For each sizeL 6 30 of ourL×L spin glasses we ran
d2 × 105/Le samples. The resulting mean values of the defect energies versus the system
sizeL are shown in figure 1. A least-square fit yields the value

y = −0.281± 0.002⇒ ν = 3.559± 0.025. (5)

The errors are statistical errors only. This estimate agrees roughly with less accurate early
estimatesν = 2.96± 0.22 andν = 4.2 ± 0.5 from transfer matrix calculations [7] as well
asν = 3.56± 0.06 andν = 3.4 ± 0.1 from domain wall renormalization calculations [8].
Note that Bray and Moore [16] report an estimatey = −0.291± 0.002, which has an error
bar that is identical to ours. However, their maximum system size isL = 12 and they did
not calculateexact ground states.

Our result fory (5) implies a value forν, if the scaling prediction (4) is correct, that
differs substantially from more recent estimates [5, 9]. Since in these works the thermal
exponentν has been determined directly, we shall do this, too, in the next section.

3. Monte Carlo results

In this section we present our results from finite temperature Monte Carlo simulations. For
this purpose we introduce first a number of quantities that are of interest for studying the
critical properties of Ising spin glasses in zero external fieldh.
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3.1. Scaling relations and methodology

A characteristic feature of a spin-glass transition at a temperatureTc (which might be zero)
is the divergence of the so-called spin-glass susceptibility

χ = 1

N

∑
〈ij〉

[〈SiSj 〉2]av (6)

where [· · ·]av denotes the average over the quenched disorder and〈· · ·〉 a thermal average.
Approaching the transition temperature from the paramagnetic phase one observesχ ∼
(T − Tc)

−γ , which defines the susceptibility exponentγ . As already mentioned there is a
diverging length scale at the transition, the spin-glass correlation lengthξ ∼ (T − Tc)

−ν ,
which governs the scaling form of the correlation function nearTc:

G(r) = [〈SiSi+r〉2]av ∼ r−(d−2+η)g̃(r/ξ). (7)

Obviouslyγ = (2 − η)ν. In the caseTc > 0 there is a non-vanishing Edwards–Anderson
order parameterqEA = [〈Si〉2]av below the transition and one hasqEA ∼ (Tc − T )β for
T < Tc, the order parameter exponentβ obeying the hyperscaling relationβ = 1

2ν(d−2+η).
In two dimensionsTc = 0 and since we are concerned with a continuous bond

distribution, in which case the ground state is non-degenerate, one has

η = 0 β = 0 γ /ν = 2. (8)

Thus we are left with a single unknown exponentν, which we determined from the
scaling behaviour of the susceptibility and the Binder cumulant. In contrast to previous
investigations we used exact ground states to define a pseudo-ferromagnetic order parameter
via

M = [〈q〉]av (9)

with

q = 1

N

N∑
i=1

SiS
0
i (N = L2) (10)

whereS0
i denotes the value of the spin at sitei in one of the two ground-state configurations.

Note that in contrast to the EA-order parameter here is only one fluctuating field involved,
which would in principle reduce the order parameter exponent toβ/2. Since we haveTc = 0
and thusβ = 0 this is not relevant here. The corresponding order parameter susceptibility
is defined via

χL = N [〈q2〉]av. (11)

For the finite-size scaling form of the susceptibility we expect according to (8)

χL(T ) = L2χ̄(L1/νT ). (12)

The second quantity we studied was the disorder averaged Binder cumulant

gL = 1

2

[
3 − 〈q4〉

〈q2〉2

]
av

. (13)

Since this is a dimensionless combination of moments its finite-size scaling form is

gL(T ) = ḡ(L1/νT ). (14)

This quantity provides us with a second independent estimate for the scaling exponentν.
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Figure 2. Plot of the susceptibility atT = 1.4 for L =
10 averaged over 192 samples. We compare the values
of χL(tw) obtained from systems initialized with a ground-
state configuration with those obtained from systems with a
random initial configuration. Obviously the results become
time independent (aside from statistical fluctuations) if both
estimates agree.

We applied single spin-flip Glauber dynamics to perform our simulations with a spin-flip
probability given by

w(Si → −Si) = 1

1 + exp(1E/T )
(15)

with 1E being the energy difference between the new and the old state. Time is measured
in Monte Carlo sweeps (MCS) through the whole lattice.

The estimate of the critical exponents necessitates the determination of the equilibrium
values of the thermodynamic quantities of interest. Due to the slow relaxation of spin
glasses it is difficult to decide whether the values are stationary or not, because it is hard
to discriminate between real- and quasi-stationary values of the functions. This is why we
used a definite criterion analogous to the criterion introduced by Bhatt and Young [4]:

We simulated two replicas of the system, one which has been initialized with a random
configuration and the other with a ground-state configuration. From figure 2 it can be clearly
seen that if both estimates agree we obtained a time-independent value of the susceptibility,
which we took as our equilibration criterion.

3.2. Results

We studied the temperature-dependent scaling behaviour system sizes extending fromL = 6
to L = 12. The number of samples is chosen that approximatelyN · #samples= constant
holds. We simulated at least 128 samples forL = 12.

Figure 3 shows the equilibrium values of the susceptibility for various system sizes.
We could reach the equilibrium value of the susceptibility in the chosen time interval for
T > 1.0 (L > 6) and T > 0.8 (L = 6), respectively. With this data we got an estimate
from the scaling ansatz (12). The best data collapse we obtained (see figure 3) for

ν = 3.4 ± 0.2. (16)

The error bars denote the interval of exponents where we get an indistinguishable data
collapse.

Figure 4 shows the equilibrium values ofgL for the same samples. The equilibrium
value could be reached within the same time interval for some smaller temperature. This
is why the data is more sensitive to changes of the value of the critical exponent. Thus we
obtained the best data collapse for

ν = 3.7 ± 0.1. (17)
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Figure 3. Equilibrium values of the susceptibility depending on temperature and system size.

Figure 4. Results ofgL. Only equilibrium values are shown.

in agreement within the error bars with the value determined above. Concluding we obtain
an average value of

ν = 3.6 ± 0.2 (18)

for the critical exponent from our Monte Carlo simulations. This value agrees well with
the estimate (5) that we obtained from the defect energy calculations in the last section. It
differs substantially from the more recent estimates obtained by a cluster Monte Carlo study
[5] (ν = 2.0 ± 0.2) and a numerical transfer matrix calculation [9] (ν = 2.08± 0.01).

4. Ground-state magnetization

A non-zero external fieldh induces a non-vanishing magnetizationm = N−1 ∑N
i=1 S0

i in
a system with ground state{S0

i }. The relation between magnetization and field strength
is highly non-trivial in general and motivates the introduction of a new exponentδ

characterizing this relation in the infinite system (L → ∞) for small fields (h � J ):

m∞(h) ∼ h1/δ. (19)

The corresponding finite-size scaling form and a scaling relation betweenδ and the already
known exponenty can be obtained by the following argument [16].

If the ground state is non-degenerate the spins are randomly oriented within an
infinitesimal field atT = 0. Hence the magnetizationmL of a finite system in zero field
is a random variable with variance 1/N , implying mL(h = 0) ∼ L−d/2. As a further
consequence of the random orientations the total magnetic moment of a block spin of linear
dimensionL is of orderLd/2, thus the magnetic field on this length scale has to be rescaled
according to

h̃(L) ∼ Ld/2h (20)
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Figure 5. Scaling plot for the ground-state
magnetization: LmL(h) versus Lh1/δ for various
system sizes with 1/δ = 0.675. Note that for high
fieldsh → ∞ the curves have to saturate atL·mL(h →
∞) = L.

in contrast to a ferromagnet, where we would haveh̃(L) ∼ Ldh. For non-zero field (at
T = 0) one would expectmL(h) ·Ld/2 to be a function of the dimensionless ratio of energy
scalesJ̃ (L) and h̃(L) only, thus

mL(h) = L−d/2m̃(Ld/2−yhJ−1) (21)

with m̃(x → 0) = constant. Since forL → ∞ the L dependence of the magnetization has
to drop out it ism̃(x → ∞) ∼ xd/(d−2y). Moreover, in this limit we have to recover (19),
which implies ford = 2

δ = 1 − y. (22)

Rewriting (21) slightly for our our purposes yields

mL(h) = L−1m̄(Lh1/δ) (23)

with m̄(x → 0) = constant and̄m(x → ∞) ∝ x. Note that (23) should hold independently
of the correctness of the above derivation of the scaling relation (22): The length scale
induced by the magnetic field is given byh−1/δ and (23) is simply the finite-size scaling
form one would expect for the magnetization.

With our branch and cut algorithm we are not only able to computem(S, h) for a sample
S for some specific values ofh like other authors did (see Kawashima and Suzuki [15]).
We can evaluate the complete piecewise constant functionm(S, h) for each sample. We
do this by starting ath = 0, computing the ground state, and finding the next increased
value of h for which the current ground state loses optimality using a sensitivity analysis
technique [20]. At that point we compute the new ground state. We do this up to a given
field strength or until saturation occurs.

This technique gives us the (averaged) functionmL(h) for each system sizeL with any
arbitrary resolution. We used systems of sizesL ∈ {10, 20, 30, 40, 50, 60} and computed
the ground states ford105/L2e samples for each sizeL. We judged the data collapse in
a plot mLL versusLh1/δ as shown in figure 5 by visual inspection and using cubic spline
interpolation. In the figure we have included some error bars for theL = 50 and theL = 60
curves to show the typical errors. The errors decrease with decreasing system size, because
of the increasing number of samples.

We obtained the best data collapse at

1/δ = 0.675± 0.005⇒ δ = 1.481± 0.011 (24)

a value that agrees well with the result of the ground-state magnetization study by
Kawashima and Suzuki [15]. This value together with estimatey = 0.281 (5) from the
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defect energy calculation implies that the scaling hypothesis (22) is significantly violated.
Since we estimatedν directly in a Monte Carlo simulation we conclude that it is also not
legitimate to infer from the magnetic exponentδ via (22) and (4) that the thermal exponent
ν should be close to 2 as found in [5, 9].

5. Chaos exponent

One of the peculiar features of spin glasses is their extreme sensitivity with respect to
parameter changes [21], like small temperature, field or coupling variations. For the ground-
state properties this means that a slight perturbation of the initial set of couplings leads to a
complete reorganization of the original ground state over a length scale that depends on the
strength of the perturbation. This overlap length is expected to behave as follows [22, 23].

Let us modify the interactions by replacing each couplingJij by J ′
ij = Jij + δKij . Here

Kij is again a Gaussian distributed random number with variance one and the parameterδ

measures the strength of the perturbation. The comparison of the energy balance1Edefect

for turning over a connected spin cluster of linear extentL with the change of the ground-
state energy1Erandom induced by the random variation of the couplings yields an estimate
for the length scale beyond which the original ground state is unstable with respect to
the perturbation.1Edefect is simply the defect energy, which is proportional toJLy (see
section 2). The contribution to1Erandom coming from theLdS interface spins of the
cluster (dS being the fractal dimension of the interface) is proportional toδLdS/2. Thus
for L > L∗(δ) with

L∗(δ) ∼ (J/δ)−1/ζ with ζ = dS/2 − y (25)

we have1Erandom(L) > 1Edefect(L) and flipping of clusters is favoured by the perturbation.
Thus the ground-state configurations in the original (denoted bySi) and the perturbed sample
(denoted byS ′

i (δ)) become uncorrelated for distances larger thanL∗.
This statement can be quantified by studying the overlap correlation function

Cδ(r) =
[

1

N

N∑
i=1

SiSi+rS
′
i (δ)S

′
i+r (δ)

]
av

. (26)

According to the above-mentioned argument one expects in the limitN → ∞ a scaling
form

Cδ(r) ∼ c̃(rδ1/ζ ). (27)

In figure 6 we show the result of our calculation of the overlap correlation function
Cδ(r). We fixed the system size toL = 50, for which reason one has to neglect the data
points for r > L/4 (note the upwards bending due to the periodic boundary conditions).
For the rest of the data we obtain the best data collapse for

1/ζ = 1.05± 0.05 i.e. ζ = 0.95± 0.05 (28)

which agrees well with the estimate from Bray and Moore [21] obtained in a different way
and by considering smaller system sizes. With the value fory we reported in section 2 the
fractal dimension of the interface of an excitation is given bydS = 1.34± 0.10.

In passing we mention that the dependency ofC(r) on distancer is neither exponential
nor algebraic: it can nicely be fitted with a stretched exponential

C(r) ≈ exp(−ra/b) + exp(−(L − r)a/b) (29)
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Figure 6. Scaling plot of the overlap correlation
function Cδ(r) versusr/L∗ with L∗ = δ−1/ζ . The best
data collapse (for data confined tor < L/4) is obtained
for 1/ζ = 1.05. The system size isL = 50 and the data
are averaged over 400 samples. These were obtained
by creating> 80 reference instances and creating five
random perturbations of strengthδ for each.

Figure 7. Scaling plot of the ground-state overlapQL(δ).
The best data collapse is obtained with 1/ζ = 1.2.

with fit parametersa andb. For instanceδ = 0.1 for L = 50 yieldsa = 0.8 andb = 0.75.
Sincea and b seem to depend on the perturbation strengthδ we do not expect the form
(29) to be universal.

Defining ξL(δ) = ∑L
r=0 Cδ(r) one expects from (27)

ξL(δ) ∼ L · ξ̃ (Lδ1/ζ ) (30)

and in a more direct way for the ground-state overlap [21]QL(δ) = N−1| ∑N
i=1 SiS

′
i (δ)|

QL(δ) = Q̃(δ1/ζ ). (31)

Note thatξL(δ) = LQL(δ). We show a finite-size scaling plot forQL(δ) in figure 7, from
which we estimate 1/ζ = 1.2 ± 0.1. The quality of the data collapse is good (cf figure 2
of [21]).

6. Summary

With the help of an improved branch and cut algorithm we were able to reinvestigate the
critical behaviour of the two-dimensional Ising spin-glass model with a continuous bond
distribution with much better accuracy. We found that the stiffness exponent is given by
y = −0.281± 0.002 implying a correlation length exponent ofν = 3.56 ± 0.02, which
agrees well with our independent estimateν = 3.6±0.2 from Monte Carlo simulations. For
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the latter we introduced a pseudo-ferromagnetic order parameter with the help of exactly
known ground states and analysed its finite-size scaling behaviour at non-zero temperatures.

We hope that our calculation settles the controversy regarding the thermal exponentν

initiated by the cluster Monte Carlo study of Liang [5] and the numerical transfer matrix
study by Kawashimaet al [9]: their values forν are substantially smaller than ours indicating
a violation of the scaling prediction by Bray and Moore [16]. Our results fory andν are
clearly compatible with this scaling predictionν = −1/y.

Furthermore, we determined exact ground states for systems within an external field and
from a finite-size scaling analysis of the magnetization we obtained an independent estimate
for the magnetic exponentδ = 1.48± 0.01. This confirms an earlier observation [15] that
there seems to be a disagreement between the scaling theory [16] predictingδ = 1− y and
the numerical values obtained so far. In particular, this discrepancy does not fade away for
larger system sizes, which we were able to study here. Therefore our conclusion is that
there must be a deeper reason for this disagreement than some finite-size effect which might
disappear if one only considers large enough system sizes.

Moreover, we calculated the overlap correlation function by perturbing the bonds slightly
in a random manner. We found a chaos exponentζ = 0.95±0.05 in agreement with earlier
estimates from the analysis of smaller system sizes.

Finally, a few words concerning future perspectives: first we would like to point out
that in principle it is possible to improve the system sizesand quality of statistics even
further with the algorithm we have at hand, provided we could simply run it on a powerful
parallel machine. However, our algorithm relies heavily on a commercial linear program
solver for which we do not have a license to run it on hundreds of processors of a, for
example, Paragon XP/S10. On such a machine we could possibly obtain an acceptable
quality of statistics forL = 100, for which we can presently do only a few samples in
reasonable time on individual workstations.

As has been mentioned in the introduction, recently a finite temperature phase transition
in the site-disordered Ising spin glass has been reported [2]. Since the critical temperature
is pretty small, though, Monte Carlo studies might be hampered by equilibration problems.
Therefore this result could be put on a much firmer base, if the stiffness exponenty would
indeed turn out to be positive in this particular two-dimensional model and so signaling the
stability of the spin-glass ordered phase for small, non-vanishing temperatures. We intend
to answer this question with our algorithm soon.

Furthermore, an obvious and highly rewarding step would be to perform the same study
in three dimensions. To calculate ground states for the three-dimensional Ising spin-glass
model is an NP-hard problem and the two-dimensional problem we have studied here is
NP-hard, too (note we have a continuous bond distribution, periodic boundary conditions
and an external field). However, although both questions belong to the same class ofhard
combinatorial problems, the three-dimensional Ising spin glass ismuchharder, which means
that the operation count will be much higher: either the power of theL, the system size, or
the coefficient in the exponent will be larger for three dimensions than for two dimensions.
Nevertheless we are currently undertaking efforts in this direction, our progress in this
matter will be reported elsewhere.
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