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Abstract. The solid-on-solid model provides a commonly used framework for the description
of surfaces. In recent it has been extended in order to investigate the effect of defects in the
bulk on the roughness of the surface. The determination of the ground state of this model leads
to a combinatorial problem, which is reduced to an uncapacitated, convex minimum-circulation
problem. We will show that the successive shortest path algorithm solves the problem in
polynomial time.

1. Introduction

In the past twenty years there has been a fruitful collaboration between theoretical physicists
and researchers from the field of combinatorial optimization on the determination of the
global energy-minimum (ground state) in various spin-glass models. The observation that
the ground state of the Ising model can be found by solving an certain max-cut problem, has
drawn the attention of physicists to the methods developed in graph theory [1]. Conversely
this application has stimulated research into the max-cut problem itself [2, 3]. It the same
spirit it has been shown that the max-flow problem arises in the context of the random-field
Ising model [4].

The solid-on-solid (SOS) modebn which we will comment here, is a microscopic
approach to the description of the aggregation of atoms on a crystalline substrate. In
contrast to the above mentioned Ising models, where the dynamic variables can take on
only two values, in the SOS model these variables are integer valued. At first sight this
fact seems to complicate the optimization problem. However, as with the Ising model, the
underlying structure can be represented by a graph. We will show in this letter that in the
planar case the problem of minimizing the surface energy can be reduced to the problem
of finding a network circulation that minimizes a convex objective function.

The growth of surfaces is a subject of intense research in chemistry and solid state
physics. A deeper understanding of the relevant processes has applications in the fabrication
of semiconductors and various other fields where the precise shape of the surface is crucial
[5]. In the simple approach taken by the SOS model the lattice structure of real crystals
is taken into account by subdividing the surface into discrete sites (e.g., unit squares)
on which particles, modelled by unit cubes, can aggregate [6, 7]. There are several
possible parametrizations of the model. The one which is commonly used for theoretical
investigations yields the surface energy

H(h) =) (hi —hj)>. @)
)
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Hereh; € Z is the height of the surface at siteand (ij) indicates all pairs of nearest
neighbour sites on e.g. a square lattice, mimicking the crystalline structure. Obviously the
ground state of this model is flat, i.6; = constant for alli. Thermal fluctuations lead
to a roughening transition at some temperature above which the height-height correlation
function increases logarithmically with the distance.

One assumption of this model is the flatness of the underlying substrate, i.e. a bulk-
ordered crystal. Due to the presence of quenched defects one should consider the intriguing
qguestion of what the effect of a disordered substrate on the thermodynamic (and non-
equilibrium growth) properties of the surface might be [8]. It has been suggested [9]
that a disordered substrate be introduced into the model (1) by providing each of the height
variables with a real-valued offsét € R, which is generally chosen to be from (.5, 0.5]:

hi '=n; +d; with n; € Z. (2)

This model has some new features not contained in the original one. The influence
of the disorder tends to roughen the surfat®o at low temperaturesin particular a new
phase has been predicted [9, 10], where height—height correlations diverge more strongly
with the distance than logarithmically. Since this is a low-temperature phase the properties
of the ground state of (1) with (2), which is no longer trivial due to the competition between
the elastic term(h; — hj)2 and the random offsetg, are of crucial interest.

The letter is organized as follows. Section 2 introduces the reduction to a convex
network-flow problem and in section 3 we will then show that (1) can be minimized in
strictly polynomial time using the techniques introduced in [11]. We use standard notation
from graph theory, and refer the reader to [12] for the definitions.

2. Reduction to a network-flow problem

Let D = (V, E) be a directed graph. The optimization problem we consider is

min H (n) = Z ((di +n;) — (d; 4+ nj))? st. n;eZ forall ieV. )
(ij)eE
Using the definitionss;; := d; — d; andx;; := n; — n; the objective function can be
written as

H(X)= Y (dij +x;j)° @
(j)eE

We intend to reformulate the original optimization problem in terms of the variables
x;;. Obviously we must demang; € Z for all edges(ij) € E. Furthermore, since the
x;; describe potential differences in the scalar field given by a set of height variables
it is clear that the sum of the;; along any oriented cycle on the surface has to be zero.
The following theorem establishes this constraint formally in the special case, Whire
a planar graph.

Theorem 1let D = (V, E) be a planar, directed graph afbd = (V*, E) be the associated
dual graph. There exists a set of node-variables. . n|y| such thatX = (xij)E = (ni—nj)E
if and only if X satisfies

Z Xij — Z x;=0 for all dual nodesi € V*. (5)
(ij)eE (ji)eE

A proof of this theorem can be found in [12, chapter 5].
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Given a vectorX and a node we call the number
gi(X) = Z Xij — Z Xji
(ij)eE (ji)eE

the excess of a node A complete formulation, which, for planar graphs, is equivalent
to (3) is thus given by

MinH(X) = Y (di; + x;j)? (6)
(ij)eE

S.t.

Xij €L for all edges (ij) € E @)

gi(X)=0 for all dual nodesi € V*. (8)

A vector X satisfying these equations is called a circulation [13]. The problem is a convex
network-flow problem in the dual graph without any capacity constraints (the flow-variables
x;; on each edge can take on arbitrary positive or negative values). We note that this
reduction, as well as the results in the following section, more generally hold for any
objective function, which can be written as
H(X)= Y 0;(x;))
(ij)€E

where thes;; are convex functions with a minimum.

3. Algorithm and complexity

The algorithms which solve the convex flow problem [11] are not strictly polynomial if
there are no capacity constraints. We will show in this section that in the special case of
problem (6) the time complexity of the successive shortest path algorithm for convex flow
can be bounded by a strict polynomial. For this purpose we start with a brief review of the
algorithm, a more detailed description can be found in [13].

The underlying philosophy is to search for the solution in a subsgtofn which each
vector X yields a lower bound for the optimum of (6) but does not necessarily satisfy the
flow-constraints (8). The flow balance at all nodes has to be approached iteratively by the
algorithm. To characterize this subset, one introduces the notion of dual feasibility:

Definition 1.Let H(X) = Z([j)eE 0;j(x;;) be a sum of functions;;(x) of the components
x;; of X. AvectorX is called dual feasible, if there is a numberfor every node (potential
function), such that for all edgegj) € E the reduced-cost inequalities
i (xij) = 0 (xij + 1) — 0 (xij) — 7w + 7 =2 0 ©
;i (xij) =0 (xi; — 1) — 0;;(xij) +; — 7 =2 0
are satisfied.

Theorem 2Let X be a dual feasible vector and leéf,, be an optimal solution of
problem (6), thend (X) < H (Xopy.

The proof is given in [13,chapters 9 and 14.3]. An immediate consequence of this
theorem is:

Corollary 1. A dual feasible vectorX satisfying (7), (8) is an optimal solution of
problem (6).
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In order to apply the successive shortest path algorithm we determine a dual feasible
initial solution. Here we can choose the vecity € Z£, whose components minimize the
functions6;;(x) and the potential functiom := (r;)!"! = 0. Note that, whenr = 0, the
reduced costs (9) simply measure the change of the objective function triggered by a change
of the (ij) component by plus (minus) one. These are clearly all positivé fhinimizes
every summand of (6).

The initial solution does in general not satisfy the flow-equations (8). The expess
of all nodes is then balanced by iteratively augmenfihglong paths between supply nodes
(g;(X) > 0) and demand nodeg;(X) < 0), which are shortest paths with respect to the
reduced costs. The variableg associated with the edges along such a path are changed
by exactly one unit (the sign depends on the orientation of the edge in the path).

Due to the non-linearity of the objective every update Xofleads to a new set of
arc weights. However, the convexity of the individual functiofis ensures that the
inequalities (9) still hold after every augmentation, wheitx;;) is replaced by (x;; +a)
with a € {—1, 0, 1}. Therefore the algorithm works correctly because it always maintains
dual feasibility of X with respect to the current set of arc weights.

procedure successive shortest path

begin
X =min{H(X)|X e ZF}
7=0

while there is a node with g,(X) > 0
compute the reduced costs(X)
determine the shortest path distandgs from s to all other nodes

with respect to the reduced costs

choose a node with g,(X) <0
let w(s, ) denote the shortest path vector franto ¢ in D
X=X+ w(s.,t)
T=m—d

end

end

The complexity of the algorithm i© (G (Xs))S(n, m). HereS(n, m) is the time needed
for a shortest path search in a network with positive arc weights and

1
G(X9) i= 5 ) 1gi(Xs)|

counts the number of paths needed to balance the excess of all nodes. The following lemma
then yields an upper bound for the value®{Xs).

Lemma 1.The vectorXs € Z£ that minimizesH (X) (equation(6)) satisfie& (Xs) < |E|.
Proof . If the integrality and flow constraints are neglected the global minimuid ©f) =
> jer(dij + x;)? is attained at-d = (—d;;) with H(—d) = 0. If we now take into
account the integrality—constraints it follows from the convexity of @#e + x; ,-)2 that the
minimum.x;; € Z is attained in eithef—d;;1 or [ —d;;]. We thus find that

x5 — (=dip)| < L.
From theorem 1 we obtai&(—d) = 0 and thus

G(Xe) = G(Xe) — G(—d) < Y |x5 — (=dip)| < |EL. O
(i)eE
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4. Computer experiments

We implemented the successive shortest path algorithm for the convex-flow problem. The
program needs less than 80 s on a Sparc Workstation to solve instances of grid graphs with
128x 128 nodes and randomly chosen offsets to optimality. Grid graphs of size 200

nodes take about 10-15 min. We used C++ for our implementation and made use of the
LEDA class library [14]. The physical results, which have been obtained with this program,
together with their theoretical interpretation will be reported elsewhere.
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