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LETTER TO THE EDITOR

A hierarchical model for ageing
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Abstract. We present a one-dimensional model for diffusion on a hierarchical tree structure. It
is shown numerically that this model exhibits ageing phenomena although no disorder is present.
The origin of ageing in this model is therefore the hierarchical structure of phase space.

Strongly disordered systems have been a focal point of research in recent years. Among
the most studied materials are magnetic systems with impurities and especially spin glasses
[1]. Their dynamics can be characterized by glassy features which are also encountered
in many different systems such as structural glasses [2], polymers in random potential [3],
protein folding [4], dirty superconductors [5], charge density waves with impurities [6] and
also areas like biological evolution [7].

Spin glasses are magnetic materials with structural disorder, e.g. alloys of a magnetic
and a non-magnetic metal as for example AgMn and CuMn. An overview of different spin
glass materials can be found in [1]. In the beginning, 20 years ago, the main interest was to
find the equilibrium properties of spin glasses, since it was expected that a physical system
reaches its equilibrium in finite time. In spin glasses, however, the dynamics is governed
by non-equilibrium properties such asageingwhich was found almost ten years later [8].

In this context ageing describes the striking effect that magnetic properties in spin
glasses depend drastically on their history (or age) in the frozen phase. Although it is
mainly referred to ageing in the context of spin glasses it can also be observed in other
disordered substances [9].

It is still a major task in theoretical physics to understand the origin of ageing,
although many different models have been proposed in recent years. Most of these are
phenomenological theories like the droplet model [10], the domain growth theory [11] or
the trap model [12]. A different approach is given by mean-field models of Ising spin
glasses [13] and models with a hierarchical structure in phase space [14]. Most of these
models are rather successful in fitting experimental data although some of them differ in
their final conclusions concerning the scaling of time-dependent properties.

In order to discriminate between these differing scaling assumptions many experiments
have been carried out [15], but the situation remains unclear. Therefore numerical studies
play an important role, as one can obtain detailed information about the dynamical processes
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and the spatial correlations in glassy systems. Much progress has been obtained recently
in the numerical studies on ageing in spin glasses and other disordered systems [16]. In
numerical investigations the autocorrelation function can be calculated directly and one finds
a crossover from a slow quasi-equilibrium decay fort � tw to a faster non-equilibrium
decay for t � tw. The functional form of these decays, e.g. for the three-dimensional
Edwards–Anderson (EA) spin glass model, is algebraic and has the scaling form

C(t, tw) = t−x(T )8T

(
t

tw

)
(1)

with 8T (y) = cy , for y = 0, and8T (y) ∝ yx(T )−λ(T ), for y → ∞ [16]. As an important
result one gets two different exponents which are characteristic of the two dynamic regions.

Since the algebraic decay of correlation functions is also known from diffusion models
in ultrametric hierarchies [17, 18], which can be solved analytically, and the analogy to
the structure of Parisi’s symmetry-breaking scheme in the solution of the EA-model, a
hierarchical ansatz to explain ageing phenomena seems rather natural. In recent years
different hierarchical models for ageing have been proposed [14]. Most of these models
incorporate randomly chosen distributions of diffusion rates and, as a consequence, random
energy barriers and trapping times. With further assumptions concerning the functional
form of these distributions one gets ageing phenomena like the crossover from quasi- to
non-equilibrium dynamics with an algebraic scaling form according to (1).

Taking long-range diffusion in an ultrametric space [17] as a starting point one can
construct a hierarchical model which shows ageing phenomena as a direct consequence of
the structure and not of random properties. This model will be presented in the next section
followed by numerical results and some conclusions.

In contrast to the known hierarchical models for ageing, the presented model incorporates
no kind of disorder or randomly distributed energies. The main idea is to take into account
the different types of dynamics found in spin glasses. At short time scalest � tw one finds
quasi-equilibrium dynamics and at long timest � tw non-equilibrium dynamics with a
crossover region for timest ∼ tw. These different types of dynamics are commonly related
to regions in phase space which are accessible at different time scales.

A rather natural ansatz to include these different types of states is to extend the diffusion

Figure 1. A hierarchical tree structure with three types of states characterized by different line
styles: thick full lines represent the surrounding non-equilibrium tree, dashed lines represent the
quasi-equilibrium subtrees and thin full lines represent the attractor region. The corresponding
branching numbers aren = 3, m = 2 andna = 4; the height of the tree isk = 3.
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on a hierarchical tree structure in which every state is equal by a more sophisticated tree
structure which has at least two different types of states. The first type characterizes the
quasi-equilibrium dynamics. These states are grouped as leaves in regularly branching trees
of varying heights where standard long-range diffusion in an ultrametric space takes place
[17]. The second class of states is found in a regular tree structure in such a way that
the different equilibrium trees are embedded in this surrounding tree, i.e. every branching
point of the non-equilibrium tree is the root of a quasi-equilibrium subtree. The resulting
structure is shown in figure 1, where a third class of states is included in order to represent
some kind of attractor states for the equilibrium trees. The overall height of the tree isk,
which equals the number of different hierarchies in the tree structure. Figure 1 shows a
tree of heightk = 3 and the different trees can be recognized by the line styles, i.e. the
thick full lines represent the surrounding non-equilibrium tree with the branching number
denoted byn(= 3), dashed lines represent the quasi-equilibrium tree with the branching
numberm(= 2) and thin full lines represent the attractor states with the branching number
na(= 4).

The resulting diffusion rates in the master equation, defining the dynamics in the whole
tree structure, are chosen to be unsymmetric which takes into account the different classes
represented by the states. Let the system start at an arbitrary non-equilibrium stateQ0. We
then denote the probability to be found in the whole subtree of heightl (16 l 6 k) including
Q0 with Ql , the probability that the system can be found in a state of a quasi-equilibrium
subtree which can be reached from the initial state by crossingl hierarchies withPl and
finally the probability to be found in the attractor states corresponding to the equilibrium
subtreePl with Ol . The allowed long-range hops in this tree structure are formulated in the
following way [19].

(i) From a state of the non-equilibrium type every other state in the tree can be reached
with a rateri with i being the number of hierarchies between the states.

(ii) From an equilibrium state inPl every state withinPl can be reached with a rateri
(1< i 6 l) and outside ofPl every state in the tree outside ofQl is allowed with the same
diffusion rate as for the non-equilibrium states.

(iii) From the attractor statesOl hops to every state in the tree are allowed, but with
the ratesl into the corresponding equilibrium treePl and with the rateri (l 6 i 6 k) into
all other states.

These rules include the fact that the system has to cross one hierarchy more in order to
leave an equilibrium subtree because the other states withinQl are excluded by the rules.
This asymmetry is chosen to generate the equilibrium subtreesPl as dynamical traps with
characteristic escape times corresponding to their height. Using these dynamical rules the
master equations can be formulated in a closed way

d

dt
Pl(t) = −3l Pl(t)+ Bl�l(t)+ Bl(Ql(t)− Pl(t)−Ol(t))rl−1+ BlslOl(t)

d

dt
Ol(t) = −3l Ol(t)+ Cl�l(t)− BlslOl(t)− (Al − Bl − Cl)rl−1Ol(t)

+Cl(Ql(t)− Pl(t)−Ol(t))rl−1

d

dt
Ql(t) = −3l Ql(t)+ Al�l(t). (2)

To write the equations in a compact form the following abbreviations were used:

3l =
k−1∑
i=l
(Ai+1− Ai)ri �l(t) =

k−1∑
i=l
(Qi+1(t)−Qi(t)− Pi+1(t))ri . (3)
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The constantsAl , Bl and Cl denote the number of states in a whole subtreeQl , an
equilibrium subtreePl and the attractor statesOl , respectively. The diffusion ratesrl
andsl are as mentioned above.

The master equations can be represented by a matrix which is an upper triangular matrix
despite some entries on the lower next-diagonal. In principle this system can be solved for
arbitrary numbers of states and diffusion rates. In order to refer to some exact results known
for the ‘classical’ diffusion models [17] the branching numbers of the states are taken to be
constant. Therefore the number of states as defined above are

Ai = ni +mn
i −mi
n−m + na

nia− ni
na− n Bi = mi Ci = nia (4)

with the branching numbersn, m andna for the non-equilibrium, equilibrium and attractor
states, respectively. If the ratio of the diffusion rates is chosen to be constant, one simply
getsrl = rl andsl = sl . With this choice the master equations are solved numerically and
some of the results are presented in the following section. Analytic calculations concerning
the exact solution of the model can be found elsewhere [19].

Ageing phenomena are common for magnetization curves in real spin-glass materials.
The corresponding function describing the main dynamical effects for spin or diffusion
models is the autocorrelation function. As for magnetization experiments it is also possible
to perform waiting time-dependent calculations numerically. For such purposes one has to
define the correct waiting time-dependent autocorrelation functionC(t, tw) which is, in the
case of this hierarchical model, given by

C(t, tw) =
k∑
l=1

Pl0(t)

k∑
i=l
cilPl(tw, i)+Q0(t)

k∑
i=0

ci0Q0(tw, i)+
k∑
l=1

Ol0(t)

k∑
i=l
cilOl(tw, i)

(5)

wherePl(tw, i) is the probability that the system has reached an equilibrium subtree of
height l with i hierarchies between this subtree and the starting site after the waiting time
tw has elapsed. The constantcil denotes the number of such subtrees to be found. The
function Pl0(t) describes the probability that the system is still in the same state or has
returned to it after the additional timet has elapsed as it was in at the end of the waiting
time tw. The probability functions of the other states are denoted in the same way.

The waiting time-dependent autocorrelation functionC(t, tw) as defined in (5) is the
focal point of interest in the following. The system parameters are the branching numbers
m, n, na and the diffusion ratesr ands. These parameters can be varied in order to obtain
numerical data.

Figure 2 shows the waiting time-dependent autocorrelation functionC(t, tw) for
parameter values as given in the caption. A crossover from slow dynamics for small
times to a faster decay at large times characteristic of ageing can be seen very clearly. The
crossover region is located at timest ∼ tw. The decay obeys an algebraic time dependence
although some oscillations characteristic of self-similar systems [17] occur, especially in
figure 2(a). These oscillations show a strong effect on the decay exponent which can be
calculated via the logarithmic time derivative of the autocorrelation function

γ = −∂ lnC(t, tw)

∂ ln t
. (6)

The resulting exponentγ of an algebraic decayC(t) ∝ t−γ is shown in figure 3. The
strong effect of the oscillations of the autocorrelation function on the exponent can be seen
in part (a) of figure 3. As shown in part (b) the mean valueγ0 of the exponent taken
over one period is constant for the two different time regimest � tw and t � tw. So
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Figure 2. The waiting time-dependent autocorrelation functionC(t, tw) against timet for
various tw. The system parameters are as follows:m = 3, n = 5, na = 7, r = 0.02, s =
0.3; tw = 104, 107, 1010, 1013 in (a) andm = 2, n = 3, na = 9, r = 0.04, s = 0.5; tw =
102, 104, 106, 108 in (b).

Figure 3. The exponentγ as defined in equation (6) for the autocorrelation functionC(t, tw)

using the same parameter values as in figure 2(a). The left diagram shows the exponent with the
strong oscillations and the right diagram shows the mean valueγ0 of the exponent calculated
over one period of oscillation.

the autocorrelation function satisfies the scaling relation (1) with temperature independent
exponentsγe for t � tw andγn for t � tw.

Since the branching numbers and the diffusion rates play an important role in this model
the exponents will at least depend on some of these parameters. The dynamics of this model
is chosen to be close to the model solved in [17] so it is expected that the values of the
exponentsγe and γn will be related to the decay exponent calculated analytically for the
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simple diffusion model [17], i.e.

0 = lnM

| lnR| − lnM
for R <

1

M
(7)

whereM is the branching number in the tree andR is the diffusion rate for crossing one
hierarchy. The relationRM < 1 leads to an algebraic decay of the autocorrelation function,
while one gets an exponential decay in the other case.

Figure 4. The exponentsγe andγn against the diffusion rater for different branching numbersm.
The values ofm are marked with different symbols:m = 2 (×), 3 (�), 4 (◦), 5 (?), 6 (�), 7 (4).
The values oftw ands vary, n = 7 andna = 9.

The exponentsγe and γn for different branching numbersm and diffusion ratesr are
shown in figure 4. The dotted curves in diagram (a) mark the equilibrium exponent0

according to equation (7). In the right diagram theγ -axis is shifted by one and the curves
mark the values of0+1. In both diagrams the numerical values are in excellent agreement
with the theoretical prediction. As a consequence the values ofn, na and s are irrelevant
for the dynamical behaviour of this model. This aspect and its implications will be further
discussed in the next section.

A diffusion model on a hierarchical tree structure without any disorder was introduced.
It was shown that the waiting time-dependent autocorrelation functionC(t, tw) shows the
characteristic dependence of the waiting timetw known as ageing in spin glasses. Since the
decay of the autocorrelation function is algebraic the scaling law (1) is satisfied with two
constant exponents. The influence of the parameters on the two exponents was investigated
and an excellent agreement with the equilibrium exponent0 was found for short times
t � tw. After the crossover region a non-equilibrium exponent, in good agreement with
0 + 1, was found. The dynamic interpretation can be subsumed in the following way.
• During the waiting timetw the system gets ‘trapped’ in an equilibrium tree of height

l corresponding to a trapping timeτ ∼ tw.
• Starting the measurement ofC(t, tw) after the waiting time causes the system to stay

in this equilibrium subtree of heightl.
• The short time dynamicst � tw is therefore characterized by equilibrium diffusion

and the equilibrium exponent0 is found.
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• In the crossover regiont ∼ tw the system slowly escapes out of this trap and the
resulting exponent rises.
• The long time behaviourt � tw corresponds to non-equilibrium dynamics with an

exponent0 + 1.
• The attractor statesOl together with a large diffusion rates forces the system into the

equilibrium subtrees.
• Since the system can be found in states of the equilibrium subtrees most of the times

the dynamics is completely governed by the branching number of the equilibrium states.
The presented model includes no kind of disorder but solely a hierarchical structure of

phase space, so it is obvious that the hierarchical organization of traps or valleys in the
energy-landscape plays an essential role in explaining the ageing phenomena. The results
presented here are in good agreement with the scaling assumption (1) and coincide with the
results of other hierarchical models for ageing [14] and numerical investigations [16].

Since the world of spin glasses and ageing is much richer than that discussed here,
there are of course some additional phenomena which should be examined. In relation
to experimental results one should consider temperature steps or more sophisticated
temperature cycles. The model defined above is not directly temperature dependent, but with
a straightforward relation between temperature and diffusion rates one can map temperature
steps on corresponding steps in the diffusion rates [19]. This should be the focus for further
investigations.

This work has been performed within the research program of the Sonderforschungsbereich
341 (Köln-Aachen-J̈ulich). HR’s work has been supported by the Deutsche
Forschungsgemeinschaft (DFG).
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