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Abstract
We discuss the application of polynomial combinatorial optimization
algorithms to extract the universal zero-temperature properties of various
disordered systems. Dijkstras algorithm is used for models of non-directed
elastic lines on general regular graphs with isotropically correlated random
potentials. The successive shortest path algorithm for minimum-cost-
flow problems is applied for the study of ground state properties and the
entanglement of many elastic lines in a disordered environment and the
disorder-induced loop percolation transition in a vortex glass model. The pre-
flow-push algorithm for minimum-cut–maximum-flow problems is used for
the investigation of a roughening transition occurring in a model for elastic
manifolds in a periodic potential in the presence of point disorder.

PACS numbers: 74.60.Ge, 05.40.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solid materials which contain a substantial degree of quenched disorder, so-called disordered
systems, have been an experimental and a theoretical challenge for physicists for many decades.
The different thermodynamic phases emerging in random magnets, the aging properties
and memory effects of spin glasses, the disorder-induced conductor-to-insulator transition
in electronic or bosonic systems, the collective behaviour of magnetic flux lines in amorphous
high-temperature superconductors and the roughening transition of a disordered charge density
wave systems, are only a few examples for these fascinating phenomena that occur due to the
presence of quenched disorder.

Analytic studies of models for these systems are usually based on perturbation
theories valid for weak disorder, on phenomenological scaling pictures or on mean-field
approximations. Therefore the demand for efficient numerical techniques that allow the
investigation of the model Hamiltonians of disordered systems has always been high. Three
facts make life difficult here: (1) the regimes, where disorder effects are most clearly

0305-4470/03/000001+15$30.00 © 2003 IOP Publishing Ltd Printed in the UK 1

http://stacks.iop.org/ja/36/1


2 H Rieger

seen, are at low temperatures—and are even best visible at zero temperature; (2) the
presence of disorder slows the dynamics of these systems down, they become glassy, such
that for instance conventional Monte Carlo or molecular dynamics simulations encounter
enormous equilibration problems; (3) any numerical computation of disordered systems has
to incorporate an extensive disorder average.

In recent years more and more model systems with quenched disorder were found that
can be investigated numerically (1) at zero temperature, (2) without equilibration problems,
(3) extremely fast, in polynomial time (for a review on these developments see [1, 2] and [3]
for an introduction to the non-expert). This is indeed progress, which became possible by the
application of exact combinatorial optimization algorithms developed by mathematicians and
computer scientists over the last few decades. This gift is not for free: first a mapping of the
problem of finding the exact ground state of the model Hamiltonian under consideration onto
a standard combinatorial optimization problem has to be found. If one is lucky, this problem
falls into the class of P-problems, for which polynomial algorithms exist. If not, the intellectual
challenge for the theoretical physicist remains to reformulate the model Hamiltonian in such
a way that its universality class is not changed but a mapping on a P-problem becomes
feasible.

In this paper, we review some of the most fruitful applications of polynomial algorithms
from the realm of combinatorial optimization to various problems in the statistical physics
of disordered systems. The next section presents the application of Dijkstras algorithm for
finding shortest paths in weighted networks to the model of a non-directed polymer in a
disordered environment with isotropical correlations. Then, in sections 3 and 4, we discuss
minimum-cost-flow problem on weighted graphs and its solution via the successive shortest
path algorithm and apply it to the entanglement transition of elastic lines in a disordered
environment and to the loop percolation transition in a vortex glass model. In section 5 we
focus on the minimum-cut–maximum-flow problem and discuss among its many applications
the roughening transition of elastic media in a disordered environment. A discussion closes
this paper in section 6.

2. Polymers in a disordered environment and Dijkstras algorithm

A well-studied model of a single elastic line [4], like an individual polymer or a single magnetic
flux line in a type II superconductor, in a disordered environment is the following: if one
excludes overhangs (and by this also self-overlaps) of the elastic line one can parametrize its
configuration by the longitudinal coordinate z. The line configuration can then be described by
the transverse coordinate r(z) as a function of z. The presence of disorder is usually modelled
by a random potential energy V (r, z) and the ground state configuration of the line is highly
non-trivial due to the competition between the elastic energy, that tends to straighten the line,
and the random energy, that tries to bend the line into positions of favourable energy,

Hsingle-line = Helastic + Hrandom =
∫ H

0
dz

{
γ

2

[
dr
dz

]2

+ V [r(z), z]

}
(1)

where H is the longitudinal length (not the proper length) of the line. The random potential
energy is a Gaussian variable with prescribed mean and correlations 〈〈V [r, z]V [r′, z′]〉〉 =
g(R − R′), where R = (r, z) and 〈〈· · ·〉〉 denotes the average over the disorder.

A lattice version of this continuum model is the directed polymer model: the lines
correspond to directed paths on a hyper-cubic lattice that start at a specific lattice site, say
(0, 0, . . . , 0) and proceed only in the (1, 1, . . . , 1) direction along the bonds. The energy
contribution for a path passing bond i of the lattice is a positive random variable ei and the
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total energy of a path P is simply

Hlattice
single-line =

∑
i∈P

ei =
∑

i

eini (2)

where ni = 1 if the path passes bond i (i.e. i ∈ P) and ni = 0 otherwise.
We are interested in isotropically correlated disorder and consider the problem on a

non-directed (square) lattice (i.e. paths can pass any bond in both directions) in order not to
exclude overhangs right from the beginning. In case of uncorrelated disorder overhangs were
shown to be irrelevant [6], but for isotropically correlated disorder this is not clear. We define
the latter to decay algebraically with the spatial distance of the bonds

〈〈ei − ej〉〉 = |Ri − Rj|2α−1 (3)

where Ri is the spatial position of bond i, and we generate correlated random numbers using
a well-established numerical procedure [5].

We calculate the exact ground states of the Hamiltonian (2) or optimal paths using
Dijkstras algorithm (note that all energies ei are positive). This simple polynomial algorithm
works as follows: let V = {1, . . . , Ld} be the set of lattice sites and A = {(i, j)|i, j ∈
V nearest neighbours} the set of bonds. The algorithm increases successively a subset S of
sites for which the optimal path starting at the fixed site s is known. Obviously initially
S := {s}. We denote the energy of the optimal path starting at s and terminating at i with E(i)

and since all optimal paths can be constructed via a predecessor list, we keep track of this list,
too, via an array pred(i), denoting the predecessor site of site i in a shortest path from s to i:

algorithm Dijkstras
begin

S := {s}; S̄ := V \{s};
E(s) := 0, pred(s) := 0;
while |S| < |V | do
begin

choose (i, j) : E(j) := mink,m{E(k) + e(k,m) | k ∈ S,m ∈ S̄, (k,m) ∈ A};
S̄ := S̄\{j}; S := S ∪ {j};
pred(j) := i;

end
end

In figure 1 we show examples of the set {i} of lattice sites that are end points of optimal
paths starting from a fixed initial site and having a total energy E(i) less than a given value
Emax. For uncorrelated disorder the surface of this set is roughly a semi-circle, whereas for
strongly correlated disorder the surface becomes topologically more complicated.

The universal properties of the optimal paths are typically described by the scaling of
two characteristic quantities: the average transverse fluctuations 〈〈r2〉〉 ∝ Hν and the energy
fluctuations 〈〈E2〉〉 ∝ Hω, where H is the longitudinal distance between starting point and end
point of the paths. By computing the optimal paths for several thousands of samples for a
given disorder correlation exponent α and for a given longitudinal distances H and fitting the
resulting data for transverse and energy fluctuations to the expected power laws, we can extract
the exponents ν and ω (the details of these computations will be published elsewhere [7]).
The resulting estimates in 2D are shown in figure 2 [7]. Although the number of overhangs
in the optimal paths we computed in the non-directed case increased with α (i.e. increasing
correlations) the fraction of bonds contributing to overhangs scaled to zero for all values of
α we considered. Hence overhangs appear to be irrelevant also in the presence of correlated
disorder.
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(a) (b)

(d )(c)

Figure 1. Example for the growth front of the non-directed polymer for uncorrelated disorder ((a)
and (b)) and correlated disorder ((c) and (d); α = 0.4). The black pixels indicate the lattice sites
of the (square) lattice that are connected via optimal paths to the offspring (centre of the top line)
with energy less than a given value.
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Figure 2. Numerical estimate of the roughness exponent ν (left) and energy fluctuation exponent
ω (right) as a function of the correlation exponent α. The straight lines are at exactly known
values ν = 2/3 and ω = 1/3 for uncorrelated disorder. Around α = 0 the correlations of the
disorder become relevant. The insets show the difference of our estimates between the directed
and non-directed case.

3. Entanglement transition of elastic lines in a disordered environment

When one puts interacting elastic lines together into a finite system with a given density of lines
they will show interesting collective behaviour. Examples are the entanglement of magnetic
flux lines in high-Tc superconductors in the mixed phase [8] and the entanglement of polymers
in materials such as rubber [9]. The degree of entanglement of the lines usually manifests itself
in various measurable properties such as stiffness or shear modulus in the case of polymers and
in transport or dynamical properties for magnetic flux lines in superconductors. A theoretical
description of these line systems can be based on the single-line Hamiltonian (1) plus an
appropriate line interaction term,

Hmany-lines =
N∑

i=1

H(i)
single-line +

∑
i<j

∫ L

0
dz

∫ L

0
dz′ Vint[Ri (z) − Rj (z

′)] (4)

where Ri (z) = (ri (z), z) is the spatial position of the infinitesimal line segment dz of the ith
line. If the interactions Vint[Ri (z) − Rj (z

′)] are short ranged (i.e. in case of flux lines the
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screening length is small compared to the average line distance) or just hard-core repulsive, and
the random, δ-correlated disorder potential Vr [ri (z), z] in (1) is strong compared to the elastic
energy (∝ γ ) this continuum model reduces to a lattice model reminiscent of the single-line
lattice model (2),

Hlattice
many-lines =

∑
i

eini (5)

where ni = 1 if a line passes bond i and ni = 0 otherwise and the positive random variable
ei is the energy cost for a line segment to occupy bond i. The hard-core constraint is thus
enforced on the bonds but for the sake of an easier formal description we allow the lines to
touch in isolated points, the lattice sites. The lines live on the bonds of a simple cubic lattice
with a lateral width L and a longitudinal height H (L × L × H sites) with free boundary
conditions in all directions. Each line starts and ends at an arbitrary position on the bottom
respective top planes. The number N of lines threading the sample is fixed by a prescribed
density ρ = N/L2. For a single line N = 1, one recovers the non-directed polymer model
(2). The random bond energies are uniformly distributed over the interval [0, 1].

Note that the allowed configurations of the bond variables ni are only those that are
identified with lines threading the samples (or loops inside the sample, which, however, cost
energy and therefore do not occur in the ground state), which means that the number of
occupied bonds connected to a lattice site that lies neither on the top nor on the bottom plane
has always to be even. If we connect all sites on the top to an extra site, called the source, and
all sites on the bottom to another extra site, called the target, then the latter statement remains
true also for the top and bottom plane. We can now say that N lines start at the source node
and terminate at the target node, or, in network flow jargon, the feasible configurations of the
variables ni constitute a flow with zero excess on all lattice sites and an excess +N and −N

for the source and target nodes, respectively.
Thus the determination of the ground state configuration of the N-line problem with the

Hamiltonian (5) is a minimum-cost-flow problem, which can be solved with a successive
shortest path algorithm [1–3]. In essence one starts with the zero flow ni = 0, corresponding
to zero lines in the system, and sends successively one unit of flow from the source to the
target, corresponding to adding one line after the other to the system. This has to happen
with the minimal energy, i.e. along optimal paths, which are calculated using Dijkstras
algorithm that we encountered already in the single-line problem discussed in the last section.
However, when trying to add a line to a system with a number, say M, of lines already present,
the existing line configuration sometimes must be changed to minimize the total energy for
M + 1 line solution. That becomes feasible by allowing flow to be sent backwards on already
occupied bonds. By this operation one gains energy (whereas occupying an empty bond i
always costs energy ei � 0), which means one has to operate on a network that has to be
adapted to the existing flow configuration and has negative energies on all occupied bonds.
Unfortunately, Dijkstras algorithm works only for positive bond energies, and one has to use
either a slower (label-correcting) algorithm to find the optimal paths in a graph with negative
edge costs [3] or the concept of node potentials, by which one can make all energies in the
adapted network non-negative without changing the actual shortest paths. This procedure is
described in full detail in [3].

The resulting line configuration is then analysed. We compute the winding angle of all
line pairs as indicated in figure 3 (cf [10]). For each z-coordinate the vector connecting the
two lines is projected onto that basal plane (left part of figure 3). z = 0 gives the reference line
with respect to which the consecutive vectors for increasing z-coordinate have an angle φ(z).
If the two lines intersect we neglect the intersection point and interpolate between the last and
the next point in such a way that the global winding angle is minimized. We define two lines
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Figure 3. Left: ground state configuration of a N-line system with N = 9 defined by (5). The
entry/exit points are fixed in a regular 3 × 3 array for better visibility. Right: definition of the
winding angle of two flux lines. Right part, top: a configuration of three lines that are entangled.
Right part, bottom: the projection of the line configuration on the basal plane, defining a connected
cluster.

Figure 4. Line configurations for different heights H (from left to right: H = 64, 96, 128), the
lateral size L = 20, the line density is ρ = 0.3. Only the largest line bundles are shown, indicated
by a varying grey scale. Black denotes the largest cluster, which eventually percolates.

to be entangled when φ(z) > 2π . This choice is one that measures entanglement from the
topological perspective [11], and comes from the requirement that an entangled pair of lines
cannot be separated by a suitable linear transformation in the basal plane (i.e. the lines almost
always would cut each other, if one were shifted). The precise definition of entanglement is
not of major relevance, and the one used is useful since it is the computationally easiest.

Sets or bundles of pairwise entangled lines are formed so that a line belongs to a bundle if
it is entangled at least with one other line in the set. The topological multi-line entanglement
could be characterized by other measures as well; the universal properties of the transition
will not depend on these. These line bundles are spaghetti-like, i.e., topologically complicated
and knotted sets of one-dimensional objects. To study the size distribution of these objects we
project these bundles on the basal plane, as indicated in figure 3, where a bundle projects onto
a connected cluster. The probability for two lines to be entangled increases with increasing
system height. Consequently, one would expect that the bundle size increases with H, and
therefore also their projections, the clusters. This scenario is exemplified in figure 4, for
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Figure 5. Percolation probability for different lateral system sizes L as a function of the system
height H, the line density is ρ = 0.3. Inset: scaling plot of the data with Hc = 134 and ν = 4/3.

the largest height the largest cluster spans from one side of the system to the other, i.e. it
percolates.

Hence, for a given line density ρ we expect that for system heights larger than a critical
value Hc a system spanning large entangled bundle occurs, containing an infinite number of
lines in the limit L → ∞. We will call this an entanglement transition occurring at a finite
system height Hc. In the projection plane this appears like a percolation transition and in the
following we will investigate its universal properties.

The numerical data we present have been obtained by averaging over up to 103 realizations
of the random potentials ei in (5) and the statistical error resulting from this finite sample
average is in all cases smaller than the symbol size. We studied different line densities
between ρ = 0.1 and ρ = 0.5, but present for brevity only data for ρ = 0.3. In figure 5 we
show the probability Pperc of the clusters, formed by the entangled bundles in the projection
plane, to percolate as a function of the height H of the system. The curves for different lateral
system sizes L intersect at Hc, which gives our estimate for Hc(ρ = 0.3) = 134. The inset
shows a scaling plot according to

Pperc = p(L1/νδ) (6)

with δ = (H−Hc)/Hc the reduced distance from the critical height and ν = 4/3 the correlation
length exponent. The finite size corrections for smaller system sizes than those shown are
large, but could be incorporated in the scaling plot by using an L-dependent shift Hc(L) that
converges to Hc for larger L.

ν = 4/3 is the exponent of conventional bond percolation in two dimensions. Thus we
are led to the conclusion that the entanglement transition belongs to the same universality class
as conventional two-dimensional (2D) percolation. We checked other quantities to confirm
this result. The cluster size distribution P(n) at H = Hc approaches P(n) ∝ n−τ with τ =
187/91 ≈ 2.055 in the limit L → ∞. The mass (i.e. number of entangled lines) of the
percolating bundle at Hc fits well to M ∝ Ldf with df = 91/48 ≈ 1.896. Both exponents,
the cluster distribution exponent τ and the fractal dimension df , are identical to those for
conventional bond percolation and one can also use the order parameter exponent, β = 5/36,
to fit the data reasonably well. Details of these computations will be published elsewhere [12].
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4. Disorder-induced loop percolation in vortex glasses

Another application of the successive shortest path algorithm for minimum-cost-flow problems
is finding the ground state of the Hamiltonian

H =
∑

i

(ni − bi)
2 with the constraint ∀k :

∑
l n.n. of k

n(kl) = 0 (7)

where the integer variables ni live on the bonds i of a d-dimensional hyper-cubic lattice and
bi ∈ [−2σ, 2σ ] are real valued quenched random variables with σ � 0 setting the strength of
the disorder. The constraint

∑
l n.n. of k n(kl) = 0 means that at all lattice sites k the incoming

flow has to balance the outgoing flow, i.e. the flow {ni} is divergenceless. The physical
motivation of studying these kinds of models is the following.

In 2D the Hamiltonian (7) occurs for instance in the context of the solid-on-solid (SOS)
model on a disordered substrate [13]. The SOS representation of a 2D surface is defined by
integer height variables uk for each lattice site k of a square lattice. The disordered substrate
is modelled via random offsets dk ∈ [0, 1] for each lattice site, such that the total height at
lattice site k is hk = uk + dk . The total energy of the surface is

HSOS =
∑
(kl)

(hk − hl)
2 =

∑
˜(kl)

(n ˜(kl) − b ˜(kl))
2 (8)

where the first sum runs over all nearest neighbour pairs (kl) of the square lattice and the second
sum runs over all bonds ˜(kl) of the dual lattice (being a square lattice, too), which connect the
centres of the elementary plaquettes of the original lattice. A dual bond ˜(kl) therefore crosses
perpendicularly a bond (kl) connecting neighbours k and l on the original lattice. We define
n ˜(kl) = nk − nl and d ˜(kl) = dl − dk if l is either the right or the upper neighbour of k (i.e. for
k = (x, y) either l = (x + 1, y) or l = (x, y + 1)) and n ˜(kl) = nl − nk and d ˜(kl) = dk − dl

if l is either the left or the lower neighbour of k (i.e. for k = (x, y) either l = (x − 1, y) or
l = (x, y − 1)). In this way, the sum over all four dual bond variables attached to one site
of the dual lattice corresponds to the sum of original height variables around elementary
plaquettes in the original lattice, (n(x,y) − n(x,y+1)) + (n(x,y+1) − n(x+1,y+1)) + (n(x+1,y+1) −
n(x+1,y)) + (n(x+1,y) − n(x,y)) = 0, which implies that the flow {n ˜(kl)} is divergence free as
inferred in (7).

In 3D the Hamiltonian (7) is the strong screening limit of the vortex glass model for
disordered superconductors [14, 15]

HVG =
∑
i,j

(ni − bi)Gλ(ri − rj )(nj − bj ) (9)

where the integer vortex variables ni live on the bonds of a simple cubic lattice and have to
fulfil the constraint in (7) since they represent magnetic vortex lines that are divergence free.
The real-valued quenched random variables bi ∈ [−2σ, 2σ ] are derived from the lattice curl of
a random vector potential (σ � 0 being the strength of the disorder). The three-dimensional
(3D) vector ri denotes the spatial positions of bond i in the lattice and the sum runs over all
bond pairs of the lattice (not only nearest neighbours). The lattice propagator Gλ(r) has the
asymptotic form Gλ(r) ∝ exp(−|r|/λ)/|r|, where λ is the screening length. In the strong
screening limit λ → 0 only the on-site repulsion survives [14] and gets

Hλ→0
VG =

∑
i

(ni − bi)
2 (10)

which is the Hamiltonian (7) in 3D that we intend to discuss here.
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Figure 6. Examples of ground state configurations of the Hamiltonian (7) for varying disorder
strengths σ (for particular disorder realizations). Top: 2D, L = 50, the critical disorder strength is
σc ≈ 0.46; bottom: 3D, L = 16, the critical disorder strength is σc ≈ 0.31. The occupied bonds
(ni �= 0) are marked black, the percolating loop is marked by light grey (red).

The ground state of (7) can again be computed within polynomial time by a successive
shortest path algorithm [3]. As for the N-line problem one starts with a configuration {ni} that
optimizes the Hamiltonian in (7) but does not, in general, fulfil the mass balance constraint
given in (7). In the N-line problem that was simply the zero-flow ni = 0, which does not
fulfil the requirement that the source and the target have excess +N and −N , respectively.
Here we start with ni the closest integer to the real number bi for each bond i. Since this
solution violates the mass-balance constraint one successively sends flow from nodes that
have an excess flow to nodes that have a deficit along optimal paths that are again found using
node potentials (to make all costs non-negative) and Dijkstras algorithm. The details of this
algorithm can be found in [1–3].

Figure 6 shows three typical ground state configurations for different strength of the
disorder σ in 2D and in 3D. For small σ only small isolated loops occur, whereas for larger
σ one finds loops that extend through the whole system, they percolate. A finite size scaling
study of the underlying percolation transition yields a novel universality class with numerically
estimated critical exponents (see figure 7) ν = 3.3 ± 0.3, β = 1.8 ± 0.4 and τ = 2.45 ± 0.05
in 2D, and ν = 1.05 ± 0.05, β = 1.4 ± 0.1 and τ = 2.85 ± 0.05 in 3D. Details of these
calculations will be published elsewhere [16].

5. Elastic manifolds in a disordered environment and a periodic potential

A system of strongly interacting (classical) particles or other objects, like magnetic flux
lines in a type II superconductor (as we discussed in section 3 and for which the starting
Hamiltonian would be given by (4)) or a charge density wave system in a solid, will order



10 H Rieger

0.25 0.45 0.65
σ

0

0.2

0.4

0.6

0.8

1

P
p

e
rc

–0.5 –0.25 0 0.25 0.5 0.75 1

(σ–σc) L1/ν

(σ–σc) L1/ν (σ–σc) L1/ν

(σ–σc) L1/ν
0

0.2

0.4

0.6

0.8

1
P

p
e

rc

L=4
L=8
L=16
L=32
L=64
L=128
L=256

0.28 0.3 0.32 0.34
σ

0

0.2

0.4

0.6

0.8

1

P
p

e
rc

–0.4 –0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

P
p

e
rc

L=4
L=8
L=12
L=16
L=20
L=24

0.25 0.45 0.65 0.85
σ

0

0.2

0.4

P 8

–0.5 –0.25 0 0.25 0.5 0.75 1
0

1

2

3

P8

 L
β/

ν
P8

8
 L

β/
ν

L=4
L=8
L=16
L=32
L=64
L=128
L=256

0.28 0.3 0.32 0.34
σ

0

0.02

0.04

0.06

P

–0.4 –0.2 0 0.2 0.4
0

0.5

1

1.5

2

L=4
L=8
L=12
L=16
L=20
L=24

.

1 10 100 1000
m

10
–7

10
–6

10
–5

10
–4

10
–3

10
–2

n
m

10
–7

10
–6

10
–5

10
–4

10
–3

10
–2

n
m

L=16
L=32
L=64
L=128
L=256
fit

1 10 100
m

L=16
L=20
L=24
L=32
fit

Figure 7. Finite size scaling analysis for the model (7) in 2D (top) and in 3D (bottom). Plot
of the percolation probability P perc (left) and of the probability P∞ for a bond belonging to a
percolating loop (middle). For 2D the best data collapse is obtained for ν = 3.3, β = 1.8, for 3D
it is ν = 1.05, β = 1.4. The insets show the raw data. Right: plot of the average number nm of
loops of mass m per lattice bond at σc = 0.458 in 2D and at σc = 0.3129 in 3D, respectively. The
straight line represents nm ∝ mτ , with τ = 2.45 in 2D and τ = 2.85 in 3D.

at low temperatures into a regular arrangement a lattice (crystal lattice or flux line lattice).
Fluctuations either induced by thermal noise (temperature) or by disorder (impurities, pinning
centres) induce deviations of the individual particles from their equilibrium positions. As
long as these fluctuations are not too strong an expansion of the potential energy around these
equilibrium configuration might be appropriate. An expansion up to second order is called
the elastic description or elastic approximation, which in a coarse-grained form (where the
individual particles that undergo displacements from their equilibrium positions do not occur
any more and are replaced by a continuum field φ(r)) then reads

Hmanifold = Helastic + Hrandom =
∫

ddr
γ

2
|∇φ(r)|2 + V (φ(r), r). (11)

The random potential energy is a δ-correlated Gaussian variable with mean zero,
〈〈V (φ, r)V (φ′, r′)〉〉 = D2δ(φ − φ′)δr − r′). The integration extends over the whole space
that paramtrizes the manifold, for instance d = 1 for an elastic line in a random potential,
d = 2 for an interface or a surface in a disordered environment etc. Note that for d = 1 one
recovers the single-line Hamiltonian (1). The many-line Hamiltonian (4) also allows such an
elastic description in the limit, in which the interactions are strong and the random potential is
weak compared to the elastic energy. In this limit the lines will only deviate moderately from
a regular, translationally invariant configuration (the Abrikosov flux line lattice). This case is
called an elastic periodic medium and one has to modify the φ-part of the disorder correlator
such that the Hamiltonian has the correct translational symmetry [17].

The presence of a periodic background potential, like a crystal potential, has a smoothening
effect on the elastic manifold and tends to lock it into one of its minima. The competition
between the random potential, that roughens the manifold, and such a periodic potential might
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lead to a roughening transition [18, 19]. In 2D this is actually not the case [20], but in 3D
there is as we will see. We consider a lattice version of the Hamiltonian

H = Hmanifold + Hperiodic with Hperiodic =
∫

dd r Vperiodic(φ(r)) (12)

where Vperiodic(φ) = − cos φ represents the periodic potential.
We introduce a discrete solid-on-solid (SOS) type interface model for the elastic manifold

whose continuum Hamiltonian is given in equation (12). Locally, the EM remains flat in one of
periodic potential minima at φ = 2πh with integer h. Due to fluctuations, some regions might
shift to a different minimum with another value of h to create a step (or domain wall) separating
domains. To minimize the cost of the elastic and periodic potential energy in equation (12),
the domain-wall width must be finite, say ξo. Therefore, if one neglects fluctuations in length
scales less than ξo, the continuous displacement field φ(r) can be replaced by the integer
height variable {hx} representing a (3 + 1)-dimensional SOS interface on a simple cubic lattice
with sites x ∈ {1, . . . , L}3. The lattice constant is of order ξo and set to unity. The energy of
the interface is given by the Hamiltonian

H =
∑
〈x,y〉

J(hx,x);(hy,y)|hx − hy| −
∑

x

VR(hx, x) (13)

where the first sum is over nearest neighbour site pairs. After the coarse graining, the step
energy J > 0 as well as the random pinning potential energy VR becomes a quenched random
variable distributed independently and randomly. Note that a periodic elastic medium has the
same Hamiltonian as in equation (13) with random but periodic J and VR in h with periodicity
p [21]. In this sense, the elastic manifold emerges as in the limit p → ∞ of the periodic
elastic medium.

To find the ground state, one maps the 3D SOS model onto a ferromagnetic random bond
Ising model in (3 + 1)-dimensional hyper-cubic lattice with anti-periodic boundary conditions
in the extra dimension [22] (for the 3-space direction one uses periodic boundary conditions
instead). The anti-periodic boundary conditions force a domain wall into the ground state
configuration of the (3 + 1)-dimensional ferromagnet. Note that bubbles are not present in the
ground state. A domain wall may contain an overhang which is unphysical in the interface
interpretation. Fortunately, one can forbid overhangs in the Ising model representation
using a technique described in [22]. If the longitudinal and transversal bond strengths are
assigned with J/2 and VR/2 occurring in equation (13), respectively, this domain wall of the
ferromagnet becomes equivalent to the ground state configuration of (13) for the interface
with the same energy. The domain wall with the lowest energy is then determined exactly
by using a combinatorial optimization algorithm, a so-called max-flow–min-cost algorithm
[1–3].

For completeness we briefly sketch how to solve the task of finding the minimal
energy configuration for an interface in a (d + 1)-dimensional random bond ferromagnet
H = ∑

〈ij〉 Jijσiσj in which we fix all spins in the lower (upper) plane, i.e. all σi with
i = (x11, . . . , xd, y) and y = 1 (y = H), to be σi = +1 (−1). First one maps it onto a flow
problem in a capacitated network. We introduce two extra sites, a source node s, which we
connect to all spins of the hyperplane y = 1 with bonds Js,(x1,...,xd ,y=1) = J∞, and a sink node
t, which we connect to all spins of the hyperplane y = H with bonds Js,(x1,...,xd ,y=H) = J∞.
We choose J∞ = 2

∑
(ij) Jij , i.e. strong enough that the interface cannot pass through a bond

involving one of the two extra sites. Now we enforce the aforementioned boundary conditions
for the spins in the upper and the lower plane by simply fixing σs = +1 and σt = −1. The
graph underlying the capacitated network we have to consider is now defined by the set of
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vertices (or nodes) N = {1, . . . , H ·Ld}∪ {s, t} and the set of edges (or arcs) connecting them
A = {(i, j) | i, j ∈ N, Jij > 0}.

The capacities uij of the arcs (i, j) are given by the bond strength Jij . For any
spin configuration σ = (σ1, . . . , σN) we define now S = {i ∈ N | σi = +1} and
S̄ = {i ∈ N | σi = −1} = N\S. Obviously σs ∈ S and σt ∈ S̄. The knowledge of S is
sufficient to determine the energy of any spin configuration via H(S) = −C +2

∑
(i,j)∈(S,S̄) Jij

where (S, S̄) = {(i, j) | i ∈ S, j ∈ S̄}. The constant C = ∑
(i,j)∈A Jij is irrelevant, i.e.

independent of S. Note that (S, S̄) is the set of edges (or arcs) connecting S with S̄, which
means it cuts N in two disjoint sets. Since s ∈ S and t ∈ S̄, this is a so-called s–t-cut-
set, abbreviated as [S, S̄]. Thus the problem of finding the ground state configuration of an
interface in the random bond ferromagnet can be reformulated as a minimum-cut problem

minS⊂N {H ′(S)} = min[S,S̄]

∑
(i,j)∈(S,S̄)

Jij (14)

in the above-defined capacitated network (with H ′ = (H + C)/2). It does not come as a
surprise that this minimum cut is identical with the interface between the (σi = +1)-domain
and the (σi = −1)-domain that has the lowest energy. Actually, any s–t-cut-set defines such an
interface, some of them might consist of many components, which is of course energetically
unfavourable.

A flow in the network G is a set of non-negative numbers xij subject to a capacity constraint
and a mass-balance constraint for each arc

0 � xij � uij and
∑

{j |(i,j)∈A}
xij −

∑
{j |(j,i)∈A}

xji =



−v for i = s

+v for i = t

0 else.
(15)

This means that at each node everything that goes in has to go out, too, with the only
exception being the source and the sink. What actually flows from s to t is v, the value of the
flow. The maximum-flow problem for the capacitated network G is simply to find the flow x
that has the maximum value v under the constraint (15).

Let x be a flow, v its value and [S, S̄] an s–t-cut. Then, by adding the mass balances
for all nodes in S we have v = ∑

(i,j)∈(S,S̄) xij − ∑
(i,j)∈(S̄,S) xji and since xij � uij and

xji � 0 the following inequality holds: v �
∑

(i,j)∈(S,S̄) uij = u[S, S̄]. Thus the value of
any flow x is less than or equal to the capacity of any cut in the network. If we discover a
flow x whose value is equal to the capacity of some cut [S, S̄], then x is a maximum flow and
the cut is a minimum cut. The following implementation of the augmenting path algorithm
constructs a flow whose value is equal to the capacity of an s–t-cut it defines simultaneously.
Thus it will solve the maximum-flow problem (and, of course, the minimum-cut
problem).

Given a flow x, the residual capacity rij of any arc (i, j) ∈ A is the maximum additional
flow that can be sent from node i to node j using the arcs (i, j) and (j, i). The residual capacity
has two components: (1) uij − xij , the unused capacity of arc (i, j), (2) xji the current flow
on arc (j, i), which we can cancel to increase the flow from node i to j , rij = uij − xij + xji .
The residual network G(x) with respect to the flow x consists of the arcs with positive residual
capacities. An augmenting path is a directed path from the node s to the node t in the residual
network. The capacity of an augmenting path is the minimum residual capacity of any arc in
this path.

Obviously, whenever there is an augmenting path in the residual network G(x) the flow
x is not optimal. This motivates the following generic augmenting path algorithm:
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algorithm Ford–Fulkerson
begin

Initially set xij := 0, xji := 0 for all (i, j) ∈ A;
do

construct residual network R with capacities rij ;
if there is an augmenting path from s to t in G′ then
begin

Let rmin the minimum capacity of r along this path;
Increase the flow in N along the path by a value of rmin;

end
until no such path from s to t in G′ is found;

This algorithm is polynomial in the number of lattice sites if the distribution of capacities
is discrete (binary for instance). In the general case it has to be improved, and there are
indeed more efficient algorithms to solve this problem in polynomial time [1–3]. We stop the
description of these algorithms and focus on the results we obtained by applying them to the
particular elastic manifold model we are interested in here.

We performed the ground state calculation for the Hamiltonian (13) on L3×H hyper-cubic
lattices for L � 32. H, the size in the extra direction, is taken to be larger than the interface
width. We present the results for an exponential distribution for J > 0, P (J ) = e−J/J0/J0

and uniform distribution for 0 � VR � Vmax. The disorder strength is controlled with the
parameter � ≡ Vmax/J0. Other distributions studied include (bimodal, bimodal) and (uniform,
uniform) distributions for (J, VR), and gave identical estimates for the critical exponents.

The order parameter that provides the information about the suspected roughening
transition is the magnetization-like quantity m ≡ 〈|〈eiπhx〉o|〉, which is non-zero in the flat
phase and vanishes in the rough phase. The critical point �c can be determined from the
finite-size-scaling property of the order parameter,

m(L, ε) = L−β/νF(εL1/ν) (16)

where ε ≡ �−�c, and β (ν) is the order parameter (correlation length) exponent. The scaling
function F(x) has a limiting behaviour F(x → 0) = const so that the order parameter decays
algebraically with L as m ∼ L−β/ν at the critical point. It also behaves as F(x → −∞) ∼ |x|β
so that m ∼ |ε|β for � < �c in the infinite system size limit.

Consider the effective exponent [β/ν](L) = − log(m(2L)/m(L))/ log 2. It converges to
the value of β/ν at the critical point and deviates from it otherwise as L increases. We estimate
the critical threshold as the optimal value of � at which the effective exponent approaches a
non-trivial value. The plot for this effective exponent is shown in figure 8. One can see that
there is a downward and upward curvature for � < 4.20 and � > 4.30, respectively. From
this behaviour we estimate that �c = 4.25 ± 0.05 and β/ν = 0.07 ± 0.03.

Note that the effective exponent varies with L even at the estimated critical point, which
implies that corrections to scaling are not negligible for system sizes up to L = 32. For
that reason our numerical results for �c and β/ν have rather large error bars, and one may
need larger system sizes for better precision. The exponents β and ν could also be obtained
from the scaling analysis using equation (16). We fix the values of �c and β/ν to the values
obtained before and vary ν to have an optimal data collapse. We obtain ν = 1.4 ± 0.2 and the
corresponding scaling plot is shown in figure 8. The order parameter scaling property shows
that the roughening phase transition is a continuous transition, though the exponent β � 0.1
is very small, as opposed to the results of the Gaussian variational study [18] predicting a
first-order transition.
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Figure 8. Left: the effective exponent [β/ν](L) for different values of � as a function of 1/L. The
broken line is a guide for the eyes that separates the curves with a downward bending (� < �c)

from those with an upward bending (� > �c). Right: scaling plot of mLβ/ν versus |ε|L1/ν with
ε = � − 4.25, β/ν = 0.07 and ν = 1.4.

6. Summary

To conclude we discussed several applications of polynomial combinatorial optimization
algorithms to the numerical investigation of ground state properties of disordered systems.
We did not touch the application of matching algorithms, with which one can compute the
ground states of spin glass models on planar graphs (e.g. in 2D with free boundary conditions
[23, 24] and to study 2D disordered elastic media [25]. We also did not discuss the optimization
of sub-modular function, which is useful in the context of the q → ∞ limit of the 2D random
bond Potts model [26]. Together with the example we presented in this paper we learn that
there are plenty of interesting problems in the realm of the theory of disordered systems that can
be effectively studied with polynomial algorithms. There is another plentitude of problems
that are currently investigated with non-polynomial combinatorial optimization algorithms
(like the notorious 3D spin glass problem [3]), but this important topic is treated in another
contribution to this special issue.
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[12] Petäjä V, Alava M and Rieger H 2003 Preprint cond-mat/0302509
[13] Rieger H and Blasum U 1997 Phys. Rev. B 55 7394R

Pfeiffer F and Rieger H 2000 J. Phys. A: Math. Gen. 33 2489
[14] Bokil H S and Young A P 1995 Phys. Rev. Lett. 74 3021
[15] Kisker J and Rieger H 1998 Phys. Rev. B 58 R8873

Pfeiffer F and Rieger H 1999 Phys. Rev. B 60 6304
[16] Pfeiffer F O and Rieger H 2002 J. Phys.: Condens. Matter 14 2361

Pfeiffer F O and Rieger H 2003 Phys. Rev. E 67 056113
[17] Nattermann T 1990 Phys. Rev. Lett. 64 2454

Giarmachi T and Le Doussal P 1994 Phys. Rev. Lett. 72 1530
Giarmachi T and Le Doussal P 1995 Phys. Rev. B 52 1242

[18] Bouchaud J-P and Georges A 1992 Phys. Rev. Lett. 68 3908
[19] Emig T and Nattermann T 1997 Phys. Rev. Lett. 79 5090

Emig T and Nattermann T 1999 Eur. J. Phys. B 8 525
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