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Abstract

The dynamic stability of the Boolean networks representing a model for the
gene transcriptional regulation (Kauffman model) is studied by calculating
analytically and numerically the Hamming distance between two evolving
configurations. This turns out to behave in a universal way close to the phase
boundary only for in-degree distributions with a finite second moment. In-
degree distributions of the form Pd(k) ∼ k−γ with 2 < γ < 3, thus having a
diverging second moment, lead to a slower increase of the Hamming distance
when moving towards the unstable phase and to a broadening of the phase
boundary for finite N with decreasing γ . We conclude that the heterogeneous
regulatory network connectivity facilitates the balancing between robustness
and evolvability in living organisms.

PACS numbers: 89.75.Hc, 64.60.Cn, 05.65.+b, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Complete genome sequencing and the analysis of the binding of transcriptional regulators to
specific promoter sequences have uncovered the global organization of the gene transcriptional
regulatory network in well-studied organisms such as Escherichia coli [1] and yeast
Saccharomyces cerevisiae [2]. The gene network describes a directed relationship—
regulation—between different genes and its architecture is characterized by broad connectivity
distributions [1–4], over-representation of selected motifs [5] and so on. These features are
rarely found in random networks, probably being the consequence of evolutionary selection.
Therefore, illuminating the functional characteristics associated with those discovered
structural features can help trace their origins. In this work, we show that heterogeneous
connectivity can facilitate the balancing between dynamical stability and instability. Both
robustness and evolvability are essential for living organisms, which achieve their specific
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phenotype by their gene expression program [6]. Thus the transcriptional regulatory network
should be organized in a way that supports the coexistence of these apparently contradictory
properties and from this perspective, it has been proposed that the gene network should
be at the boundary between stable and unstable phases, called the edge of chaos [7]. The
question then arises: what are the characteristics of the network architecture that can support
the requirement to be located at the edge of chaos? A simple model incorporating recently
available information turns out to be useful to answer this question.

The Kauffman model [7] was used in the past to study the gene network dynamics which
is far from completely known because of its complexity. In this model, each node has a
Boolean variable, 1 or 0, the discretized expression level evolving, regulated by other K nodes
according to the quenched rules that are randomly distributed with a parameter p. In spite of
these simplifications involved, the model revealed detailed relations between the dynamical
stability against perturbations and the network architecture [7, 8]. Moreover, distinct attractors
in the configuration space are considered as corresponding to different cell types in a given
organism and thus its scaling with the number of genes (nodes) across different organisms has
been of great interest [7, 9–14]. Empirically, the number of cell-type scales as the square-
root of the number of genes and the same scaling relation was believed to hold between the
number of attractors and the number of nodes in the Kauffman model at the critical point
pc(K), supporting the hypothesis that living organisms should be between order and chaos
[7]. Recently, however, it was found that under-sampling effects may hamper numerical
enumeration of distinct attractors [10, 11] and further investigations demonstrated that the
total number of attractors grows faster than any power law with the system size [12, 13]. On
the other hand, it was also reported that attractors stable against deviation from synchronous
update show sub-linear scaling behavior [14].

Recent investigations of real gene networks suggest generalization of the original
Kauffman model. First, the distribution of the regulating rules is structured showing a bias
towards the canalyzing functions [15, 16]. Second, the number of links or degree is not
constant but different from node to node, resulting in broad degree distributions [17]. In the
gene regulatory networks of E. coli [3, 5, 18] and yeast [2, 4, 19–21], the distributions of
out-degree (number of target genes for each regulator) and in-degree (number of regulators
for each target gene) were not delta-functions but shown to take power-law or exponential-
decaying form, respectively, although true asymptotic behavior was hard to discern due to
finite-size effects. While the effects of the structured distribution of regulating rules have been
intensively studied [16, 19, 22], it remains to show how the heterogeneous connectivity affects
the dynamical stability [23, 24].

We consider the Kauffman model on directed networks with general in- and out-
degree distributions and compare two evolving dynamical configurations by computing their
Hamming distance, to determine whether a given network is dynamically stable (zero distance)
or unstable (nonzero distance) against perturbations. The critical point of the Boolean networks
with power-law degree distributions has recently been studied [24]. In the present work,
we show quantitatively how the Hamming distance behaves near the critical point, which
will provide a deeper understanding of the critical phenomena of Boolean networks with
heterogeneous connectivity patterns and insights into the interplay of structure and dynamics
in living organisms. The Hamming distance for infinite system size (thermodynamic limit) can
be computed by the method presented in [18] and we here present a detailed description of the
method along with a discussion on the effects of correlation between in- and out-degree of the
same node. Then, more importantly, we extend the method to derive the Hamming distance
for finite system size, which enables us to check the analytic predictions with numerical
simulation results. Our main result is that for in-degree distributions with a diverging second
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moment the Hamming distance increases very slowly when moving from the phase boundary
towards the unstable phase and the width of the boundary in finite-size systems is very broad.
This indicates that strongly heterogeneous genetic networks have a large capacity to stay at
the edge of chaos when their structural and functional organization is subject to variation.

The paper is organized as follows. We introduce the Kauffman model for Boolean
networks in section 2. In section 3, the annealed approximation is described and used to
compute the Hamming distance, which reveals different phases of the Boolean networks. The
finite-size effects on the critical phenomena of the Boolean networks are derived using the
annealed approximation in section 4. Finally, the results are summarized and discussed in
section 5.

2. Model and Hamming distance

In the Kauffman model, the dynamical configuration of N Boolean variables at time
t, �(t) = {σi(t)|i = 1, 2, . . . , N}, is updated in parallel as

σi(t + 1) = fi(�i(t)), (1)

where σi for each i takes 1 or 0 and �i(t) = {
σi1(t), σi2(t), . . . , σiki

(t)
}

denotes the
configuration at time t of the ki regulators Ri = {

i1, i2, . . . , iki

}
, of the node i. The functional

dependences between nodes via {fi(�i)|i = 1, 2, . . . , N} constitute a directed network in
which two nodes i and j are connected with a directed edge (i, j) if j ∈ Ri , where (i, j) is an
outgoing edge of node j and an incoming edge of node i. The quenched, i.e., time-independent,
regulating rules are random Boolean functions, i.e., they are chosen randomly such that fi(�i)

for a given �i is 1 with probability 0 � p � 1 and 0 with probability 1 − p. The parameter
p deviating from 1/2 indicates an asymmetry between expressed (1) and nonexpressed (0)

states of a gene.
We focus on the following question: if one starts at time t = 0 with two randomly chosen

configurations, � and �̂ with σ̂j �= σj for all j , that is, all node states perturbed (altered),
how many nodes remain perturbed at time t > 0? The fraction of these perturbed nodes or the
Hamming distance between � and �̂ at time t is defined as

H(t) = 1

N

N∑
i=1

δσi(t),1−σ̂i (t) (2)

with δa,b being 1 for a = b and 0 otherwise. The Hamming distance may vary between 0 and
1 depending on the dynamic asymmetry parameter p. We will see in the following section that
the value of the Hamming distance in the stationary state may display a transition from zero
to a nonzero value as the network architecture and the parameter p are varied.

3. Annealed approximation and phase transition of Boolean networks

In this section, we investigate the phase diagram of the Kauffman Boolean network defined
in the previous section by computing analytically and numerically the Hamming distance for
infinite system size. This allows us to understand different phases of the Boolean networks
determined by network structure and the parameter of dynamic asymmetry. Some of the
results presented in this section are also found in [18].
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3.1. Annealed approximation

A recursion relation for the Hamming distance between consecutive time steps is obtained
by the ‘annealed’ approximation [8]. While the regulation rule fi and the regulators Ri are
fixed for each node i in the original model, one assigns them randomly to every node at
every time step, keeping the in-degrees and the out-degrees, in the annealed approximation.
Then the evolution of the Hamming distance Hk,q(t) for the nodes with in-degree k and

out-degree q is given by Hk,q(t + 1) = λ
[
1 − (

1 − ∑
k′,q ′ q ′Pd(k

′, q ′)Hk′,q ′(t)/〈q〉)k]
, where

λ ≡ 2p(1 − p), Pd(k
′, q ′) is the joint distribution of k′ and q ′, and 〈q〉 = ∑

k,q qPd(k, q).
The correlation between the degrees of neighboring nodes, {k, q} and {k′, q ′} is ignored
in this formalism but will be discussed in section 5. The parameter λ ranging from 0
to 1/2 is the probability that fi yields different outputs for �i and �̂i given differently
and the term within the brackets represents the probability of the latter. Note that the
degree distribution for the regulators is weighted by their out-degrees. If we introduce
H̄ (t) ≡ ∑

k,q[qPd(k, q)/〈q〉]Hk,q(t), it is obtained self-consistently and in turn H(t) =∑
k,q Pd(k, q)Hk,q(t) is computed as follows [18]:

H̄ (t + 1) = λ
∑
k,q

qPd(k, q)

〈q〉 [1 − (1 − H̄ (t))k],

(3)
H(t + 1) = λ

∑
k

Pd(k)[1 − (1 − H̄ (t))k],

where Pd(k) = ∑
q Pd(k, q) is the in-degree distribution. In the original Kauffman model

where the in-degree is fixed to k = K , equation (3) reduces to H(t + 1) = λ[1 − (1 −H(t))K ]
[8].

3.2. Ordered and chaotic phases

The limiting value H = limt→∞ H(t) can characterize the system’s response to dynamical
perturbations. Replacing H(t) and H̄ (t) with H and H̄ , respectively, and expanding the first
line in equation (3) for small H̄ , one finds that H = 0 and H̄ = 0 for λ < λc and H > 0 and
H̄ > 0 for λ > λc, where the critical point λc depends on the network topology via

λc ≡ K−1 with K ≡
∑
k,q

kqPd(k, q)

〈q〉 . (4)

That is, the system is in the ordered phase, any perturbation making no effect on the system
eventually, when λ < λc. On the other hand, the system does not remain in the same stationary
state but shifts to another stationary state triggered by a perturbation when λ > λc.

The quantity K may be considered as the average in-degree of regulators weighted by their
out-degrees. Introducing the conditional average of out-degree, qk ≡ ∑

q qPd(k, q)/Pd(k),
we can rewrite the quantity K as K = ∑

k k(qk/〈q〉)Pd(k) and also the first relation in
equation (3) as

H̄ (t + 1) = λ
∑

k

qk

〈q〉Pd(k)[1 − (1 − H̄ (t))k]. (5)

If qk is independent of k or (more strongly) the in-degree and the out-degree of a node is
not correlated statistically, it follows that qk = 〈q〉 for all k,K reduces to the conventional
average in-degree 〈k〉 ≡ ∑

k kPd(k), and H(t) = H̄ (t). The analyses of the transcriptional
regulatory networks of E. coli and yeast show no significant variation of qk with k [25] and
so we will assume in the following that qk = 〈q〉 for all k. In section 4.3, we will discuss
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Figure 1. Hamming distance H for the Kauffman model as a function of λ. The points
are the simulation results for model networks [26] with N = 104 and 〈k〉 = 4 that have
Pd(k, q) = gγ (k)gη(q), where ga(x) ∼ x−a for a finite and g∞(x) = 〈k〉x e−〈k〉/x!. The
Hamming distance H was first averaged over time between t = 100 and t = 200, and then
averaged over 1000 different realizations of networks and regulating rules for which H �= 0.
The lines are the numerical solutions to equation (3) with H(t) = H̄ (t) = H for all t and the
same degree distributions as in the simulation used. (Inset) Plots of ln H versus ln(λ − λc) with
λc = 0.25. The slopes agree with equation (8).

how our results for the critical phenomena would be changed by the k-dependence of qk .
Under this assumption (qk = 〈q〉), the Hamming distance H(t) depends only on the in-degree
distribution Pd(k) and the dynamics parameter λ.

It has been shown that the scaling behavior of the average number of attractors with the
system size remains to be the same for different out-degree distributions such as uniform,
exponential and power-law one [23]. Our analysis based on the annealed approximation
suggests further the irrelevance of the out-degree distribution to the Hamming distance. To
confirm this as well as check the validity of the annealed approximation or equation (3),
we performed simulations of the Kauffman model defined in section 2 on an ensemble of
model networks constructed as follows [26]: (i) each of N nodes has two indices iin and
iout, which run from 1 to N respectively. The two indices are independent. (ii) Choose
a node A with index iout with probability i

−αout
out

/∑
j jαout . (iii) Choose a node B indexed

iin with probability i−αin
in

/∑
j jαin . (iv) Assign a link from the node A to B unless they

are connected. (v) Repeat (ii) and (iii) until the total number of links is L. The generated
networks have N nodes, L links, and degree distribution given by Pd(k, q) = Pd(k)Pd(q),
where the in-degree distribution takes the form Pd(k) ∼ k−γ and the out-degree distribution
takes the form Pd(q) ∼ q−η with γ = 1 + 1/αin and η = 1 + 1/αout. It is then obvious that
qk = 〈q〉 for all k. When αin = 0 and thus all the nodes can have an incoming link with
equal probability, the in-degree distribution becomes a Poisson one, Pd(k) = 〈k〉ke−〈k〉/k!.
Thus the degree distribution may take power-law or Poissonian form depending on the values
of αin and αout corresponding to scale-free (SF) networks or completely random networks,
respectively. The simulation results (data points) shown in figure 1 are compared with the
numerical solutions (lines) to equation (3), the annealed approximation, which show a good
agreement and support the validity of the annealed approximation. Also it is shown that the
Hamming distance is the same for different out-degree distributions.
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The implication of equation (3) for SF networks has been discussed in [24], where
Pd(k) = k−γ /ζ(γ ) for k = 1, 2, . . . with ζ(x) the Rieman–Zeta function. Based on the result
that 〈k〉 = ζ(γ − 1)/ζ(γ ) < 2 for γ > 2.47875 . . . , it was claimed [24] that the abundance
of SF networks with 2 < γ < 2.5 in nature and society can be attributed to the presence
of both phases, stable and unstable, only in such networks. However, the values of 〈k〉 and
γ do not show such strong correlation in real networks. For instance, the average degree
〈k〉 ranges from 2.57 (Internet router network) to 28.78 (movie actor network) although the
degree exponent γ lies between 2 and 3 [17], which is possible due to the power-law behavior
observed only asymptotically. We will show in the following section that the root for the
dynamical advantage of SF network lies elsewhere.

3.3. Critical exponents

Here we address the behavior of the Hamming distance around λc for infinite system size.
In that regime of λ, the Hamming distance is very small and its increase with λ − λc can be
characterized by a scaling exponent. This critical behavior of the Hamming distance is of
interest to us because it shows how the network topology is related to the system’s dynamic
response.

When the moments 〈kn〉 = ∑
k Pd(k)kn for all n > 0 are finite, equation (3) can be

written as

H � λ

∞∑
n=1

(−1)n+1

n!
〈kn〉Hn. (6)

Keeping the leading terms, we find that H � (λ/λc)H − λ〈k2〉H 2/2, which gives

H ∼ 


with 
 ≡ λ/λc − 1 for 0 < 
 � 1. This result can be represented as H ∼ 
β with β = 1,
where we introduced the critical exponent β.

On the other hand, if Pd(k) � ck−γ for k  1 with c a constant, 〈kn〉 diverges as
ck

n+1−γ
max

/
(n + 1 − γ ) for n � �γ � − 1 with kmax the largest in-degree and �x� denoting the

smallest integer not smaller than x. Applying the relation
∑

k>kmax
Pd(k) ∼ 1/N from the

extreme value statistics [27], one can see that kmax scales as N1/(γ−1). The diverging terms in
equation (6) have alternating signs and lead to non-analytic terms in H as described below [28].
For small H, equation (3) reads as H � λ

∑
k Pd(k)[1 − e−kH ] and recalling the power-law

form of Pd(k), Pd(k) � ck−γ , we can utilize the fact that the Mellin transform of a function
F(γ,H) ≡ ∑∞

k=1 k−γ e−kH is given by F(γ, s) = ∫ ∞
0 F(γ,H)Hs−1 dH = �(s)ζ(s + γ )

with �(x) the Gamma function [28]. The inverse transform of F(γ, s) is then represented
in terms of the poles of the Rieman–Zeta function and the Gamma function, which gives
F(γ,H) = ∫ c+i∞

c−i∞ F(γ, s)H−s ds = �(1 − γ )Hγ−1 +
∑∞

n=0(−1)n/n!ζ(γ − n)Hn [28].
Therefore we find that, for Pd(k) � ck−γ ,3

H � λ

�γ �−2∑
n=1

(−1)n+1

n!
〈kn〉Hn − λc�(1 − γ )Hγ−1 + O(H �γ �−1). (7)

If γ > 3, the H 2 term is the next leading term on the right-hand side of equation (7) and
then the critical behavior is given by H ∼ 
 as in the case of all 〈kn〉 finite. On the
other hand, if 2 < γ < 3, the Hγ−1 term becomes the next leading term and we find that
H � (λ/λc)H − λc�(1 − γ )Hγ−1. Therefore for λ > λc,

H ∼ 
1/(γ−2).

3 There is a logarithmic term Hγ−1 ln H in equation (7) in case of γ an integer [28].

6



J. Phys. A: Math. Theor. 41 (2008) 415001 D-S Lee and H Rieger

 0

 0.05

≥0.1

 0

 0.05

≥0.1

<k>

 2  3  4  5

λ

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

λ

(b)

 0.1

 0.2

 0.3

 0.4

 0.5

Figure 2. Phase diagram of the Kauffman model for (a) a Poisson in-degree distribution and
(b) a power-law one with the exponent γ = 2.5, both in the case of uncorrelated in- and out-
degree. The color encodes the Hamming distance H obtained by numerically solving equation (3)
under setting H(t) = H̄ (t) = H .

In summary, we can list the values of the critical exponent β varying with the in-degree
exponent γ as [18]

β =
{

1 (γ > 3),

1/(γ − 2) (2 < γ < 3),
(8)

which is confirmed numerically (see the inset of figure 1).
The critical exponent β varying with the in-degree distribution as in equation (8)

illuminates how the network topology affects the system’s response to perturbation.
Figure 2 shows phase diagrams of the Kauffman model on model networks with a Poisson
in-degree distribution and with a power-law in-degree distribution with the exponent γ = 2.5,
in which color represents the value of the Hamming distance. As shown in the figure, the
SF networks with 2 < γ < 3 and thus larger values of β keep the Hamming distance
nonzero but small in a much larger region in the (λ, 〈k〉) plane than those with γ > 3.
Structural and functional organization of cellular networks, parameterized here by 〈k〉 and λ

(p), respectively, may be subject to unexpected changes. Our finding suggests that the systems
with strong heterogeneous connectivity patterns can maintain their dynamic criticality robustly,
and further, votes for the hypothesis that living organism’s machinery lies at the edge of chaos.

4. Boolean networks of finite size

In the thermodynamic limit N → ∞, the critical point does not exhibit any dependence on the
network topology. However, for finite N, the critical point itself develops its dependence on

7



J. Phys. A: Math. Theor. 41 (2008) 415001 D-S Lee and H Rieger

the network topology: it is no more a point but has a nonzero width depending on N. Adopting
the finite-size scaling ansatz [29]

H = N−β/μ(
N1/μ) (9)

with the scaling function (x) → const for x � 1 and (x) → xβ for x  1, one can see
that H ∼ N−β/μ in the critical regime |
N1/μ| � 1. In the λ-axis, this critical regime is
N−1/μ wide for N finite and shrinks to zero in the thermodynamic limit. Therefore, the scaling
exponent μ describes the width of the critical regime for finite-size systems. In the critical
regime, the cluster of perturbed nodes, explained below, exhibits scale invariance characterized
by a power-law distribution of its size, which is connected to the behavior H ∼ N−β/μ. We
show in the next that the asymptotic behavior of the cluster size distribution can be derived
using equations (6) and (7), which allows us to obtain the scaling exponent μ and to check
equation (9).

4.1. Evolution of perturbed-node clusters

The parameter λ denotes the probability that a node becomes perturbed (σi(t + 1) �= σ̂i ) once
the configuration of its neighbors is perturbed (�i �= �̂i). When λ is zero, the Hamming
distance becomes zero immediately even though all nodes were perturbed initially. As λ

increases from 0, clusters appear, consisting of perturbed nodes that are connected by active
edges. An edge from nodes A to B is inactive if the perturbation at node A cannot bring any
difference to the dynamical state of node B, and active otherwise. While a node’s state can
be totally irrelevant to its neighbor connected by an inactive edge, perturbation at one node
can propagate to its neighbors through active edges. The perturbed-node clusters evolve with
time, decaying or growing. A perturbed node may become normal (non-perturbed) due to its
regulators becoming normal at a certain time step, which leads to the decay of the cluster it
belonged to. On the other hand, normal nodes may become perturbed due to its regulators
becoming perturbed, which leads to the growth of a cluster.

When the parameter λ reaches the critical regime or goes beyond it (λ � λc), a giant
cluster of perturbed nodes appears and contributes to the Hamming distance in the stationary
state. There may exist many smaller clusters, but they are hard to survive eventually. A
small cluster has a relatively small number of perturbed nodes, and they are surrounded by
many normal nodes. Therefore the perturbed nodes in smaller clusters have higher chance of
becoming normal than those in larger clusters, which leads to the higher chance of shrinking
and decaying of smaller clusters. The perturbed nodes in the giant cluster, on the other hand,
have more perturbed nodes as regulators and thus the giant cluster has a higher chance to
survive; the probability becomes nonzero when λ � λc. Therefore the Hamming distance H
can be approximated using the size of the largest cluster S via H ∼ S/N [30]. We will use this
relation in the below to derive the asymptotic behavior of the size distribution of the clusters
from the self-consistent equations for H, equations (6) and (7).

4.2. Cluster-size distribution in the annealed approximation

Let us denote the probability that a node belongs to a size-s cluster (of perturbed nodes) by
P(s) and consider its generating function ω = P(z) = ∑

s P (s)zs . The Hamming distance is
related to the generating function as

H � S

N
� 1 −

∑
s<S

P (s) � lim
N→∞

[1 − P(z∗
N)], (10)
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where z∗
N = e−1/S̃ and S̃ satisfies S2 � S̃ � S with S2 the second largest cluster size.

This relationship, combined with equations (6) and (7), gives us the functional form of
the inverse function z = P−1(ω). Let us expand the inverse function around ω = 1 as
z = 1 − ∑

n�1 bn(1 − ω)n. Then one can see that this equation should reduce to equations
(6) or (7), depending on the in-degree distribution, with z and 1 − ω replaced by z∗

N and H,
respectively, in the thermodynamic limit. Note that z∗

N → 1 in the thermodynamic limit.
Therefore the inverse function z = P−1(ω) is expanded around ω = 1 as follows:

1 − z � (1 − λ/λc)(1 − ω) + λ〈k2〉(1 − ω)2/2 + · · · (11)

for γ > 3 and

1 − z � (1 − λ/λc)(1 − ω) + λc�(1 − γ )(1 − ω)γ−1 + · · · (12)

for 2 < γ < 3, where c is the coefficient appearing in the asymptotic behavior of the in-degree
distribution Pd(k) � ck−γ .

The functional behavior of P(z) around z = 1 is then derived from equations (11) and
(12). At the critical point (λ = λc), it exhibits a singularity depending on the in-degree
exponent:

1 − P(z) ∼
{

(1 − z)1/2 (γ > 3),

(1 − z)1/(γ−1) (2 < γ < 3).
(13)

The asymptotic behavior of the cluster-size distribution P(s) can be obtained from the
functional form of P(z) since P(s) = (1/s!)(ds/dzs)P(z)|z=0. In particular, when
1 − P(z) ∼ (1 − z)τ−1 with τ a noninteger, the cluster-size distribution takes a power-
law form P(s) ∼ s−τ . The asymptotic behavior of P(s) is thus distinguished between γ > 3
and 2 < γ < 3 as follows:

P(s) ∼
{
s−3/2 (γ > 3),

s−γ /(γ−1) (2 < γ < 3).
(14)

Scale invariance is typical of the system at the critical point and the power-law form of the
cluster-size distribution is an example [30]. Our finding shows that the power-law exponent
may vary with the degree exponent. In the subcritical (λ < λc) or supercritical (λ > λc)

regime, the linear term in 1 − ω in equations (11) and (12) is dominant around ω = 1 and the
cluster-size distribution takes an exponential-decaying form like P(s) ∼ e−s/sc [26].

4.3. Scaling exponents

Once the asymptotic behavior of P(s) is known, the scaling property of the largest cluster
size may be derived. Using equation (14) in the relation

∑
s>S P (s) ∼ S/N , a part of

equation (10), one can see that the size of the largest cluster S scales with the system size
N as S ∼ N2/3 for γ > 3 and S ∼ N(γ−1)/γ for 2 < γ < 3. It is known that the number
of nonfrozen nodes in critical Boolean networks with any fixed number of inputs [31, 32] or
fast-decaying in-degree distribution also scales as N2/3 [33]. A node i is called nonfrozen if
its state (σi) is not fixed at either 0 or 1 in the stationary state and thus may be perturbed (but
not necessarily). The set of perturbed nodes is thus a subset of the set of nonfrozen nodes and
it is noteworthy that their sizes display the same scaling behavior.

The Hamming distance, H ∼ S/N , in the critical regime is then given by

H ∼
{
N−1/3 (γ > 3),

N−1/γ (2 < γ < 3).
(15)
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Figure 3. Finite-size scaling behavior in the critical regime. (a) Data collapse for different system
sizes with γ → ∞. The inset shows that λc � 0.2505(5). (b) Data collapse with γ = 2.5 and
λc � 0.287(1).

Since H ∼ N−β/μ in the critical regime from the finite-size scaling ansatz in equation (9), we
find that the scaling exponent μ is given by

μ =
{

3 (γ > 3),

γ /(γ − 2) (2 < γ < 3).
(16)

To check numerically the derived finite-size scaling behavior of the Hamming distance,
we performed simulations of the Kauffman model on the model networks described in
section 3.2 varying the system size. First, we plot the data of HNβ/μ as a function of λ for the
same average degree (〈k〉 = 4) and different system sizes (N = 4000, 8000, 16000, 32000).
They cross at one point, which determines the critical point λc according to equation (9).
(see the insets of figure 3). Using these values of λc, we plotted the same data of HNβ/μ

versus 
N1/μ in figure 3. The collapse of the data from different system sizes, while a slight
deviation is seen in the case of SF networks, presumably due to strong finite-size effects,
supports the scaling behavior of the Hamming distance in equation (9) with equations (8) and
(16) used.

The finite-size scaling behavior in equation (9) has been identified also in a wide range
of dynamical systems on complex networks. In particular, the formation of a giant cluster
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in SF networks evolving by adding links has been analyzed through its exact mapping to the
q = 1 Potts model and found to be characterized by (β = 1, μ = 3) for the degree exponent
γ > 4 and (β = 1/(γ − 3), μ = (γ − 1)/(γ − 3)) for 3 < γ < 4 [26]. These exponents
are very similar to equations (8) and (16). Also in the Ising model [34–37] and the Kuramoto
model for synchronization phenomena [38, 39], the exponents are given by (β = 1/2, μ = 2)

for the degree exponent γ > 5 and (β = 1/(γ − 3), μ = (γ − 1)/(γ − 3)) for 3 < γ < 5.
Such similar dependence of the scaling exponents on the degree exponent suggests a common
framework to understand the critical phenomena on complex networks [36, 40, 41].

We note that while the scaling plot gives λc � 0.251 for the completely random networks
(γ → ∞) as predicted by equation (4), the SF networks with γ = 2.5 have λc � 0.289,
deviating from the predicted value 0.25. This deviation seems to be rooted in the use of the
annealed approximation for the Hamming distance. It has been reported that the analytic
prediction of the critical point in the framework of the mean-field theory deviates slightly from
the numerical analysis in the Ising model [37] and in the Kuramoto model for synchronization
phenomena [39]. An improvement can be made by considering the Cayley tree with a given
degree distribution as the underlying network topology [40].

Our results show that the width of the critical regime W ∼ N−1/μ in the λ-axis increases
as the in-degree exponent γ decreases below 3 while its scaling behavior remains the same for
all γ > 3. Since the number of genes in most organisms is not infinite but of order 105 at most,
the width of the critical regime may be between O(10−2) and O(1), depending on the in-degree
exponent. Such a broad critical regime for small values of γ should help living organisms
to remain in the critical regime and in turn, to balance between robustness and evolvability.
Individual dynamical responses depend on the properties of the perturbed elements, i.e, on
their connectivities and regulating rules, which leads to perturbation propagation on various
scales in heterogeneous networks [24]. Here we have analyzed the whole ensemble of such
differentiated dynamical responses in heterogeneous networks and found that it can remain
critical more easily with the help of extremely heterogeneous connectivity patterns.

The effects of correlation between in- and out-degree of the same node, which we have
ignored so far, can be addressed in the results we obtained. In the presence of the in- and
out-degree correlation, (qk/〈q〉)Pd(k) should be considered instead of Pd(k) to compute the
Hamming distance, as seen in equation (5). If it holds that qk ∼ k−θ for large k, we have to
consider the effective in-degree exponent, γeff = γ + θ , in place of γ for power-law in-degree
distributions in all the results we obtained, including the scaling exponents in equations (8)
and (16).

5. Summary and discussion

In summary, we investigated the phase transition between the stable (ordered) and unstable
(chaotic) phases in the Boolean dynamical network. Heterogeneous connectivities are found
to broaden substantially the small Hamming distance region close to the phase boundary by
suppressing the perturbation propagation in the unstable phase. Furthermore, the transition
region for finite system sizes turns out to be much wider than in homogeneous networks. Such
a robust pseudo-criticality is expected to be also present in transcriptional regulatory networks
and also in other biological networks such as neural networks [42], which can be a source for
stability and evolvability coexisting in living organisms.

Our results suggest that the heterogeneous connectivity patterns of many biological
networks have been selected in the course of evolution in part to serve for achieving stability
and evolvability simultaneously. Therefore, it would be desirable to propose a model in which
heterogeneous connectivity patterns emerge driven by the evolutionary pressure towards a
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broad edge of chaos. There are indeed models for co-evolution of network structure and
dynamics, which reproduce networks with a selected number of links supporting dynamic
criticality by dynamics-correlated addition and deletion of links [43, 44]. Similarly to these
models, if one allows link rewiring only, preserving the total number of links, and make it
happen depending on the network’s dynamical state, the network is expected to be organized
so as to have a broad degree distribution, which is under investigation.

While we focussed on the Hamming distance to capture the effects of structural features
on the dynamic stability of Boolean networks, it would be also interesting to see how the
heterogeneous connectivity patterns affect the properties of attractors in the configuration
space, given the recent interest [10–14] in the scaling behavior of the number and length of
the attractors in the critical Boolean networks. It has been shown that the median attractor
length of SF networks is larger than that of networks with fixed in-degree at the critical point
[45, 46], but much more properties remain to be investigated.

The asymptotic behaviors of the in-degree distributions of real transcriptional regulatory
networks of E. coli [5] and yeast [2, 21] are hard to discern due to finite-size effects. In both
organisms, there are about one hundred regulators (nodes with outgoing links), which impose
a cut-off in the measured in-degree distributions. However, one can find for the network of
yeast that its in-degree distribution is much broader than that of the networks generated by
randomly rewiring the links, and that the Hamming distance of the Boolean dynamics is much
slower than that in the randomized networks, demonstrating the contribution of heterogeneous
connectivity pattern to maintaining dynamic criticality [18].

It should be noted that the real transcriptional regulatory networks and other biological
networks have much richer structural properties than described here and their relation to the
dynamic criticality of the system is of interest. For example, the correlation of the degrees
of neighboring nodes has been identified in many real-world networks [47, 48] including the
yeast gene regulatory network [20] and there are studies on the effects of the degree–degree
correlation on the structure and dynamics of complex networks [49–51]. While it has been
shown [51] that a negative (positive) degree–degree correlation is irrelevant (relevant) to the
percolation transition in complex networks, it still remains to be addressed how the correlation
affects the critical phenomena of Boolean networks.
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[20] Balcan D, Kabakçioğlu A, Mungan M and Erzan A 2005 PLoS One 2 e501
[21] Luscombe N M, Babu M M, Yu H, Snyder M, Teichmann S A and Gerstein M 2004 Nature 431 308
[22] Moreira A A and Amaral L A N 2005 Phys. Rev. Lett. 94 218702
[23] Oosawa C and Savageau M A 2002 Phyisca D 170 143
[24] Aldana M and Cluzel P 2003 Proc. Natl Acad. Sci. USA 100 8710
[25] Lee D-S 2008 unpublished data
[26] Lee D-S, Goh K-I, Kahng B and Kim D 2004 Nucl. Phys. B 696 351
[27] Gumbel E J 1958 Statistics of Extremes (New York: Columbia University Press)
[28] Robinson J E 1951 Phys. Rev. 83 678
[29] Marro J and Dickman R 1999 Nonequilibrium Phase Transitions in Lattice Models (Cambridge: Cambridge

University Press)
[30] Stauffer D and Aharony A 1994 Introduction to Percolation Theory (London: Taylor and Francis)
[31] Kaufman V, Mihaljev T and Drossel B 2005 Phys. Rev. E 72 046124
[32] Mihaljev T and Drossel B 2006 Phys. Rev. E 74 046101
[33] Samuelsson B and Socolar J E 2006 Phys. Rev. E 74 036113
[34] Aleksiejuk A, Holyst J A and Stauffer D 2002 Physica A 310 260
[35] Leone M, Vázquez A, Vespignanai A and Zecchina R 2002 Eur. Phys. J. B 28 191
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