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The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-
Carlo simulations. Its phase diagram is determined in the transverse field (I') and temperature
(T) plane for various (fixed) concentrations (p). The nature of the quantum Griffiths phase
at zero temperature is investigated by calculating the distribution of the local zero-frequency
susceptibility. It is pointed out that the nature of the Griffiths phase is different for small and

large T
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§1. Introduction

In numerous investigations of the effect of quantum
fluctuations on the order-disorder phase transition the
transverse-field spin-1/2 Ising model with ferromagnetic
interactions has served as the simplest model on which
these effects can be studied.!) This model is of partic-
ular interest, since the strength of the quantum fluctu-
ations can be controlled by varying the strength I' of
the transverse field: a pure quantum phase transition
(QPT) occurs at zero temperature when the external
field exceeds a critical value. The necessary prerequisite
for the existence of long range order is the existence of
an infinite connected component of cluster in the lattice,
because only an infinite system can have a spontaneous
magnetization. As has been recognized by Harris in the
context of randomly site diluted lattices an infinite con-
nected cluster is not only necessary but also sufficient
for the existence of such a QPT. Any percolating clus-
ter is at least one-dimensional (i.e. the fractal dimension
of its backbone is larger than one). Since even the one-
dimensional transverse field Ising model shows a QPT at
some non-vanishing strength of the transverse field, any
infinite cluster must have a QPT.

The investigation of the effects of randomness on the
transverse field Ising models (TFI) has attracted a lot
of interest recently.?) In particular, the peculiar features
of random systems which are derived from the Griffiths-
McCoy singularity have been studied intensively.® %)

As Griffiths has pointed out,®) randomly diluted (clas-
sical) ferromagnets have a non-analytic free energy even
away from the thermodynamical critical temperature for
a given concentration p. As a matter of fact for any fixed
concentration p of occupied sites such a non-analytic
behavior persists up to a temperature which coincides
with the transition temperature of the pure case (T for
p = 1). The reason for these anomalies is that there is
a non-vanishing probability to find arbitrarily large clus-
ters of connected spins for any concentration p. Since

large clusters tend to order ferromagnetically below Tt,
they act very coherently. This causes singularities in the
response to an external field and in the dynamical prop-
erties even above the critical point. These effects have
been pointed out as significant effects in the distribu-
tion of zeros of the partition function and the Laplace
transform of dynamical correlation.5)

The Griffiths phase persists in the presence of a trans-
verse field and is, for fixed concentration p, located be-
tween the ferromagnetic phase boundary T¢(T'; p) and the
pure paramagnetic phase boundary T.(I';p = 1). While
the effect of the Griffiths-McCoy singularity on the re-
laxation process of the diluted Ising model causes a non-
exponential decay of the time correlation function,®®) it
has no effect on the thermodynamic properties for non-
zero temperatures. At zero temperature, however, the
singularity causes singular behavior even in static prop-
erties.?1%) Particularly noteworthy are the divergence of
the local susceptibility and the algebraic decay of the
dynamical correlations.

In this paper we study the transverse field spin-1/2
Ising model on a randomly diluted square lattice. The
phase diagram of this model has been studied by a dec-
imation transformation method.'®) Here, we mainly in-
vestigate the distribution of the local susceptibility using
the continuous (imaginary) time cluster algorithm for
transverse Ising models developed by Kawashima and
Rieger!® (continuous time cluster algorithms for vari-
ous other quantum mechanical models have been pro-
posed recently.'®)) It turns out that this distribution has
a power law decay for large values, and consequently the
local susceptibility diverges at some points in the disor-
dered phase. A similar behavior has been found for quan-
tum spin glass systems, but for these systems only the lo-
cal nonlinear susceptibilities diverge.!!:12) The exponent
for the power law decay of the distribution is related to
the dynamical exponent z. As our most important result
we confirm the result of Senthil and Sachdev!?) that at
the quantum critical point time scales diverge exponen-
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tially fast at the percolation threshold, implying that the
dynamical critical exponent z..; is infinite, whereas in 2
or 3-dimensional transverse field Ising spin glasses a finite
value for z.; has been estimated.!®) The concentration
dependence of the phase boundary in the site or bond
diluted square lattices at zero temperature is also of in-
terest. Particularly interesting features of the phase dia-
gram such as the existence of a multi-critical point and a
straight vertical phase boundary have been observed for
small transverse fields.121) For such small transverse
fields the percolation threshold determines the bound-
ary between the ordered (ferromagnetic) phase and the
disordered phase. On the other hand for large trans-
verse field, even in the geometrically connected cluster
(i.e. above the percolation threshold), the magnetically
connected cluster is reduced by quantum fluctuations.

§2. Model and Method

The model that we consider here is the spin-1/2 Ising
model in a transverse field on a square lattice with ran-
dom site dilution, i.e. sites on a square lattice are occu-
pied with spins with probability p and empty with proba-
bility 1—p. Only occupied nearest neighbor sites interact.
The model is thus defined by the quantum mechanical
Hamiltonian

H= —JZeiejofaf - I‘Zsiaf, (1

(4,5) i
where o; are Pauli spin matrices, (3,j) denotes nearest
neighbor pairs on a L x L square lattice with periodic
boundary conditions, J is the ferromagnetic interaction
strength and I' is the strength of the transverse field;
g; € {0,1} are quenched random variables modeling the
dilution: €; = 1 with probability p and ¢; = 0 with
probability 1 —p.

To map the 2-dimensional quantum system to the 3-
dimensional classical system, we use the Suzuki-Trotter
decomposition.??) Then the free energy F of the system
(1) at inverse temperature § = 1/T is obtained as the
limit of a 3-dimensional classical Ising model:

F=-41 li_)m In Tr exp(—Sciass), (2)
with
Sclass - _Khor Z Z 5i5jSi(T)Sj (7‘)
T=1 (ij)
— Kyer »_€:8:(7)8i(7 + 1), (3)
and
Kpor = ATJ,
1
Kyer = -3 In tanh(A7T), (4)
AT = (/n.

The classical action (3) is the Hamiltonian of a cubic lat-
tice of L x L x n classical Ising spins S;(7) = 1. The ad-
ditional index 7 = 1,...,n labels the n two-dimensional
(imaginary) time slices within which spins interact via
Kji,or and among which they interact with strength Kye,.
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Fig. 1. Phase diagram of the transverse field Ising model on the

square lattice for the finite temperatures. The symbols (¢) de-
note the results of the series expansions by Elliott and Wood,
and the symbols (+) denote the values obtained from the con-
ventional method. In the diluted system, the critical line shrinks
as p — pe.

The number of time slices n is called the Trotter number
and the third (imaginary time) axis is called the Trotter
axis.

Note that an empty (occupied) site ¢ in one two-
dimensional time slice implies a whole column of empty
(occupied) sites in the Trotter direction: the quenched
disorder is perfectly correlated in the imaginary time
direction. Therefore the model we study is not a di-
luted ferromagnet on a cubic lattice with uncorrelated
disorder, and its universality class will be different from
that of the site diluted cubic ferromagnet. We obtain
the phase diagram for the diluted model by the conven-
tional quantum Monte Carlo method using the world line
update for finite Trotter numbers, Fig. 1. The phase
boundaries for p = 0.8, 0.7 and 0.6 are also shown,
which agree with those obtained by dos Santos.'¥) For
finite temperatures, the phase boundary shrinks as p de-
creases towards p.(=~ 0.59). It is shown that the Grif-
fiths phase for fixed concentration p is located between
the FM phase boundary T,(I'; p) and the pure PM phase
boundary T¢(I';p = 1). But the conventional method
has difficulties in the regions close to " = 0, because
we need n proportional to 8 to take the Trotter limit
explicitly. Moreover, it is extremely hard to equilibrate
the system for weak transverse fields. In this work, we
use the new continuous time cluster algorithm developed
by Kawashima and Rieger to avoid these difficulties. For
a description of the algorithm and details of the imple-
mentation we refer to their paper.'®)

First, we have checked our method for the pure case
(i.e. p = 1), for which the phase diagram is already
known and the critical field value and the thermal expo-
nents have been estimated from series expansions.?324)
As a test of the cluster algorithm, we plot the square of
the magnetization (M?) obtained at each Monte Carlo
step, Fig. 2. At high temperature and low I' the system
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Fig. 2. The Monte Carlo sweep dependence of the order param-
eter <M2> at §=0.2,' = 0.1 starting from the complete ferro-

magnetic state.
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Fig. 3. Estimation of the critical ' at 8 = 10. The cross
(Tc =~ 3.05) at 1/n? = 0 is the critical point obtained from
the continuous time cluster algorithm. This value is compatible
with the value I'c ~ 3.03 obtained by extrapolation.

is in the disordered region. However, due to the strong
coupling constant along the Trotter axis, the time to
reach equilibration is large. The use of the cluster algo-
rithm reduces this time significantly. In Fig. 3, we study
n dependence of the critical values of I' obtained by the
Binder plot (the dimensionless ratio of moments of the
order parameter) at 3 = 10. The value obtained from
the continuous cluster algorithm is approximately 3.05.
This is indeed close to the value which is obtained by
extrapolating from the data of the conventional method.

Finally, we follow Kawashima and Rieger!®) and esti-
mate the critical I" at zero temperature and to obtain the
critical exponents from finite size scaling. Close to the
quantum critical point, quantities are expected to obey
the finite size scaling form
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Fig. 4. Scaled uniform susceptibility. In this case, I'c = 3.07,

v = 0.63, and n = 0.04. These estimates agree well with the
series expansion results.

(4) = 2% (LV6,17/8) (5)

where 6 = I' — I, and a is the finite size scaling ex-
ponent of the quantity A. From the equivalence with
the 3-dimensional classical Ising model one knows the
dynamical exponent to be z = 1. Thus, we can per-
form conventional one-parameter finite size scaling, if we
choose the aspect ratio §/L to be constant. We work
with a constant aspect ratio §/L = 1/5 and estimate
the magnetization m (a = —3/v), the uniform suscepti-
bility x (@ = 2 — 1) and the Binder ratio g (a = 0) in
order to determine the values of v, 7 and 3, see Fig. 4. As
a result, we estimate I';, ~ 3.06, v ~ 0.64, and § ~ 0.31
from m, I'; ~ 3.07, v ~ 0.63 and n ~ 0.04 from x, and
', ~ 3.08 and v ~ 0.63 from g. These values agree
well with the series expansion results?®) and with those
obtained earlier by Kawashima and Rieger!®) using the
same method.

§3. Quantum Griffiths Phase

The phase boundary in the site diluted square lattices
is depicted in Fig. 5. As has been mentioned above we
expect the Griffiths phase in the classical model (I' =
0) between the critical temperature of the pure model
p =1 and the thermodynamical critical temperature for
the concentration Tc(p). The singularity in this Griffiths
phase is due to the finite probability of large clusters
which behave coherently below Tt.. For low concentration
the probability is given approximately by

P(N)dN o pVdN =exp (=N |lnp|)dN,  (6)

i.e. it vanishes exponentially with the number of spins.
On the other hand, at T = 0 (quantum region) the exis-
tence of a vertical line (parallel to the I'-axis) at p. (the
percolation threshold ~ 0.59%%)) extending from I' = 0 to
I' s follows from the nature of the backbone of the perco-
lating cluster,!®) which has a fractal dimension between
1 and 2. Therefore the critical transverse field strength
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of the pure one-dimensional transverse Ising model is a
lower bound for 'ps, ie. T'py > J=1.

Again, due to the presence of arbitrarily large con-
nected clusters the entire area below I'; is Griffiths phase
(quantum Griffiths phase), except the ordered phase.
The paramagnetic phase lies above I'.. Since we are
at zero temperature close to the quantum phase tran-
sition points I'.(p), we encounter as a new feature much
stronger singularities than in the classical case, a fact
that has first been noted by McCoy? and has been in-
tensely investigated recently in various situations.®%)
The transition across the vertical line including the
multi-critical point at (0,1 — p.,T'ps) as well as the
Griffiths—McCoy singularity for small transverse fields
I' < T3 have also been discussed quite recently.'”)

The main aims of our present investigation are to de-
termine the dynamical exponent in the quantum Griffiths
phase and to confirm the conjecture of the straight verti-
cal phase boundary. For p < p, the probability distribu-
tion of the existence of a spherical dense cluster with N
spins is given by eq. (6). In the transformed 3D classical
Ising model, such a cluster forms a rod along the Trot-
ter axis as shown in Fig. 6. The spins in the cluster are
strongly coupled in real space and may have a domain
wall perpendicular to the Trotter axis. The upward or
downward solid arrow indicates parallel or anti-parallel
with respect to the state of the cluster in real space. The
insertion of a domain wall costs an energy AF

AE ~ CN, (7)

where C' is stiffness constant. The probability for such
a domain wall decreases exponentially as exp(—CN).
Therefore the correlation length along the Trotter axis
as a function of a cluster size NV is given by

& (N) ~ exp (CN). (8)

Now we introduce the local susceptibility Xjoca1, which is
the response of the expectation value of a spin o7 to a
local (longitudinal) field h; on site 7 which is expressed
by h;of in the Hamiltonian.
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Fig. 6. Schematic picture of a local cluster which forms a rod
along the the Trotter axis.

= Xlocal- (9)
h;=0

(of (hi))

Oh;

In the continuous time method, following Kawashima
and Rieger,ls) the expectation value for the local sus-
ceptibility is

B
Niocal = / (07 (r)o(0)) = B(m?).

Here, the local magnetization m; at site 7 is the difference
between the total length of all +segments and the total
length of all —segments divided by §. From the relation
(8), Xiocal is proportional to &,. Now let us consider
the distribution of &, P (Xiocal)- The dependence of the
correlation length &, on the cluster size N is given by (8)
and N has the distribution (6). Thus the distribution of

& s

(10)

P (&) dé, ~ £2d¢s, (11)
where
V= 1%1)- —1. (12)

Consequently P (Xjocal) has a power law dependence on
Xlocal 2t large values,

P (Xlocal) Xmocal = (Xlocal)ﬂ Xmocal‘ (13)

The numerical estimation of the integrated distribution
function has a better statistics than P (joca). There-
fore, in the practical calculation we obtain the integrated

distribution function
o0

C Inp/C
F (Xlocal) = / P (t) dt ~ — (Xlocal) P . (14)
Xlocal lnp ‘

In Figs. 7-10, the integrated distribution functions are
plotted for various values of ', and p. We expect that
the integrated distribution of Yjoca) Will be cut off at
Xlocal = 0, and that increasing § will simply extend the
range over which the data fall on a straight line.

Near the percolation threshold p., where the form (6)
is no longer valid, P (N) is given by?%)
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data and has the slope —0.416.
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Fig. 8. Similar to Fig. 7 but for I' = 1.0, p = 0.40. The slope of
the straight line is —0.309.

P(N)~N""exp (—Z—g) . (15)
Here, ¢ is correlation length in real space which diverges
as & ~ |p—pc|”"®, and D is the fractal dimension of
the percolating cluster in two space dimensions. Using
eq. (15) instead of eq. (6), one obtains a formula for
F (X10ca1) that is valid near the percolation threshold as
long as the phase boundary is vertical, i.e. I' < T'p;:
D

C —a/CED
F(Xlocal) ~ % (Xlocal) /et .

(16)
Following Rieger and Young!!) one can relate the power
of the tail of F(Xlocal) t0 a single dynamical exponent
z(p,T") that varies continuously with p and T,

Fig. 9. Similar to Fig. 7 but for I' = 1.5, p = 0.50. The slope of
the straight line is —0.512.
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the straight line is —0.391.

Similar to Fig. 7 but for I' = 2.0, p = 0.66. The slope of

d
In F(X1ocal) = - In X10cal + const., (17)

where d is the space dimension, i.e. d=2 here. From (14),
(16) and (17) it follows that

d [ —Inp/C
2 | a/Cg”?

The second relation implies that z diverges at p. alge-
braically'”) like

for p < p.

for p—p.. (18)

I—Dup

z o |p—pe for p—p. and T <Ty. (19)

In Fig. 11 the data for d/z are plotted for various values
of ', and p. For ' = 0.7, 1.0 (< T'py), the data for d/z
vanish at p., whereas for I' = 1.5, 2.0, they vanish for
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tion F (Xjoca1) for various I'. For I = 0.7 and 1.0, d/z vanish at
P ~ pe, but, for I' = 1.5 and 2.0, these vanish at p > p.. When
z > d, the average susceptibility will diverge.
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Fig. 12. Extraction of the exponent from the data for d/z for [’ =

0.7 and 1.0, in which, Ap implies [p — pe| (pe is 0.59, the known
percolation threshold). The value of Dy, obtained from the
percolation theory is known as Dvp ~ 2.57, and the criticality
of d/z seems to be indeed compatible with the relation (19).

p > p.. For I' > I'ps the phase boundary is no longer
parallel to the I'-axis, and the quantum fluctuations are
strong enough to destroy the ferromagnetic order along
the backbone of a percolating cluster at p.. Thus, our
estimates for d/z should be non-zero at p, for large trans-
verse field strength I' > '}/, since we expect the dynam-
ical exponent z to diverge only at ppy(T"), where ppm (T)
is the critical concentration at transverse field strength
I'. The observation of a nonzero slope at p. implies that
Pc is not a special concentration for I' > I'y,.
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Now let us investigate the criticality of z (19) for
I' < T'ps. The value of Dy, obtained from the percolation
theory is known as Dy, ~ 2.57. As is shown in Fig. 12,
the criticality of d/z seems to be indeed compatible with
the relation (19). For I' > I'y; the phase boundary is
no longer parallel to the [-axis. We also analyzed the
criticality of z for ' > I');. We do not know, however,
the critical value of ppps (I'). Thus we tried to fit the
data in the form |p — ppar (T') |7¢. Minimizing the devi-
aton from the fitting form, we obtain ppps (1.5) ~ 0.67
and a ~ 2.36, and ppps (2.0) ~ 0.77 and a ~ 2.24. The
values of a are not far from for I' < I';. However, in
order to conform the same universality class for the two
regions, we need a more precise investigation which will
be reported elsewhere.

§4. Discussion and Summary

The nature of the quantum Griffiths phase of the di-
luted transverse field Ising ferromagnet in two dimen-
sions has been studied. Due to the Griffiths-McCoy sin-
gularity, the local susceptibility Xiocal diverges, if d/z
is smaller than 1. Thus, as in the case of a quantum
spin glass,1:12) the Griffiths-McCoy singularity causes a
divergence of various static quantities such as the zero-
frequency local susceptibilities. In the classical case the
Griffiths singularity is not strong enough to produce such
a dramatic effect.

So far we assume that the clusters are well defined ge-
ometrically and we have used the probability function
P (N) given by percolation theory. However, even in
the geometrically connected cluster the correlation func-
tion is reduced due to the quantum fluctuations, and
when I" becomes large we have to work with the probabil-
ity distribution of “physical clusters” which are smaller
than the geometrical ones. Although we do not know
P (Nphy's) as a function of I' at this moment, generally
we expect to find the following senario:

For ' < T'pr, P (Nphys) =~ P (N), and the mean cluster
size diverges at p = p.. On the other hand for I' >
', the mean size .of the physical cluster diverges at
pra (0) > pe. In Fig. 11, we find that d/z vanishes at
pe for the values I' =0.7 and 1.0, which are both smaller
than I'j;. On the other hand, for I' > T'j; they vanish at
a larger value of p, which is considered to be ppy (I'). For
I' > I'js it is difficult to estimate the exponent correctly.
Because the phase boundary at the zero temperature is
not yet known correctly. The question.of whether the
critical exponent of this physical cluster may be different
from the value of the exponent in the regions I' < T'py is
still open.

For I' ~ I', quantum fluctuation are very strong. In
this case the present analysis which makes use of the
broad distribution of Xjocar does not apply for the small
systems which we are able to investigate. The correlation
function along the Trotter axis is not well developed,
and the relation & ~ exp (CN) is no longer valid. The
nature of this region which is dominated by quantum
fluctuations will be studied elsewhere.
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