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Abstract: We present an analysis of the data on aging in the three-dimensional

Edwards Anderson spin glass model with nearest neighbor interactions, which is

well suited for the comparison with a recently developed dynamical mean field the-

ory. We measure the parameter x(q) describing the violation of the relation among

correlation and response function implied by the fluctuation dissipation theorem.
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On experimental time scales spin glasses are out of equilibrium. Experiments

have pointed out that ‘aging effects’, i.e. the dependence of some measurable quan-

tities on the time spent in the low temperature phase after a quench, persist at least

for times of the order of years [1]. The same kind of phemomena have been recorded

in numerical simulations of various spin glass models (see [2] for a review).

A lot of activity has been devoted to understand the origin of these phenomena

with phenomenological approaches[3, 4, 5, 6] and from the analysis of mean field

models [7, 8, 9]. This last approach is rapidly evolving, and major progress has

been made towards a mean field theory of the off-equilibrium dynamics of spin

glasses. In this note we want to compare some features of the mean field theory

of spin glasses with the more realistic three-dimensional Edward Anderson model.

In mean field theory (MFT) aging is associated with a phase transition, there is a

high temperature phase in which the systems equilibrate, at low temperature phase

where the systems settle in an asymptotic off-equilibrium state.

On the time scales we can reach we can not certainly claim that the system has

reached an asymptotic behaviour, neither we can exclude a crossover from aging

to equilibrium dynamics for very long times. The question whether aging in a

3D system is really asymptotic or gradually disappears, although fundamental in

principle, may not be the most relevant one from an experimental point of view.

We compare the behaviour of finite time in 3D systems with the predictions

of the mean field theory. Among these, we will focus on a systematic analysis

of the violations of the fluctuation dissipation theorem (FDT). The FDT cannot

hold in a non-equilibrium situation, where the probability distribution for the spin

configurations is time-dependent (see the discussion in [10]). The fundamentally

new idea developped in [7, 8, 9] is that a quantitative analysis of this violation could

reveal a deeper insight into long time off-equilibrium properties of spin glasses.

In spin glass dynamics crucial quantities of interest are the spin autocorrelation

function C(t, s) and its associated response function G(t, s)

C(t, s) = [〈Si(t)Si(s)〉]av ,

r(t, s) = ∂〈Si(t)〉/∂hi(s) (t > s) ,
(1)

where 〈· · ·〉 means an average over the stochastic process describing the dynami-

cal evolution of the system at a temperature T = β−1 (starting with a random

initial configuration) and [· · ·]av means an average over the quenched disorder. At

thermal equilibrium these function are homogeneous, and related by the fluctuation
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dissipation theorem relation req(t− s) = β∂Ceq(t− s)/∂s. In general, to character-

ize off-equilibrium situations it is possible to introduce the ‘fluctuation dissipation

ratio’, as the function

x(t, s) =
r(t, s)

β∂C(t, s)/∂s
. (2)

It is convenient for the following analysis to change a bit the definition of this

function. First we define a function s̃(q, t) as the time s such that C(t, s) = q,

which is unique due to the monotonicity of C(t, s) with s. Then we consider the

fluctuation-dissipation-ratio at this time

x(t, q) = x(t, s̃(q, t)) , (3)

The above mentioned MFT makes a particular set of predictions for x(t, s) (and

a fortiori for x(t, q)) in the limit t, s→∞. There are different ways in which one can

take this limit, depending on the relation among t and s. In ordinary equilibrating

systems, the relevant procedure is to fix the difference t−s = τ to a finite value. This

yields to limiting functions Cas(τ ), ras(τ ). The correlation function Cas(τ ) decreases

monotonically from the value 1 at τ = 0 to a value that we call qEA for τ → ∞,

and the FD relation is respected (x = 1). In any different limiting procedure, that

would imply t− s→∞, one would find that the correlation function tends to qEA.

In other words, for t, s→∞ all the observable dynamical effect are concentrated in

the finite τ region. In aging systems this does not happen: dynamical effects persist

in regions of the plane (t, s) where the limit is taken differently. This is appearent

in experiments [1] where important dynamical effecs are observed on time scales τ

of the order of the ‘waiting time’ (s).

In mean field spin glasses, dynamics take place both in a region of time ho-

mogeinity where the FDT relation is respected, and in an aging region. This was

first theorized in [7], and then verified by a numerical solution of mean field off-

equilibrium dynamical equations for a particular model in [8]. An ansatz which

allows for a precise definition of the infinite time limit in the homogeneous and ag-

ing regimes, has been put forward in [7, 8, 9]. Without entering in the details of

this limiting procedure we just reassume some consequences of the analysis. The

time homogeneous regime is qualitatively similar to an equilibrium regime where

limτ→∞Cas(τ ) = qEA, x(q) = 1 for qEA < q ≤ 1.

In the aging regime the function C(t, s) decreases, for decreasing s, from qEA to

a value qmin (qmin = 0 for spin glasses in absence of a magnetic field). The function

x(t, q) tends, for any q in the interval [qmin, qEA], to a well defined limit x(q).
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It turns out that the function x(q) is formally related to the inverse of the static

Parisi function qstat(x), xstat(q). A non trivial x(q) is found in these models which

statically exhibit replica symmetry breaking [11]. In all cases in which the replica

symmetry breaking is associated with a continuos qstat(x), then xstat(q) = x(q). If the

static qstat(x) is discontiuous x(q) turns out to be different from its static couterpart.

This is the case e.g. of the p-spin spherical model [7], where x(q) is a step function.

However in both cases, dx(q)
dq

has all the properties defining a probability distribution,

as it happens for dxstat

dq
. At present there is not a complete physical comprehension

of the relation among the static definition of x(q) and the dynamic one, and of the

fact that the latter is associated to a probability distribution.

In this paper we want to try to extract the above defined function x(q) from

numerical data obtained for the 3D Edwards-Anderson model via Monte-Carlo sim-

ulations performed by one of us recently [12]. The advantage of numerical simu-

lations compared to experiments is that while experimentally it is very difficult to

get direct information on the correlation function, in numerical simulations one can

easily have access both to the correlation and the response functions.

The correlation function is measured directly in the course of simulations starting

from a random initial condition, which corresponds to a rapid temperature quench

from the paramagnetic phase. The response function is measured in ‘TRM (ther-

moremanent magnetization) experiments’: the system is let to age for a time tw
in presence of a small magnetic field h, then the magnetic field is cut off and the

magnetization is recorded as a function of the time τ measured starting from tw. We

assume linear response conditions where the magnetization M(τ + tw, tw)1 is given

by:

M(τ + tw, tw) = h
∫ tw

0
r(τ + tw, s) ds. (4)

Using (3) one can write

M(τ + tw, tw) =
h

T

∫ C(τ+tw ,tw)

C(τ+tw,0)
x(τ + tw, q) dq (5)

and exploiting the monotonicity of C this time with respect to τ , we choose τ such

that C(τ + tw, tw) = q and write with obvious meaning of the symbols

M(q, tw) =
h

T

∫ q

C(τ+tw ,0)
x(τ̃ (q, tw) + tw, q

′) dq′ (6)

1 Note that we use a notaton in which both the time arguments of M are measured starting
from the quenching time t = 0. The standard notation would be M (τ, tw).
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For infinite tw, assuming loss of memory of the initial condition, limtw→∞ C(τ +

tw, 0) → 0, one would have M(q) = h
T

∫ q
0 dq′x(q′). In the following we will present

simulation data for the function

χ(q, tw) =
T

h
M(q, tw)

tw→∞−→ χ(q) (7)

in the 3D Edward Anderson model. Simulation data for the corresponding func-

tion in the Sherrington and Kirkpatrick model have been given in [9]. In order to

understand our findings let us discuss some simple scenario for the function χ(q).

1) Ergodic behaviour in the whole phase space:

In this case qEA = 0 and x(q) is equal to one in the whole interval 0 ≤ q ≤ 1 and

one finds the classical FDT results

χ(q) = q (8)

typical e.g. of the paramagnetic systems.

2) Ergodic behaviour in a confined component:

Here the systems relaxes to a non zero qEA and the dynamics remains confined to a

single valley, then x(q) = Θ(q − qEA) and

χ = Θ(q − qEA)(q − qEA) (9)

Such a behaviour is found e.g. in ferromagnets in the low temperature phase, where

qEA is equal to the square of the magnetization and it is would also be the prediction

for a spin glass scenario like that proposed by Fisher and Huse [4].

3) Mean field aging behaviour:

In this case two scenarios have been found in the literature. In models with one

step of replica symmetry breaking x(q) = xΘ(qEA − q) + Θ(q − qEA) and χ(q) =

xΘ(qEA− q)q+ Θ(q− qEA){q− (1−x)qEA} while in models with continuous replica

symmetry breaking x is an increasing function from zero at q = 1 to one for q = qEA
and stays equal to that value for q > qEA. Correspondingly

χ(q) = Θ(qEA − q)
∫ q

0
dq′x̃(q′) + Θ(q − qEA)

{
q − qEA +

∫ qEA

0
dq′x(q′)

}
. (10)

In the SK model near Tc it is found [9] the linear shape x(q) = 2aq with a = 1/2

and one obtains χ(q) = Θ(qEA − q)aq2 + Θ(q − qEA)(q − qEA + aq2
EA) .

Let us turn now to the presentation of the simulation data. We stress that at

finite times C(t, s) and r(t, s) are regular functions, and the possible singularities in
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x(q) and χ should be smoothed in some crossover region. We use the data one of us

obtained in [12] and did some additional runs where necessary. For completeness let

us recall the definition of the model that we investigate: it is the three-dimensional

Edwards-Anderson model defined by the Hamiltonian

H = −
∑

〈ij〉
Jijσiσj − h

∑

i

Si , (11)

where 〈ij〉 are nearest neighbor pairs on a simple cubic lattice, Si = ±1 are Ising

spins, Jij are quenched random variables taking on the values +1 and −1 with equal

probability and h is an external magnetic field. In this model a phase transition has

been observed at Tc ≈ 1.2 [14] (see however [15] for a different point of view). We

use single-spin-flip heat-bath dynamics with parallel sublattice update and calculate

the spin-autocorrelation function C(τ, tw) (in zero field) and the thermoremanent

magnetization M(τ + tw, tw) as defined in (4). The field h applied for a time tw
before starting the measurement is small (h = 0.1), and we checked by looking

at h = 0.05 and h = 0.2, too, that we are in the lineare response regime. Thus

χ(τ + tw, tw) = T/hM(τ + tw, tw) is the magnetic relaxation function occuring in

linear response theory. The lattice size used is N = 323 and we made sure that finite

size effects were not significant. All data are averaged over at least 128 samples (i.e.

different realizations of the disorder).

In figure 1 we show a picture, analogous to that presented in [13], that clearly

show the violation of the FDT relation among magnetization and correlation func-

tion as a function of time. As long as τ � tw the FDT-relation is fulfilled

χdc − χ(τ + tw, tw) = β{1− C(τ + tw, tw)} , (12)

where χdc is the equilibrium dc-susceptibility (see e.g. [3]). For τ � tw this relation

is obviously violated.

In figure 2 we present the function χ(q, tw) for different waiting times and tem-

peratures T = 0.8, 1, 1.5, 2. It is clearly seen in the T = 2.0 plot, that after a short

transient χ tends to the paramagnetic function χ(q) = q. In the plot of the T = 1.5

data we can see that the system has not equilibrated even after the largest waiting

time tw = 105. At low temperature we clearly recognize a tw-dependent linear part

in χ at large q. The slope of the linear part is indeed 1 as it is shown in figure

3 where we display χ(q, tw) − q for T=0.8. From figure 2 and 3 one can extract

an effective time dependent EA parameter qEA(tw) as the value of q at which χ(q)
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starts to depart from linearity. In this way we estimate at T = 0.8 for tw = 103,

tw = 104, tw = 105 the values qEA = 0.78, 0.75, 0.72, respectively. It is clear that

these data do not allow for any extrapolation.

The small q part of the curves can be reasonably fitted with an arc of parabola

χ(q) = aq2, for tw = 103, 104, 105 the value of a at T = 0.8 is roughly constant

and equal to a = 0.2. A linear fit of the kind χ(q) = xq gives much poorer results.

This seems to indicate a scenario more similar to that of SK-like continuous replica

symmetry breaking than that of a one-step replica symmetry breaking.

In figure 4 finally we present χ(q) as a function of q for tw = 105 and different

temperatures. As expected the apparent qEA parameter grows for decreasing tem-

peratures. On one side one definitely still observes a slight dependence of χ(q, tw)

on the waiting time tw, which means that rigorous statements on the limiting shape

of χ(q) and hence of x(q) hardly can be made. On the other side we do not observe

any tendency of the curves χ(q, tw) to approach a form like (9) that is characteristic

for a system with only two pure states (note that this would imply that the whole

small-q-part, i.e. q < qEA, of χ(q, tw) has to come down to zero).

We leave to the reader to judge if our data can be interpreted as an indication

for a nontrivial x(q) in three dimensions. However, the 3D EA-model is known to be

only marginally critical, therefore it would be highly desirable to perform the same

kind of investigation in four dimensions, where a nontrivial static P (q) has already

been reported from a finite-size scaling analysis [16].

Concluding we have analized in this paper the data for the correlation and the

response functions in the light of a recent mean field theory of aging phenomena.

We have shown that at least as the quantity χ(q) is concerned, the behaviour of the

3D EA model at the time scale we investigate agrees qualitatively with a mean field

like behaviour. One clearly sees a separation of the dynamics in a quasi-equilibrium

part, analogous to an equilibrium dynamics where the FD relation is respected, and

an aging part where the FD ratio take values different from zero and one. Rough

estimates indicate that x(q) grows linearly with q for small q, a behaviour reminiscent

of the SK model. The time scales to which we have access prevent us to probe the

asymptotic behaviour of the system, and even to prove that aging phenomena do

not gradually disappear for increasing waiting times. This question is related the

one longly debated of the existence of a sharp phase transition in the model, and

more general in 3D short range spin glasses. Although of fundamental theoretical

importance, due to the slowness of the relaxation process, it is certainly not the
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most interesting one from an experimental point of view. It could well be the case

that even if the transition is absent and the aging is interrupted after some very

long time, the mechanisms responsible for aging in mean field could be relevant for

the 3D physics on experimental times.

HR’s work was performed with the Sonderforschungsbereich 341 Köln–Aachen–

Jülich supported by the DFG. He also thanks the NORDITA institute for its kind

hospitality.
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Figures

Fig. 1 The quantities χdc −χ(τ + tw, tw) (◦) and β[1−C(τ + tw, tw)] (•) versus time

t for different waiting times. χdc, the dc-susceptibility is a single fit paramater

for all waiting times. The temperature is T = 0.7. Note that for the FDT to

hold both curves have to be identical.

Fig. 2 The function χ(q, tw) versus q for various temperatures. The waiting times are

tw = 102 (◦), tw = 103 (4), tw = 104 (2) and tw = 105 (•).

Fig. 3 The function q − χ(q, tw) versus q for T = 0.8 and different waiting times.

q− χ(q, tw) should be constant as long as the FDT is fulfilled. The full line is

only a guide for the eye.

Fig. 4 χ(q, tw) versus q for different temperatures at tw = 105.
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