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Abstract. We study the effect of dissipation on the infinite randomness fixed
point and the Griffiths–McCoy singularities of random transverse Ising systems
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of ohmic dissipation the susceptibility displays a crossover from Griffiths–McCoy
behavior (with a continuously varying dynamical exponent) to classical Curie
behavior at some temperature T ∗. The specific heat displays Griffiths–McCoy
singularities over the whole temperature range. For super-ohmic dissipation we
find an infinite randomness fixed point within the same universality class as the
transverse Ising system without dissipation. In this case the phase diagram and
the parameter dependence of the dynamical exponent in the Griffiths–McCoy
phase can be determined analytically.
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1. Introduction

The interplay between quantum fluctuations and quenched disorder in the form of an
extensive amount of impurities or other random spatial inhomogeneities can lead to
a new class of quantum phase transitions, governed by an infinite randomness fixed
point (IRFP) as established for transverse Ising models [1] and many other disordered
quantum systems (for an overview see [2]). Besides unusual scaling laws at the transition
the IRFP is characterized by a whole parameter range around the transition, in which
physical observables display singular and even divergent behavior in spite of a finite spatial
correlation length. This is the manifestation of Griffiths–McCoy singularities or quantum
Griffiths behavior [3]–[7]. They have their origin in rare regions of strongly coupled spins
(or other quantum mechanical degrees of freedoms) that tend to order locally and thus
produce a strong response to small external fields, long relaxation (or tunneling) times
and small excitation energies.

If the underlying quantum phase transition is governed by an infinite randomness
fixed point the statistics of these rare events leads to a power law divergence of the
susceptibility in a region around the quantum critical point with a continuously varying
exponent. This dynamical exponent determines all singularities in the Griffiths–McCoy
phase. Continuously varying exponents, interrelated in a specific way for different physical
observables, were observed in many heavy-fermion materials and it was argued that this is
a manifestation of Griffiths–McCoy behavior due to an underlying IRFP [8, 9]. In essence
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these systems form local moments that interact via long-range RKKY interaction and
have a strong Ising anisotropy, such that an effective model describing these degrees of
freedom and their interaction is a random transverse Ising system.

Later it was argued that, due to the interaction via band electrons, the effective
spin degrees of freedom are strongly coupled to a dissipative ohmic bath [10, 11]. From
this point of view the rare regions should be described by spin-boson systems, which are
known to behave classically for sufficiently strong coupling to the dissipative bath [12],
which would destroy the expected Griffiths–McCoy singularities.

Since in the presence of dissipation rare regions can undergo phase transitions and
freeze independently from one another (like in the McCoy–Wu model in the mean field
approximation [13]), the global phase transition of the system is destroyed by smearing
because different spatial parts of the system order at different values of the control
parameter [14, 15].

Recently we analyzed the random transverse Ising chain coupled to a ohmic dissipative
bath with a strong disorder renormalization group (SDRG) scheme and could demonstrate
that the transition is indeed smeared, but argued that Griffiths–McCoy singularities
are still observable, at least down to very low temperatures also in the presence of
dissipation [16]. This was done by analyzing the gap and cluster distribution. In this paper
we continue and extend this SDRG study by (a) analyzing the low temperature behavior
of the magnetic susceptibility and the spin specific heat in the case of ohmic dissipation,
where we will argue that Griffiths–McCoy singularities are visible at all temperatures
in the specific heat and above a (small) crossover temperature in the susceptibility;
(b) considering in addition to chains also ladders and two-dimensional systems, where
we obtain similar results as for the chain; and (c) applying the SDRG also to super-
ohmic dissipation, where we find a quantum phase transition belonging to the same IRFP
universality class as the system without dissipation and compute analytically the phase
diagram and dynamical exponent in the Griffiths–McCoy phase.

The system that we study is the random transverse Ising model where each spin is
coupled to a dissipative bath of harmonic oscillators, i.e. ferromagnetically coupled spin-
boson systems [12]. It is defined on a d-dimensional square lattice of linear size L with
periodic boundary conditions (pbc) and described by the Hamiltonian

H = −
∑

〈i,j〉

Jijσ
z
i σ

z
j −

∑

i

[
hiσ

x
i +

∑

k

(
Ck,ix̂k,iσ

z
i +

p̂2
k,i

2
+ ω2

k,i

x̂2
k,i

2

)]
, (1)

where σx,z
i are Pauli matrices and the masses of the oscillators are set to one. The quenched

random bonds Ji (respectively random transverse field hi) are uniformly distributed
between 0 and J0 (respectively between 0 and h0). The properties of the bath are specified
by its spectral function Ji(ω):

Ji(ω) =
π

2

∑

k

C2
k,i

ωk,i
δ(ω − ωk,i) =

π

2
αiΩ

1−s
i ωsθ(Ωi − ω), (2)

where Ωi is a cutoff frequency and θ(x) is the Heaviside function such that θ(x) = 1 if
x > 0 and θ(x) = 0 if x < 0. The case s = 1 is known as ohmic dissipation although s > 1
(respectively s < 1) corresponds to a super-ohmic (respectively sub-ohmic) dissipation.
Initially the spin–bath couplings and cutoff frequencies are site-independent, i.e. αi = α
and Ωi = Ω, but both become site-dependent under renormalization.
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2. Real space renormalization

2.1. Decimation procedure

In this section, we derive in detail the real space renormalization scheme to study the
dissipative random transverse Ising model as in equation (1). For simplicity, we present
the calculation in dimension d = 1 (extensions to higher dimensions are discussed below)
and focus on the random transverse Ising chain (RTFIC):

H1d =
L∑

i=1

[
−Jiσ

z
i σ

z
i+1 − hiσ

x
i +

∑

k

(
Ck,ix̂k,iσ

z
i +

p̂2
k,i

2
+ ω2

k,i

x̂2
k,i

2

)]
. (3)

To characterize the ground state properties of this system (1), we follow the idea of a real
space renormalization group (RG) procedure introduced in [17] and pushed further in the
context of the RTFIC without dissipation in [3]. The strategy is to find the largest coupling
in the chain, either a transverse field or a bond, compute the ground state of the associated
part of the Hamiltonian and treat the remaining couplings in perturbation theory. The
bath degrees of freedom are dealt with in the spirit of the ‘adiabatic renormalization’
introduced in the context of the (single) spin-boson (SB) model [12], where it describes
accurately its critical behavior [18].

2.1.1. When the largest coupling is a bond. Suppose that the largest coupling in the chain
is a bond, say J2. The associated part H2 of the full Hamiltonian H1d in equation (3) is

H2 = H
(0)
2 + V,

H
(0)
2 = −J2σ

z
2σ

z
3 +

∑

i=2,3

∑

k

(
Ck,ix̂k,iσ

z
i +

p̂2
k,i

2
+ ω2

k,i

x̂2
k,i

2

)
,

V = −h2σ
x
2 − h3σ

x
3 .

(4)

Let us first focus on H
(0)
2 in equation (4) and first introduce the notation for the spin part

|S〉 ≡ |S2, S3〉, with Si = ±1 such that σz
i |S〉 = Si|S〉 for i = 2, 3. Considering now the

two baths on site i = 2, 3, respectively, they are composed of a set of harmonic oscillators
which are labeled by an integer k (which formally runs from 0 to ∞) and by i = 2, 3. We
denote by |nk,i〉 the eigenvalues of these harmonic oscillators such that

(
p̂2

k,i

2
+ ω2

k,i

x̂2
k,i

2

)
|nk,i〉 =

(
nk,i +

1

2

)
ωk,i|nk,i〉. (5)

In the absence of the coupling between the spins and the bath, H
(0)
2 can be

straightforwardly diagonalized by tensorial products of |S〉 and |nk,i〉. The corresponding
eigenvalues are simply the sum of the eigenvalues of the individual Hamiltonians in
equation (4) without the last term of the interaction. The coupling between the spins
and the baths does not change these eigenvalues (up to a global shift) and only affects
the eigenstates. We introduce the shifted ‘eigenvectors’

|n±
k,j〉 = exp

(
±i

Ck,j

ω2
k,j

p̂k,j

)
|nk,j〉, j = 2, 3, (6)
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from which we can construct the eigenvectors of H
(0)
2 , including the interaction between

the baths and the spins as

|S,n〉 = |S2, S3〉 ⊗ |nS2
2 〉 ⊗ |nS3

3 〉,
|nSi

i 〉 =
⊗

k

|nSi
k,i〉. (7)

The eigenvalues of H
(0)
2 are given by

H
(0)
2 |S,n〉 = E

(0)
S,n|S,n〉,

E
(0)
S,n = −J2S2S3 +

∑

i=2,3

∑

k

[(
nk,i +

1

2

)
ωk,i −

1

2

C2
k,i

ω2
k,i

]
. (8)

Each level is thus a priori degenerated twice (except accidental degeneracy) and in the
limit of large coupling J2 we first restrict ourselves to the lowest energy levels, such
that S2S3 = +1. Performing perturbation theory in V , one obtains that the first-order
corrections vanish. To second order in V , one has to diagonalize the 2 × 2 matrix V (2) in

the eigensubspace associated with the zeroth-order eigenvalue E
(0)
S,n with S2S3 = +1 which

is formally given by

V (2) =
∑

S′,n′,ES′,n′ �=ES,n

V |S′,n′〉〈S′,n′|V
E

(0)
S,n − E

(0)
S′,n′

. (9)

One obtains from (9) the diagonal elements

V
(2)
11 = V

(2)
22 = h2

2

∑

n′2

|〈n+
2 |n′

2
−〉|2

−2J2 +
∑

k(nk,2 − n′
k,2)ωk,2

+ h2
3

∑

n′3

|〈n+
3 |n′

3
−〉|2

−2J2 +
∑

k(nk,3 − n′
k,3)ωk,3

,

(10)

and the off-diagonal elements

V
(2)
12 = V

(2)
21 = −h2h3

J2
〈n−

2 |n+
2 〉〈n−

3 |n+
3 〉. (11)

In the absence of a coupling to the dissipative bath (i.e. Ck,i = 0 for all k and i) the shifted
eigenstates (6) are identical with the non-shifted eigenstates and therefore 〈n−

i |n+
j 〉 = δni,nj

and thus V
(2)
11 = V

(2)
22 = (h2

1 + h2
2/−2J2) and V

(2)
12 = V

(2)
21 = −h2h3/J2. This matrix has

two eigenvalues whose difference, the gap, is 2h2h3/J2. Thus for each oscillator state the
low lying excitations of H2 in (4), with S2 = S3, can again be described by an effective
two-state system, i.e. a spin in a transverse field of strength h′ = h2h3/J2. The spirit of
the strong disorder renormalization group is to keep this effective two-level system (for
each oscillator state) and to neglect the large energy doublet with S2 �= S3. In this way
one has replaced two spins (with moments μ2 and μ3) and a large coupling J2 between
them by a single effective spin with moment μ2 + μ3 in a small transverse field h2h3/J2;
thus one degree of freedom with a large energy has been decimated.

In the presence of non-vanishing couplings Ck,i to the oscillators one needs to decimate
also the high energy modes of the bath such that ωk,i > pJ2, where p is some (large)
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number. Given that J2 is a large energy scale, the low lying energy levels will be those
with nk,i = 0 for ωk,i > pJ2. Therefore we decompose the oscillator states according to

|nS
i 〉 = |n<S

i 〉 ⊗ |n>S
i 〉, (12)

with S = ±1 and

|n<S
i 〉 =

⊗

k<
i

|nS
ki
〉 and |n>S

i 〉 =
⊗

k>
i

|nS
ki
〉, (13)

where k<
i = {k|ωk,i ≤ pJ2} and k>

i = {k|ωk,i > pJ2}. Additionally we introduce the

product state of oscillators which are in the ground state by |0>
i

Si〉 =
⊗

k>
i
|0Si

ki
〉. At

energy scales smaller than pJ2 all oscillators with frequencies larger than pJ2 will be in
their ground states, and therefore we will consider the matrix elements in (10) and (11)
only for oscillator states |n+〉 = |n<+〉 ⊗ |o>+〉. For these states the two sums on the rhs
of (10) are

∑

m<
i ,m>

i

h2
i

|〈n<+
i |m<−

i 〉|2 · |〈o>+
i |m>−

i 〉|2
−2J2 −

∑
k> mk,2ωk,2 +

∑
k<(nk,2 − mk,2)ωk,2

. (14)

To leading order in J2 one can neglect the term
∑

k<(nk,2 − mk,2)ωk,2, since it involves
only frequencies smaller than pJ2. Then the sum over the low frequency oscillator states
|m<

i 〉 yields one since they form a complete basis for the low frequency oscillator Hilbert
space and the individual terms in the sum do not depend on the quantum numbers n<

i

any more. Thus the diagonal matrix elements in (10) are, to leading order in J2:

V
(2)
ii = h2

2

∑

m>
2

|〈0>+
2 |m>

2
−〉|2

−2J2 −
∑

k>
2

mk2ωk,2
+ h2

3

∑

m>
3

|〈0>+
3 |m>

3
−〉|2

−2J2 −
∑

k>
3

mk3ωk,3
. (15)

Note that this expression does not depend on the quantum numbers n< for the low
frequency oscillators. For the non-diagonal matrix elements in (11) one gets

V
(2)
12 = V

(2)
21 = −Ah2h3

J2
〈n<−

2 |n<+
2 〉〈n<−

3 |n<+
3 〉, (16)

with

A = 〈0>+
2 |0>−

2 〉〈0>+
3 |0>−

3 〉 =
∏

k>
2

〈0+
k2
|0−k2

〉
∏

k>
3

〈0+
k3
|0−k3

〉. (17)

The amplitude A can then be expressed in terms of the spectral density, using that
〈0+

k,i|0−k,i〉 = exp−(C2
k,i/ω

3
k,i). This yields

A = exp

(
−2

π

∫ Ω2

pJ2

J2(ν)

ν2
dν − 2

π

∫ Ω3

pJ2

J3(ν)

ν2
dν

)
, (18)

where we have used the definition of the spectral density in equation (2). Since the
diagonal term does not depend on n< the diagonalization of V (2) yields (up to second
order) the following correction to the lowest eigenvalues:

E
(2)
±,n< = E0 +

∑

i=2,3

∑

k

(
nk,i +

1

2

)
ωk,i ±

Ah2h3

J2
〈n<−

2 |n<+
2 〉〈n<−

3 |n<+
3 〉, (19)
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where E0 = −J2 + V11 − 1
2

∑
i=2,3

∑
k C2

k,i/ω
2
k,i is a constant, independent of n<. We now

consider an effective spin-boson Hamiltonian coupled to both baths 2 and 3:

H̃2 = −h̃2σ
x
2 +

∑

i=2,3

∑

k

(
p̂2

k,i

2
+ ωk,i

x̂2
k,i

2
+ Ck,ix̂k,iσ

z
2

)
, (20)

where the frequencies are such that ωk,i < pJ2. The effective spins being coupled to both
baths, one has

J̃2(ω) = θ(pJ2 − ω)(J2(ω) + J3(ω)). (21)

Treating the small parameter h̃2 in (degenerate) perturbation theory, one obtains the low

lying eigenvalues of H̃2 to first order in h̃2:

Ẽ
(1)
±,n< =

∑

i=2,3

∑

k

(nk,i + 1
2
)ωk,i ± h̃2〈n<−

2 |n<+
2 〉〈n<−

3 |n<+
3 〉. (22)

The comparison between equations (19) and (22) shows that the low energy spectrum of
the two interacting spin-bosons in H2 can be described by a single spin-boson system with
renormalized parameters given by

h̃2 =
Ah2h3

J2
, (23)

α̃2 = α2 + α3, Ω̃2 = pJ2, (24)

where A, which depends on the parameters of the Hamiltonian H2, is given by
equation (18) and the equalities in (24) are a direct consequence of equation (21). This
effective spin-boson will interact ferromagnetically with the spin-boson on site 1 and site
4 with couplings

J̃1 = J1, J̃2 = J3. (25)

These relations (23)–(25) constitute the first set of decimation rules.

2.1.2. When the largest coupling is a field. Suppose now that the largest coupling in the
chain is a transverse field, say h2. Before we treat the coupling of site 2 to the rest of the
system −J1σ

z
1σ

z
2 −J2σ

z
2σ

z
3 perturbatively as in [3] we consider the part of the Hamiltonian

that represents a single spin-boson system:

H ′
2 = −h2σ

x
2 +

∑

k

(
p̂2

k,2

2
+ ωk,2

x̂2
k,2

2
+ Ck,2x̂k,2σ

z
2

)
. (26)

In this case, one would like to have a way to decimate the high energy modes of the
bath, here the harmonic oscillators, such that ωk,2 > ph2, where p is some (large) number.
Since for those oscillators ωk,2 	 h2 one can assume that they adjust instantaneously
to the current value of σz

2 , the renormalized energy splitting is easily calculated using
equation (22)—the so-called adiabatic renormalization [12]—and one gets an effective
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transverse field h̃2 < h2:

h̃2 = A′h2, Ω̃2 = ph2, (27)

A′ = exp

(
−2

π

∫ Ω2

ph2

J2(ν)

ν2
dν

)
. (28)

If h̃2 is still the largest coupling in the chain the iteration (27) is repeated. Two situations
may occur depending on the parameters s and αi.

• If s > 1 or s = 1 and α2 < 1 this procedure (27) will converge to a finite value h∗
2

given by

h∗
2 = h2 exp

(
−2

π

∫ Ω2

ph∗
2

J2(ν)

ν2
dν

)
∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h2 exp

(
− α2

s − 1

)
, s > 1,

h2

(
ph2

Ω2

)α2/1−α2

, s = 1, α2 < 1,

(29)

where the expression of h∗
2 for s > 1 is valid only in the limit ph2 � Ω2. In this case,

the spin-boson system at site 2 is in a delocalized phase in which the spin and the
bath can be considered as being decoupled (formally α2 = 0), as demonstrated by an
RG treatment in [18]. If this value h∗

2 (29) is still the largest coupling in the chain
the spin on site 2 will be aligned with the transverse field. As in the RTFIC without
dissipation, this spin is then decimated (as it will not contribute to the magnetic
susceptibility) and gives rise, in second-order degenerate perturbation theory, to an
effective coupling J̃1 between the neighboring moments at sites 1 and 3 [3]:

J̃1 =
J1J2

h∗
2

. (30)

• If s = 1 and α2 > 1, h̃2 can be made arbitrarily small by repeating the procedure (27),
implying that the SB system on site 2 is in its localized phase [18] and essentially

behaves classically: the decimation rule (27) indeed amounts to setting h̃2 = 0. Such a
moment, or cluster of spins, will be aligned with an infinitesimal external longitudinal
field and is denoted as ‘frozen’.

These relations (27)–(30) constitute the second set of decimation rules. The complete
decimation procedure is sketched for the ohmic case in figure 1.

2.2. Numerical implementation

In the following we analyze this RG procedure defined by the decimation rules (23)–(25)
and (27)–(30) numerically. This is done by considering a finite system of linear size L
with pbc and iterating the decimation rules until only one site is left. This numerical
implementation has been widely used in previous works [2, 19] and it has been shown to
reproduce with good accuracy the exact results of [3] for the RTFIC [19]. In particular,
the transverse field h acting on the last remaining spin is, at low ferromagnetic coupling
J0, an estimate for the smallest excitation energy. Its distribution, PL(h/Γ0), where Γ0 is
the largest coupling in the initial system of linear size L, reflects the characteristics of the
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http://dx.doi.org/10.1088/1742-5468/2008/04/P04012


J.S
tat.M

ech.
(2008)

P
04012

Finite temperature behavior of disordered quantum magnets with dissipation

Figure 1. Left: sketch of the adiabatic renormalization of the bosonic bath
for a single spin-boson system in the ohmic case: the fast oscillators with
frequencies ω > ph, where h is the transverse field acting on the spin and p is an
arbitrary large parameter, are treated in the adiabatic approximation resulting
in a renormalized transverse field h̃ for the spin and a decreased upper cutoff
frequency Ω̃max for the bosonic bath. This procedure is continued until it runs
into a fixed point, where either the renormalized field h∗ vanishes (for α > 1)
and the spin is frozen, or the renormalized field h∗ has a positive value, in which
case it is a non-frozen spin in a transverse field h∗, decoupled from the bath.
Right: sketch of the SDRG in the presence of a dissipative bath for the ohmic
case. When a field h is the largest coupling (top), first the oscillator bath is
renormalized along the lines sketched on the left site. Once this is done and the
field is still the largest coupling the spin gets decimated as described in the text.
When a bond J between two spins at sites 2 and 3 is the largest coupling the
two spins get decimated to form a cluster with moment μ2 + μ3, coupled to a
combination of baths 2 and 3, i.e. a new dissipative bath with coupling strength
α2 + α3.

gap distribution [5]. This quantity, and specifically its dependence on the system size L,
can be efficiently used to characterize Griffith–McCoy singularities and critical behavior
characterized by an infinite randomness fixed point.

3. Ohmic dissipation

Ohmic dissipation means s = 1 in (2), i.e. a spectral function for the oscillators that
is linear in the frequency (up to the upper cutoff Ω). For a single spin in a transverse
field h and coupled to such an ohmic bath, a lot of results are available [12]. Here we
mention only that this system has a phase transition at zero temperature driven by the
coupling strength α. For small α the spin can still tunnel quantum mechanically, whereas
for large α the spin is frozen and behaves classically, the critical coupling strength αc(h)
is equal to 1 in the limit where h/Ω � 1 where Ω is the cutoff frequency of the bath, an
exact result predicted correctly by the adiabatic approximation mentioned above. Such a
transition is also present in an infinite ferromagnetic spin chain coupled to a dissipative
bath, as was shown recently numerically [20]. Here we want to focus on the interplay of
disorder, quantum fluctuations and dissipation and study random transverse field Ising
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systems coupled to a dissipative environment by implementing the decimation rules (23)–
(25) and (27)–(30) for ohmic dissipation. For s = 1, the amplitudes A in equation (18)
and A′ in equation (28) which enter these decimation rules are given by

A =

(
pJ2

Ω2

)α2
(

pJ2

Ω3

)α3

, A′ =

(
ph2

Ω2

)α2

. (31)

3.1. One-dimensional system: random transverse field Ising chain

3.1.1. Gap distribution: finite size analysis. The RTFIC coupled to a ohmic bath was
treated in detail in [16]. We just recall here the main results. Since the last spin can
either be frozen (i.e. the last field h is zero) or non-frozen we split PL(h/Γ0) into two
parts:

PL(h/Γ0) = ALP̃L(h/Γ0) + (1 − AL)δ(h/Γ0), (32)

where P̃L(h/Γ0) is the restricted distribution of the last fields in the samples that are non-
frozen and AL is the fraction of these samples. It, or equivalently P̃L(log(Γ0/h)), represents
the distribution of the smallest excitation energy in the ensemble of non-localized spins.
At low coupling (small J0 or small α), P̃L(log(Γ0/h)) shows indications of Griffiths–McCoy
singularities characterized by the following scaling behavior for P̃L:

P̃L(log(Γ0/h)) = P(log(Γ0/hLz)), (33)

where z is a dynamical exponent continuously varying with (J0, α, etc). As the coupling is
increased, z is also increasing and eventually, at some pseudo-critical point, P̃L(log(Γ0/h))
exhibits a scaling which is characteristic for an IRFP:

P̃L(log(Γ0/h)) = L−ψPIRFP(L−ψ log(Γ0/h)), (34)

with ψ � 0.32 [16] as a critical exponent characterizing the IRFP. Notice that this value
of ψ is different from ψRTFIC = 1/2 computed exactly for the RTFIC [3]. The main
striking point in the case of ohmic dissipation is that, although the restricted distribution
P̃L(log(Γ0/h)) displays Griffith’s like behavior as in equation (33), the magnetization
becomes finite above a certain length scale L∗. This finite magnetization is a manifestation
of the ‘frozen’ clusters which lead to the concept of rounded quantum phase transitions in
the presence of dissipation [14]. Due to these ‘frozen’ clusters, the amplitude AL decays
exponentially above L∗, with AL ∝ e−L/L∗

. However, as we pointed out in [16], the
interpretation of the finite size analysis (32)–(34) in the presence of dissipation has to
be done carefully. Indeed, in [16] we suggested that, despite the presence of these frozen
clusters, Griffith’s singularities should be observable in the susceptibility χ(T ), above a
certain temperature T ∗ ∝ L∗−z , as well as in the specific heat Cv(T ). This property can
actually be shown (see the appendix) on a toy model where one considers an RTFIC
without dissipation but with a finite fraction ρ of zero transverse fields.

Here we will use this strong disorder approach to extract thermodynamical properties
of the full problem described by the Hamiltonian (3).
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Figure 2. Number (left) and size (right) of frozen clusters in the disordered chain
coupled to an ohmic bath as a function of temperature T for different values of α.
Shown are data for a single large disorder realization, the size is L = 40000, the
disorder strength is h0 = 1 and J0 = 0.025. For this value of J0 the pseudo-critical
point is located at α = 0.2 [16].

3.1.2. Susceptibility at finite temperatures. The SDRG successively eliminates degrees of
freedom with a large excitation energy from the starting Hamiltonian, thereby reducing
continuously the maximum energy scale of the effective Hamiltonian. If continued down
to the smallest energy scale the final effective Hamiltonian (consisting only of a single but
large cluster in an effective transverse field) provides information about the ground state
of the starting spin chain, the gap, the size, the geometry, etc, of the smallest excitation
energy. To extract information on thermodynamic properties, at low but non-vanishing
temperatures, one has to stop the RG procedure at an energy scale of the same order of
magnitude as the temperature T : clusters (or degrees of freedom) that are already frozen
at this energy scale will not be active at this temperature and behave like classical spins
(at this temperature). The thermodynamical properties, observables like susceptibility or
specific heat, will be determined by the active, i.e. not yet frozen clusters.

It is instructive to have a look at the number and size of frozen clusters as a function
of the upper cutoff energy, which we identify now with the temperature T . As one can see
from the left panel of figure 2 the number of frozen clusters is zero at high temperatures
(simply because α < 1) and increases rapidly with decreasing temperature before it reaches
a maximum and then decreases. The initial increase is due to the formation of many small
clusters that behave like classical spins at the corresponding temperature with moments
of the order of 10. The subsequent decrease of the number of clusters correlates with an
increase in the size of the clusters as can be seen in the right panel of figure 2 and which is
due to the coalescence of small clusters into larger ones at the corresponding temperatures.

With this picture in mind we estimate the zero frequency susceptibility χ(T ) as the
sum of two contributions χ(T ) = χactive(T ) + χfrozen(T ), one arising from the active,
i.e. non-‘frozen’ spins, χactive(T ), and one from the ‘frozen’ ones, χfrozen(T ). In doing this,
we assume that the interaction between the frozen and the non-frozen clusters is negligible.
χactive(T ) is given by (see also equation (A.7))

χactive(T ) =

∫ ∞

0

dε

ε
ρ(ε)(1 − exp (−βε)), (35)
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Figure 3. Left: magnetic susceptibility χ(T ) for a disordered chain coupled to an
ohmic bath as a function of temperature for different coupling strength α. The
susceptibility is calculated as χ(T ) = χactive(T ) + χfrozen(T ) using equations (35)
and (36). The size is L = 4096, the disorder strength is h0 = 1 and J0 = 0.025.
For this value of J0 the pseudo-critical point is located at α = 0.2 [16]. Right:
crossover temperature T ∗ as a function of α extracted from the data on the left
panel by the condition χactive(T ∗) = χfrozen(T ∗) (see text).

with β = 1/T . To estimate the density of states ρ(ε) using our RG scheme we compute
the distribution of the amplitudes of fields and bonds which are decimated during the
renormalization procedure [1]. Having computed ρ(ε), we then perform numerically
the integration in equation (35) to compute χactive(T ). In Griffith’s region, where the
restricted distribution scales with L as in equation (33), one has ρ(ε) ∝ ε−1+1/z and
thus χactive(T ) ∝ T−1+1/z. On the other hand, each (quantum mechanically) frozen spin
contributes to the susceptibility by an amount of 1/T and thus

χfrozen(T ) =
Nfrozen(T )

T
, (36)

where Nfrozen(T ) denotes the number of frozen spins at temperature T and its finite T
dependence is computed as explained above. We have computed χ(T ) using our RG
scheme for a system of size L = 4096 for different values of α = 0.15, 0.17, 0.19, 0.20
and 0.22 for J0 = 0.025. In each case, χ(T ) is averaged over 104 different realizations
of the random couplings and the plots are shown in the left panel of figure 3. Let us
first consider the curves for α < 0.2, where the restricted distribution P̃L(log(Γ0/h))
shows a scaling with L as in equation (33) [16]. For low temperatures still above some
temperature T ∗, T > T ∗, one sees in the left panel of figure 3 that χ(T ) is dominated
by χactive(T ) ∝ T−1+1/z, for α < 0.2. In this regime of dissipation, one observes that
the slope of χ(T ) in a log–log plot depends on α: this is the characteristic of Griffith’s
behavior. At lower temperature T < T ∗, χ(T ) is dominated by the 1/T behavior of
χfrozen(T ) coming from the frozen clusters. Thus figure 3 shows that Griffith’s behavior
can indeed be observed above T ∗. For α > 0.2, the susceptibility behaves like χ(T ) ∼ 1/T
in the whole range of temperature.

In addition, given that we compute separately χactive(T ) in equation (35) and
χfrozen(T ) in equation (36) our numerical RG procedure allows us to estimate T ∗ for
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Figure 4. The scaled energy T−1(E(T ) − E(T = 0)), which is proportional to
the specific heat Cv(T ), for the disordered chain coupled to an ohmic bath as
a function of temperature T in a log–log plot. Computations are done using
equation (38). The different curves correspond to different values of α. Note that
the low temperature behavior is characterized by different slopes for different
α, corresponding to a varying exponent 1/z. The system size is L = 4096, the
disorder strength h0 = 1 and J0 = 0.025. For this value of J0 the pseudo-critical
point is located at α = 0.2 [16].

which these two contributions are equal, χactive(T
∗) = χfrozen(T

∗). In the right panel of
figure 3, we show a plot of T ∗ as a function of α. One observes in particular that T ∗ shows
an inflection point as the pseudo-critical point is crossed such that T ∗ is actually quite
small in Griffith’s region.

We now turn to the specific heat Cv(T ) of the spin degrees of freedom. Assuming
that one can also neglect the interaction between frozen and non-frozen clusters
one immediately obtains that Cv(T ) = Cv,active(T ), given that Cv,frozen(T ) = 0.
Cv(T ) is thus

Cv =
∂E(T )

∂T
, (37)

E(T ) − E(T = 0) =
1

L

∫ ∞

0

dε ρ(ε) ε
exp (−βε)

1 + exp (−βε)
, (38)

where E(T ) is the internal energy at temperature T . In Griffith’s region where the
restricted gap distribution has a finite L scaling as in equation (33), one expects
E(T ) − E(T = 0) ∝ T 1+1/z . Thus Cv(T ) ∝ T 1/z without any cutoff at some temperature
T ∗. In analogy to χ(T ) we have computed numerically E(T ) − E(T = 0) (also averaged
over 104 disordered samples) for different values of α. In figure 4 we show a plot of
T−1(E(T )−E(T = 0)) ∝ Cv(T ) as a function of T for different values of α. One observes
clearly that the slope decreases as α is increased, i.e. as the critical point is reached. We
tried to extract an estimate of the dynamical exponent z by fitting the curves in figure 4
by T−1(E(T )−E(T = 0)) ∝ T 1/z at low T as well as by fitting the curves in the left panel
of figure 3 by χ(T ) ∝ T−1+1/z for T > T ∗. Both estimates for z coincide approximately
but, since the data shown are close to the pseudo-critical point (which corresponds here
to α = 0.2), it is rather hard to extract properly the dynamical exponent given that 1/z
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becomes quite small. Thus one would certainly need smaller temperatures to obtain a
reliable estimate of z.

We conclude this paragraph by noting that the data in figures 3 and 4 indicate that
Griffith’s behavior of thermodynamical quantities is observable also in the presence of
dissipation.

3.2. Disordered ladder

Our previous study on [16] was restricted to the one-dimensional case. Here, we
implement numerically the real space renormalization defined by equations (23)–(25)
and equations (27)–(30) for a disordered ladder coupled to a dissipative bath. When
considering a ladder (as well as a two-dimensional square lattice) these decimation rules
have to be slightly modified to take into account the topology of the system [19]. First,
equation (25) has to be modified. In this case, the two spins 2 and 3 are combined to
a cluster but when we compute the interactions between this cluster and the rest of the
chain, one has to consider the case in which the two original spins 2 and 3 were actually
coupled to the same spin i. Although this does not happen in the initial ladder, such a
situation may occur during later stages of the renormalization. In this case we set the
ferromagnetic coupling of this spin i with the newly formed cluster to

J̃i,cluster = max(Ji2, Ji3). (39)

The sum of the two bond strengths could also be taken, but does not make a significant
difference when the probability distribution of the bond strengths is broad.

The decimation rule on equation (30) has also to be modified. This rule says that,
when the spin on site 2 is decimated, effective interactions are generated between the
neighboring sites of 2. But during renormalization of the ladder there might already be
bonds Jij present between neighboring sites i and j of site 2. In this case we replace
equation (30) by

J̃ij � max

(
Jij,

Ji2J2j

h2

)
. (40)

The topology of the system changes drastically under renormalization. One starts with a
ladder and the decimations change its structure into a random graph, but this change is
straightforward to implement numerically.

In the absence of dissipation a critical point was found for h0 = 1.9, J0 = 1 [19]. In the
following we fix h0 = 1.9 and J0 = 0.001 and we vary α. As was done previously for the
disordered chain in [16] we first focus on the restricted distribution of the last fields in the
samples that are non-frozen (32). For small α, P̃L(h/Γ0) displays Griffith’s like behavior
as in equation (33). In the left panel of figure 5, one plots P̃L(h/Γ0) as a function of
log(Γ0/hLz) with z = 1.7 for different system sizes L = 64, 128, 256, 512 for α = 0.2.
The good data collapse of the curves for different L is in good agreement with Griffith’s
scaling (33). We observe that the dynamical exponent z increases with increasing α. This
is depicted in the left panel of figure 6 where one plots again P̃L(h/Γ0) as a function of
log(Γ0/hLz) for different system sizes L but with z = 7.5 for α = 0.262. However, despite
the fact that the gap distribution displays Griffith’s behavior, the magnetization is already
finite. This can be seen by computing the magnetic moment of the last remaining cluster
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Figure 5. Scaling plot of the restricted distribution P̃L(h/Γ0) of the last field
to be decimated in the non-frozen samples for the disordered ladder coupled to
an ohmic bath. Here h0 = 1.9 and J0 = 0.001. Left: in the Griffiths region
(α = 0.27): P̃L(h/Γ0) as a function of log(Γ0/hLz) for different system sizes
L. The best data collapse is obtained with the dynamical exponent z = 1.7.
Right: at the pseudo-critical point (α = 0.27): LψP̃L(Γ0/h) as a function of
log (Γ0/h)/Lψ for different system sizes L. The best data collapse is obtained
with the exponent ψ = 0.27(3).

as a function of the system size L, see the right panel of figure 6. This behavior, which is
due to frozen clusters, is very similar to the one observed for the disordered chain [16].

Finally, one reaches a value of α where z is diverging and one observes a scaling
characteristic for an infinite randomness fixed point as in equation (34). This is shown in
the right panel of figure 5 where we plot LψP̃L(Γ0/h) as a function of log (Γ0/h)/Lψ with
ψ = 0.27(3).

3.3. Two-dimensional square lattice

We have also implemented the decimation rules in two dimensions for a square lattice.
Here also the topology of the system changes drastically during renormalization. In the
absence of dissipation a critical point was found for h0 = 5.35, J0 = 1. Here we include
dissipation, fix J0 = 0.0001 and vary α. At small α one observes Griffith’s like behavior
of the restricted distribution as in equation (33). In the left panel of figure 7, we plot
P̃L(log(Γ0/h)) as a function of log (Γ0/h) for different system sizes L = 8, 16, 32, 64 and
α = 0.3. In the right panel, we show that these curves for different L fall on a master curve
if one plots them as a function of log(Γ0/hLz) with z = 3.1. As we increase the value of α,
one observes that z is also increasing and eventually we identify a pseudo-critical point,
here for α = 0.37, where the restricted distribution has a scaling form characteristic for
an IRFP as in equation (34) with ψ = 0.32. This is shown in figure 8.

4. Super-ohmic dissipation

We have implemented numerically the decimation rules for the super-ohmic bath, which
corresponds to s > 1. In this case the amplitude A in equation (18) and A′ in equation (28)
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Figure 6. Left: scaling plot of the restricted distribution P̃L(h/Γ0) of the last
field to be decimated in the non-frozen samples for the disordered ladder coupled
to an ohmic bath. Here h0 = 1.9, J0 = 0.001 and α = 0.262, i.e. close to the
pseudo-critical point at α = 0.27. The best data collapse is obtained by the
dynamical exponent z = 7.5. Right: magnetic moment μ(L) as a function of L
in Griffith’s region (parameters as in the left panel). The linear behavior implies
a non-vanishing magnetization meq per spin.

which enter the decimation rules are given by

A = exp

(
− α2

s − 1

(
1 −

(
pJ2

Ω2

)s−1
)

− α3

s − 1

(
1 −

(
pJ2

Ω3

)s−1
))

,

A′ = exp

(
− α2

s − 1

(
1 −

(
ph2

Ω2

)s−1
))

.

(41)

For s > 1 iterations of the decimation rules (27) always converge to a fixed point value
h∗

2 > 0 given in equation (29). Consequently, the spins cannot be frozen by the dissipative
bath.

We first present results for s = 3, which corresponds to a phonon bath, and one
fixes the coupling to the bath to α = 0.5 and the strength of the random transverse
field to h0 = 1.0. All data presented here were obtained by averaging over 104 different
realizations of the disordered couplings.

We first focus on a low value of J0. In figure 9, one shows a plot of PL(Γ0/h), the
distribution of the transverse field acting on the last remaining cluster, as a function of
log(Γ0/hLz) for different system sizes with z = 2.87. The good data collapse of these
different curves suggests that PL(h/Γ0) exhibits Griffith’s behavior:

PL(log(Γ0/h)) = P(log(Γ0/hLz)). (42)

Notice that, at variance with the case of ohmic dissipation (32), one has here AL = 1. If
one increases J0, z is also increasing and for some critical value of J0 = J0c, here J0c = 0.78
one observes a scaling characteristic for an IRFP

PL(log(Γ0/h)) = L−ψPIRFP(L−ψ log(Γ0/h)), (43)
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Figure 7. The restricted distribution P̃L(h/Γ0) of the last field to be decimated in
the non-frozen samples for the disordered square lattice coupled to an ohmic bath.
Parameter values fall into the Griffiths region: the disorder strength is h0 = 5.35,
J0 = 0.0001 and the coupling to the bath is α = 0.3. Left: P̃L(log(Γ0/h)) as a
function of log (Γ0/h) for different system sizes L. Right: scaling plot of the data
in the left panel: P̃L(log(Γ0/h)) as a function of log(Γ0/hLz) for different system
size L. The best data collapse is obtained with z = 3.1.

with ψ = 1/2 as in the case without dissipation [3]. This is shown in the left panel of
figure 10. In the absence of dissipation random fields and random bonds play a symmetric
role in the RTFIC. This is, in principle, not the case when one includes dissipation in the
Hamiltonian (1). However, this symmetry is restored asymptotically, close to the critical
point. To show this, we have computed PL(J/Γ0) where J is the last decimated bond.
In figure 10 we show a plot of LψPL(log(Γ0/J)) as a function of (L−ψ log(Γ0/h)) with
ψ = 1/2 for J0 = J0c. The good data collapse, together with the similarities between the
plots shown in both panels of figure 10, suggest indeed that this symmetry between bonds
and fields is restored at the critical point.

To characterize this IRFP, we have also computed the combinations of the products
of the exponents ϕψ where ϕ is another independent exponent associated with this IRFP.
This can be measured by computing the disorder averaged correlation function C(r) at
the transition. We compute it by keeping track of the clusters during the decimation
procedure and compute C(r) = L−1

∑
i wi,i+r where wi,j = 1 if the sites i and j belong

to the same cluster, and wi,j = 0 otherwise. We have checked that, for RTFIC without
dissipation at the critical point, this gives the correct exponent [3] within 5% accuracy.
A plot of C(r) is shown in figure 11 for different system sizes L = 64, 128, 256, 512
and 1024. This plot shows that C(r) ∝ r−η with η = 0.38(1), as in the case without
dissipation [3].

We have repeated the same procedure for different values of s and found the critical
value J0c(s). We thus obtain the phase diagram in the plane (J0, 1/s) shown in figure 12
where a critical line separates a paramagnetic phase from a ferromagnetic one. Along this
line, we have found a scaling like in equation (43) with an exponent ψ = 1/2, independently
of s. One can actually estimate the shape of the critical line in figure 12 by assuming
that the main effect of dissipation is to reduce the amplitude of the random transverse
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Figure 8. The restricted distribution P̃L(h/Γ0) of the last field to be decimated
in the non-frozen samples for the disordered square lattice coupled to an ohmic
bath. Parameter values correspond to the pseudo-critical point: the disorder
strength is h0 = 5.35 and J0 = 0.0001 and the coupling to the bath is α = 0.37.
Left: P̃L(log(Γ0/h)) as a function of log (Γ0/h) for different system size L. Right:
scaling plot of the data in the left panel: L̃ψPL(log(Γ0/h)) as a function of
log(Γ0/h)/Lψ . The best data collapse is obtained with the exponent ψ = 0.32.

Figure 9. Scaling plot of the probability distribution of the last decimated field for
the disordered chain with super-ohmic dissipation, here s = 3: PL(Γ0/h) versus
log (Γ0/hLz) (scaling in the Griffiths region) for different system size L. The best
data collapse is obtained with z = 2.87. The disorder strength is h0 = 1.0 and
J0 = 0.55 and the coupling to the bath is α = 0.5.

field h0 to h∗
0 given by equation (29). If one further assumes that bonds and fields play a

symmetric role at the critical point (which is fully compatible with our numerical results
in figure 10), the critical point is then given by the relation J0 = h∗

0, as in the RTFIC [3].
This leads to

J0c = h0 exp

(
−α

s − 1

)
, (44)
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Figure 10. Left: scaling plot of the probability distribution of the last
decimated field for the disordered chain with super-ohmic dissipation, here s = 3:
LψPL(log(Γ0/h)) versus (log(Γ0/h))/Lψ (IFRP scaling) for different system size
L with ψ = 1/2. The disorder strength is h0 = 1.0 and J0 = 0.55 and the
coupling to the bath is α = 0.78. Right: the same as in the left panel but for the
bond distribution instead of the field distribution. Note the similarity of the two
distributions.

Figure 11. The disorder averaged correlation function C(r) at the critical point
for the chain coupled to a super-ohmic bath (here s = 3) for different system size
L. The disorder strength is h0 = 1 and J0 = 0.78 and the coupling to the bath
is α = 0.5. The error bars are smaller than the size of the symbols. The decay
exponent � 0.38 gives φψ � 0.81 as in the case without dissipation [3].

which is actually in very good agreement with our numerical estimates for the critical line
in figure 12. Using the same arguments, one can also derive analytically the behavior of
the dynamical exponent when approaching the critical point. This yields

z ∝ 1

2δ
, δ =

1

2
log

(
h0e

−α/(s−1)

J0

)
, (45)

which we have checked to be in good agreement with numerical results.
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Figure 12. Phase diagram for a disordered chain coupled to a super-ohmic bath
(except for s = 1) and h0 = 1, α = 0.5. The error bars are smaller than the size
of the symbols. Along the line the critical behavior is governed by an IRFP with
ψ = 1/2 (see figure 10 above). The dashed line is the exact expression of the
critical coupling given in the text (44).

Our results thus suggest that, for s > 1, the large scale L > Ls properties of the
system with super-ohmic dissipation behave at criticality as the dissipationless system.
On the other hand, one expects that Ls is diverging when s → 1. To estimate its
behavior close to s = 1 one observes that the typical energy scale at criticality is given
by Es ∝ h0 exp(−α/(s − 1)) (44). But, given that the critical behavior is governed by
an IRFP, one expects that Ls ∝ (log Es)

1/ψ, with ψ = 1/2, see figure 10. Therefore
we estimate

Ls ∝
α2

(s − 1)2
, (46)

the length above which the system with super-ohmic dissipation behaves like the one
without dissipation.

5. Conclusion

In this paper we have developed a real space renormalization, which combines the SDRG
for strongly disordered quantum magnets with the adiabatic renormalization for spin-
boson systems, to study disordered, ferromagnetically interacting transverse Ising systems
coupled to a dissipative bath. In the important case of ohmic dissipation, we have first
extended our previous study in [16] to describe thermodynamical properties. In particular,
we have shown that Griffiths–McCoy singularities are visible in the spin specific heat at all
temperatures and in the magnetic susceptibility above a (small) temperature T ∗. For weak
dissipation this temperature is extremely small and system sizes above which classical
behavior in the susceptibility becomes visible are extremely large, which represents a
major obstacle for numerical studies [21].

We have also shown that the disordered ladder as well as the 2d disordered square
lattice coupled to a ohmic bath displays the same behavior. Using this real space
renormalization, we also studied the case of super-ohmic dissipation (s > 1). There
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we have found a quantum phase transition described by an IRFP, which is the same as
the one found without dissipation. Such a scenario is expected to hold also in higher
dimensions.

It would be natural to extend this approach to sub-ohmic dissipation (s < 1).
Unfortunately, it is well known that in that case the adiabatic renormalization fails
to describe correctly the single spin-boson, which in itself has been the subject of
recent works [22]. Therefore the problem of an infinite chain (possibly disordered)
coupled to a sub-ohmic bath remains a challenging problem which surely deserves further
investigations.

A final remark concerns the effect of dissipation upon magnetic systems with a
continuous symmetry instead of the discrete (Ising) case we studied in this work. Griffiths–
McCoy singularities are much weaker in systems with a continuous symmetry [23], and
one would therefore expect that coupling to a dissipative bath would not freeze the
strongly coupled regions, but enhance their singular behavior. What actually happens
can elegantly be classified according to whether rare regions including their long-range
interactions in imaginary time due to dissipation are below, at or above their upper critical
dimension [15]. A disordered itinerant antiferromagnet, for instance, was recently studied
with the strong disorder renormalization group and an infinite randomness fixed point
was found [24], including the accompanying algebraic Griffiths–McCoy singularities. On
the other hand, non-itinerant antiferromagnets, involving localized magnetic moments, in
spatial dimensions larger than 2 like the Heisenberg antiferromagnet on the square lattice,
will not show pronounced Griffiths–McCoy behavior since here the Néel ordered ground
state is very robust against disorder [25] and no quantum critical point occurs. The effect
of dissipation upon strongly disordered magnets thus depends crucially on the effect of
disorder itself on the system’s ground state.
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Appendix. A toy model for an Ising chain with ohmic dissipation

To understand qualitatively the full problem described by the Hamiltonian (3) with ohmic
dissipation, it is instructive to consider a simpler model where one considers an RTFIC
without dissipation but with a finite fraction ρ of zero transverse fields. We thus study in
detail in this appendix the RTFIC Hamiltonian with k sites having zero transverse fields
(ρ = k/L)

H = −
L∑

i=1

Jiσ
z
i σ

z
j +

L∑

i=1

hiσ
x
i and hi1 = · · · = hik = 0. (A.1)

First, one immediately sees that the distribution PL(h/Γ0) shows the same behavior as
in equation (32) with AL ∼ e−L/L∗

and in the small ρ limit, L∗ ∝ ρ−1. Besides, the local
zero frequency susceptibility is

χi(ω = 0) =

∫ β

0

dτ〈σz
i (τ)σz

i (0)〉 (A.2)

doi:10.1088/1742-5468/2008/04/P04012 21

http://dx.doi.org/10.1088/1742-5468/2008/04/P04012


J.S
tat.M

ech.
(2008)

P
04012

Finite temperature behavior of disordered quantum magnets with dissipation

=

∫ β

0

dτ
1

ZTr{ρeHτσz
i e

−Hτσz
i }

=
1

Z
∑

{n,m (En �=Em)}

e−βEm − e−βEn

En − Em
|〈n|σz

i |m〉|2

+
1

Z
∑

{n,m (En=Em)}

βe−βEn|〈n|σz
i |m〉|2, (A.3)

where {|n〉} is a complete basis of eigenvectors of H (A.1). Their corresponding eigenvalues
En are such that E0 < E1 < E2 < . . .. The first term in equation (A.3) yields at zero
temperature in the non-degenerate case (all transverse fields positive, finite system size L)
the known formula

χT=0
i (ω = 0) = 2

∑

n �=0

|〈n|σz
i |0〉|2

En − E0
, (A.4)

since then 〈0|σz
i |0〉 = 0 and the last term in equation (A.3) vanishes.

If one or more transverse fields vanish the Hamiltonian becomes block-diagonal. We
choose z-representation, such that states can be denoted ψ = |S1, . . . , SL〉, with Si = ±1.
For convenience we permute the components such that the site i1, . . . , ik with the k
vanishing transverse fields hi1 , . . . , hik stand to the left: ψ = |Si1, . . . , Sik , Sj1, . . . , SjL−k

〉.
All 2k blocks are identical up to the diagonal part −

∑
i JiSiSi+1. As a result the two blocks

belonging to the states with Si1 = · · · = Sik (ferromagnetically aligned ‘frozen’ spins) have
the lowest ground state energy. Obviously

〈ψ|σz
ip |ψ〉 = Sip for p = 1, . . . , k, (A.5)

〈ψ|σz
i |ψ′〉 = 0 for i = 1, . . . , L, and (Si1 , . . . , Sik) �= (S ′

i1
, . . . , S ′

ik
). (A.6)

At low temperatures (T → 0) the main contributions in the sums in (A.3) comes from
the terms with En = E0 or Em = E0, the ground state energy. When k �= 0 there are two
ground states |0S〉, one with S = +1, one with S = −1. For T → 0Z can be replaced by
2e−βE0 , since Z = 2e−βE0(1 +

∑
m e−β(Em−E0)). The two ground states produce also an

extra factor 2 (in addition to the one for the sum over n �= m, where either |n〉 or |m〉 can
be the ground state):

χi(ω = 0) =
4

2e−βE0

∑

n �=0

e−βE0 − e−βEn

En − E0

|〈n|σz
i |0〉|2 +

2

2e−βE0
β e−βE0 |〈0|σz

i |0〉|2

= 2
∑

n �=0

1 − e−β(En−E0)

En − E0

|〈n|σz
i |0〉|2 + β|〈0|σz

i |0〉|2. (A.7)

The usual argument leading to χi(ω = 0) ∝ T−1+1/z in the Griffiths–McCoy phase of
the RTFIC with k = 0 involves neglecting the terms n > 1 in the first sum in (A.7).
This leads to χi(ω = 0) ∼ (ΔE)−1, where ΔE = E1 − E0 is the gap, which follows the
distribution P (Δ) ∼ Δ−1+1/z. In the present case this distribution has a cutoff at Δmin

that is exponentially small in L∗, the average distance between sites with zero transverse
fields. Thus one expects the first term of (A.7) to display T−1+1/z behavior down to

a temperature Tmin = Δ
z/(z−1)
min ∼ e−aL∗

. The second term is β · m2
i , where mi is the
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local magnetization in (one of) the ground states and is non-zero due to (A.5). It decays
exponentially with the distance x from the nearest frozen site ip: mi e

−x/2. Thus the
average over all sites is approximately

[m2
i ]av ∼ 1

L∗/2

∫ L∗/2

0

dx e−x ∼ 1

L∗ . (A.8)

Thus a T−1 behavior coming from the second term in (A.7) with amplitude of order 1/L∗

competes with a T−1+1/z behavior with amplitude of order 1 coming from the first term
in (A.7). The latter dominates for temperatures above a crossover temperature Tcross,
which is given by

Tcross ∼ (L∗)−z, (A.9)

which is larger than Tmin (caused by the finite average length L∗ of the segments) but still
very small when L∗ 	 1 (for instance, for L∗ = 103 and z = 2 one has Tcross ∼ 10−6).
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Iglói F, Juhász R and Rieger H, 2000 Phys. Rev. B 61 11552
[7] Pich C, Young P A, Rieger H and Kawashima N, 1998 Phys. Rev. Lett. 81 5916

Rieger H and Kawashima N, 1999 Eur. Phys. J. B 9 233
[8] Andrade M C et al , 1998 Phys. Rev. Lett. 81 5620

Castro Neto A H, Castilla G and Jones B A, 1998 Phys. Rev. Lett. 81 3531
[9] Stewart G R, 2001 Rev. Mod. Phys. 73 797

[10] Castro Neto A H and Jones B A, 2000 Phys. Rev. B 62 14975
Castro Neto A H and Jones B A, 2005 Europhys. Lett. 71 790

[11] Millis A J, Morr D K and Schmalian J, 2001 Phys. Rev. Lett. 87 167202
Millis A J, Morr D K and Schmalian J, 2002 Phys. Rev. B 66 174433

[12] Legget A et al , 1987 Rev. Mod. Phys. 59 1
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