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Abstract

The transformation of the regular vasculature in normal tissue into a highly inhomogeneous tumor specific capillary network is

described by a theoretical model incorporating tumor growth, vessel cooption, neo-vascularization, vessel collapse and cell death.

Compartmentalization of the tumor into several regions differing in vessel density, diameter and in necrosis is observed for a wide range

of parameters in agreement with the vessel morphology found in human melanoma. In accord with data for human melanoma the model

predicts that microvascular density (MVD), regarded as an important diagnostic tool in cancer treatment, does not necessarily determine

the tempo of tumor progression. Instead it is suggested that the MVD of the original tissue as well as the metabolic demand of the

individual tumor cell plays the major role in the initial stages of tumor growth.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Tumor induced angiogenesis is the formation of new
blood vessels around the tumor microenvironment for
supporting expansion of the tumor mass (Hanahan and
Folkman, 1996). Tumor vessels can arise by angiogenic
sprouting (Folkman et al., 1971), intussusception (Burri et
al., 2004), or by recruiting endothelial precursor cells from
the bone marrow (Lyden et al., 2001). In addition, tumor
cells may also co-opt existing blood vessels from the host
(Holash et al., 1999a).

Tumor growth strictly depends on adequate supply of
oxygen (O2) through blood vessels. Vascularization deter-
mines pathophysiological characteristics of the tumors,
such as tumor invasiveness and metastasis formation.
Moreover successful therapy critically depends on the
transvascular delivery and permeability of larger molecules
into the tumor tissue. Therefore quantification various
aspects of the tumor vasculature provides valuable tools
for tumor prognosis.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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However, the degree of vascularization is not homo-
geneous, it depends on the net balance between proangio-
genic and antiangiogenic factors stimulating and inhibiting
vessel growth respectively, as well as on non-angiogenic
factors, such as O2 and nutrient consumption rates of
tumor cells. Recently also the effect of the host micro-
environment in the tumor circulation was fully realized
(Fukumura et al., 1997). The molecular components
involved in tumor induced vascularization include hypox-
ia-inducible transcription factors, which trigger a coordi-
nated response of angiogenesis by inducing expression of
growth factors (GF) (Maxwell et al., 1997; Plate and Risau,
1995). Individual tumors can produce a variety of
proangiogenic GFs, among which members of vascular
endothelial growth factor (VEGF) and angiopoietin family
have a predominant role, all inducing endothelial cell
differentiation, proliferation and increase in vessel length
[reviewed in: (Carmeliet and Jain, 2000)]. VEGF also exerts
morphogenic activity by increasing luminal diameter of
existing vessels (Zhou et al., 1998). Angiogenic inhibitors,
suppressing proliferation and migration of endothelial cells
include thrombospondin-1 (Jimenez et al., 2000), angios-
tatin (O’Reilly et al., 1994) and endostatin (O’Reilly et al.,
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1997). They are produced either by the tumor or by the
host stromal cells (Fears et al., 2005), cause endothelial cell
apoptosis and may be involved in tumor dormancy.

Increased cellular proliferation in tumors also results in a
switch from O2 consuming to glycolytic pathways provid-
ing tumor cells with an alternative energy source during
low O2 supply (Iyer et al., 1998; Minchenko et al., 2002).
However, each tumor has a minimum O2 consumption
rate, characteristic for its metabolic demand, below which
tumor cells loose viability, the rate varying with tissue
origin and with tumor progression. Thus the minimum O2

and nutrient consumption will limit how far away from the
vasculature tumor cells can remain viable, the number of
viable tumor cell and their GF production in turn will
regulate vascular density, blood flow, and permeability.

Tumor vessels are abnormal in many ways, they show
uncontrolled permeability, are tortuous and dilated, have
excessive branching, shunts and undergo constant regres-
sion and remodeling. This may be due to an imbalance of
angiogenic regulators such as VEGF and angiopoietins,
giving rise to chaotic blood flow, unstable, leaky vessels
(Maisonpierre et al., 1997). The tumor endothelium has
widened inter-endothelial junctions, discontinuous or
absent basement membrane with loosely associated mural
cells (Hashizume et al., 2000). In addition to regulatory
mechanisms achieved by angiogenic factors and structural
properties of the vessel wall, haemodynamic conditions,
especially flow and shear stress (Cullen et al., 2002;
Milkiewicz et al., 2001), play a decisive role in maintaining
high vascular permeability, inhomogeneous diameter, and
concomitant collapse typically observed with tumor blood
vessels. Other factors leading to frequently observed vessel
collapses in tumors are decreased intravascular pressure
and increased interstitial pressure (Boucher and Jain, 1992)
and solid stress generated by the growing tumor itself
(Griffon-Etienne et al., 1999). It is also generally acknowl-
edged, that increase in blood flow contribute to vessel
enlargement in any vessel, whereas disturbed flow or severe
reduction of blood flow is associated with apoptosis of
endothelial cells and vessel regression (Dimmeler and
Zeiher, 2000).

Although recent insights in the molecular basis of
angiogenesis have resulted in the discovery of many new
angiogenic molecules, many questions remain unsolved. So
far very little is known about the spatial cues guiding
endothelial cells into correct patterns and three-dimen-
sional networks. One of the basic questions is: whether the
quantification of some aspects of the vascular network
formation can make predictions for tumor progression in
patients and if yes, what are these aspects.

From what we have described so far it appears that a
theoretical model describing quantitatively the dynamics of
the remodeling process of the vascular network during tumor
growth should contain at least the following aspects: (1) a
pre-existing network representing the normal vasculature
that can be modified dynamically via growth, regression and
modification of its links (representing blood vessels), (2) a
nucleus of tumor cells that can proliferate, age and die, (3) at
least two concentration fields: one whose sources are the
vessels of the network and represents oxygen and other
nutrients, and one whose sources are the tumor cells and
which represent GFs, (4) a model for the hemodynamic flow
within the network, (5) a specific set of dynamical rules that
describe (a) the process of interaction between vessels and
tumor cells mediated by the two concentration fields and (b)
the influence of the blood flow. One intention of our paper is
to show that a number of phenomena, like the systematic
compartmentalization of the tumor into rapidly vasculariz-
ing periphery and necrotic regions and other morphological
details of tumor vasculature are already a consequence of the
aforementioned five inputs.
Previous attempts to describe mathematically the growth

of tumor vasculature either focused on a particular model
for angiogenesis in presence of a GF source alone
(Anderson and Chaplain, 1998; Levine et al., 2001) or
studied tumor growth within a vascular network of fixed
topology but with hydrodynamically generated inhomo-
geneities (Alarcón et al., 2003). From a theoretical point of
view the tumor/vessel system appears as a dynamically
evolving weighted network or graph with a hydrodynamic
flow imprinted on it, plus a non-trivial growth process
(including birth and death) in continuous or discrete time
and space, both interacting non-locally via several diffu-
sion fields. This is a rather complex system which we intend
to analyse numerically by computer simulations. We define
the model in the next section in terms of the elementary
stochastic processes, which in principle can be formulated
in terms of a Master equation (Van Kampen, 1992). We
implemented it as a Monte-Carlo simulation on a
computer and we present and discuss the results in the
subsequent sections.

2. Definition of the model

A clinical case of a human melanoma type tumor was
chosen (Döme et al., 2002) as the experimental basis of the
theoretical model and other selected experimental data
available from solid tumors are also involved. In the model
we assume, that tumor induced neovascularization starts
with two parallel processes, cooption of existing vessels and
vessel sprouting. We do not consider recruiting endothelial
cells from the bone marrow.
A hybrid probabilistic cellular automaton model is

defined on a square lattice with N ¼ L2 sites with
coordinates r ¼ (nxDr, nyDr), nx,ny A{1,y,L} and in
discrete time t ¼ nDt, with n ¼ 0,1,2,... Each site represents
an area Dr2 with Dr ¼ 10 mm, which is approximately the
size of a single endothelial cell (EC) or tumor cell (TC), and
each time step represents a time interval of length Dt. Table
1 lists the dynamical variables that define the state of each
site at time t. For instance e(r,t) ¼ 1 (or 0) means that a
vessel segment is present (or absent) at site r and time t, its
radius (if present) is given by er(r,t), its blood flow rate by
eQ (r,t) and its wall shear stress value ef(r,t). If t(r,t) ¼ 1
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Table 1

Variables defining the state at site r at time t

e 0/1: EC or vessel absent/present

er A[0,rmax], radius of vessel

eQ X0, blood flow rate through vessel segment

ef X0, shear stress on vessel wall

t 0/1 : TC absent/present

tuO A[0,Tmax], time of TC in underoxygenated state

coxy X0; oxygen concentration field

cGF X0; growth factor concentration field

Table 2

Model parameters

Dr lattice constant: space discretization 10mm
Dt length of time step: time discretization 1 h

MVD0 original MVD 100/mm2

TC0 original tumor size 103–105

RGF growth factor diffusion radius �100–400mm
Roxy oxygen diffusion radius �100–150mm
yGF growth factor threshold 10�3–10�1

yoxy,EC oxygen threshold for Ecs 10�2–10�1

yoxy,TC oxygen threshold for TCs 0.1 � yoxy,EC

Tt TC proliferation time 10Dt ¼ 10 h

Te EC proliferation time 40Dt ¼ 40h

R0 initial vessel radius 1Dr ¼ 10mm
rmax maximum vessel radius 3.5r0 ¼ 35 mm
Mmax maximum sprout migration distance 10Dr ¼ 100mm
Tcollapse collapse time of critical vessels 10–100Te

fcrit critical shear stress on vessel walls 0.2–0.8 f0

TuO maximum TC survival time in hypoxia 100Dt ¼ 100 h
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(or 0) TCs are present (or absent) at site r and time t,
tuO(r,t) is the time it spent in an underoxygenated state. GF
and O2 concentration at site r and time t are given by
cGF(r,t) and coxy(r,t), respectively. In each time step these
variables are modified probabilistically according to the
rules described below, which depend on various fixed
parameters listed in Table 2.

The initial state of the system at t ¼ 0 represents a
regularly vascularized region of a given micro-vascular
density MVD0 with a small tumor in the center: vessels are
arranged in a regular pattern, which for simplicity is chosen
to be a ‘‘Manhattan network’’ (a regular mesh in two
dimensions) with a lattice constant a. This means that
e(r,t ¼ 0) ¼ 1 and er(r,t ¼ 0) ¼ r0 for r ¼ (na,y) and
r ¼ (x,na) with n ¼ 0,1,2,y,L/a and x,y ¼ 0,1,2,y,L. All
other sites have e(r,t ¼ 0) ¼ 0. For the initial tumor it is
t(r,t ¼ 0) ¼ 1 in a region containing TC0 sites determined
probabilistically according to the Eden growth rule (Eden,
1961), where starting from a single TC at the center
successively a surface site of the tumor is randomly chosen
and occupied by a TC until the tumor consists of TC0 cells.

In the next time step, and in all subsequent time steps,
the following computations are performed one after the
other in a Monte Carlo simulation, yielding the new system
state at time t+Dt, which is evaluated for several
quantities of interest. The simulation is stopped either if
the tumor reaches the system boundary or if it ceases to
exist (depending on the chosen parameter values). We did
not incorporate any mechanism resulting in the inhibition
or arrest of tumor growth here.

Definition of the GF concentration field cGF(r,t): Each
TC synthesizes a certain amount of GF and the sum of GF
secreted creates a GF concentration field around the
tumor. GF (e.g. VEGF) expression is known to be
regulated under hypoxic conditions in TC-s (Plate et al.,
1992; Shweiki et al., 1992) suggesting that GF concentra-
tion might depend on synthesis rate around various TC
sites, but the existence of a matrix storage pools for GF
(Goerges and Nugent, 2004) would rather predict a
generation of a preformed GF gradient in the very close
vicinity of TC-s. Therefore in our model we defined GF
concentration in such a way, that it is a final result of all
TC processes, hypoxia as well as genetic alterations
(Semenza, 2003):

cGF ðr; tÞ ¼
X

r0 with tðr0;tÞ¼1f g
f GFð r� r0

�� ��Þ,

where the sum is over all TCs at time t. The contribution
fGF(|r�r

0|) of each TC to the GF pool is assumed to
decrease linearly to zero within a distance RGF:

fGF(r) ¼ (RGF�r)/N for rpRGF and fGF(r) ¼ 0 for
r4RGF and the normalization N chosen such that
SrfGF(|r|) ¼ 1. The linear shape of fGF(r) is a numerically
convenient and sufficiently good approximation to the
exact (exponentially decaying) Greens-function for the
diffusion problem with a point-source of unit strength
(representing a single TC) and spatially constant decay rate
(representing a constant GF consumption and/or degrada-
tion in the extra-cellular matrix).
An additional hypoxia dependence of GF production

can also be incorporated into our model by restricting the
sum over TCs in the above definition of cGF(r,t) to
TCs that are underoxygenated, i.e. to sites r0 with
coxy(r

0,t)oyoxy, or giving them a large GF source strength.
We study this variant of our model in a forthcoming
publication (Bartha and Rieger, 2006).
In principle the diffusion of GF into the matrix is a time

dependent process which causes a delay in the change of
concentration at a distance when the tumor configuration
changes. Since the time scale governing this process is much
shorter than the time scale on which TCs proliferate and/or
die, we assume that the process reaches its stationary state
within the time interval Dt and approximate the emerging
concentration profile around each source in the aforemen-
tioned way.

Identification of circulated sites Scirc(t): For each vessel
segment (i.e. each site r with e(r,t) ¼ 1) it is checked
whether it is located on an uninterrupted path in the
current vessel network that connects the sites (0,0) and
(L,L). Technically this check is performed by computing
the bi-connected components (Tarjan, 1972) of the graph
underlying the vessel network. If this condition is fulfilled,
blood can flow through this vessel and r is a member of the
set of circulated vessels Scirc(t).
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Definition of the oxygen concentration field coxy(r,t):
Intensive cellular proliferation in tumors results in an
increase in oxygen demand, TC-s remain viable within a
certain radius around a vessel, generating ‘‘cuff’’-s on the
available oxygen concentration field (Hlatky et al., 2002).
However the maximal radius of oxygen concentration field,
that still supports TC proliferation (‘‘cuff size’’) depends
both on the oxygen concentration released from a vessel
and on the consumption of oxygen by TC-s, modeled by an
oxygen concentration threshold yoxy defined below. For
simplicity we do not calculate coxy(r,t) via the stationary
solution of a diffusion equation with vessels as sources and
TCs as sinks, but assume that the O2 supply of individual
vessel segments depends mainly on circulation.

coxyðr; tÞ ¼
X

r02ScircðtÞf g
f oxyð r� r0

�� ��Þ,

where foxy(r) ¼ (Roxy-r)/N
0 for rpRoxy and foxy ¼ 0 for

r4Roxy. The normalization constant N0 is chosen such that
Srfoxy(|r|) ¼ 1. Oxygen diffusion through the matrix is, as
GF diffusion, a time dependent process which causes a
delay in the change of concentration at a distance when the
vessel configuration changes. The diffusion constant of O2

is of the order of 2.4� 10�5 cm2/s, which means that in the
time scale of Dt ¼ 1 h the O2-diffusion process is in a
quasi stationary regime. The precise O2-concentration
profile around each vessel will also depend on the presence
of sinks (e.g. TCs) but an approximation through a linear
profile around each segment is sufficient for our purposes
here. We assume here a constant source strength of
each vessel segment, which overestimates the oxygen
concentration in regions of increased MVD since
oxygen diffuses passively and is driven by concentration
gradients. In principle the source strengths should be
determined implicitly along the lines of (Secomb et al.,
2004), but this becomes numerically very hard for
large system sizes, as is the solution of the oxygen diffusion
problem treatment using finite difference methods
(Alarcón et al., 2003).

Blood flow and shear stress computation: The shear stress
exerted by the blood flow upon the vessel walls is
considered to be a principal stimulus for EC-s, the primary
driving force for vessel architecture (Davies, 1995; Ishida
et al., 1997). For a given vessel network we identify the
vessel segment with cylindrical tubes of radius er(r,t) and
approximate the flow through it by laminar steady
Poiseuille flow of a homogeneous liquid. We neglect here
the fact that blood is an inhomogeneous fluid which is
commonly modeled by a radius dependent viscosity. We
also neglect a structural adaptation mechanism of the
vessels as well as haematocrit (for a proper treatment of
these details in a fixed vessel network see Alarcón et al.,
2003). For laminar pipe flow the flow rate is determined by
the pressure drop DP between the end points of the
segments according to Poiseuilles law:

eqðr; tÞ ¼ q=Dt ¼ const � e4r ðr; tÞDP,
where const ¼ p=ð8ZðerÞLðeÞÞ, with ZðerÞ the blood viscosity
in a vessel of radius er and L(e) the length of the vessel e.
Because vessel segments in our model all have the same
length, LðeÞ ¼ Dr, and the viscosity Z is assumed to be
radius independent the factor const is indeed constant, i.e.
independent of the vessel under consideration.
The boundary conditions for the pressure are defined in

such a way that a homogeneous flow distribution in the
vessels of the original network arises: The pressure in the
vessel segments decreases linearly on the boundary vessels
from Pmax at r ¼ (0,0) to (Pmax�Pmin)/2 at r ¼ (L,0) and
r ¼ (0,L), and from there from (Pmax�Pmin)/2 to Pmin at
r ¼ (L,L), resulting in homogeneous global net flow in the
diagonal direction. Since only pressure differences enter the
flow equations Pmax and Pmin can be chosen arbitrarily and
are set to 1 and 0, respectively, in arbitrary units. Using
Kirchhoff’s law we calculate the pressure drop and flow in
each vessel segment, which is numerically demanding but
otherwise standard in vascular network models (Gödde
and Kurz, 2001; McDougall et al., 2002). Ideal pipe flow
furthermore implies that the shear stress ef (r,t) acting upon
the vessel walls of each vessel is given by

ef ðr; tÞ ¼ const0erðr; tÞDP,

where const0 ¼ 1/2L(e), which is a constant.
The following dynamical processes involving growth and

removal of TCs and vessels are incorportaed into our
model, as is sketched in Fig. 1.

TC proliferation: (Fig. 1a) It is assumed that only TCs
with at least one free neighbor site can proliferate. This
implies that the TCs are assumed to be incompressible and
excludes internal tumor growth. Experimental data for real
tumors indicate that TC proliferation is indeed confined to
the outer rim of the tumor (Brú et al., 2003): although TCs
are elastic and proliferation can also take place within the
tumor, after an initial exponential growth regime the
displacement of existing normal tissue will build up solid
stress inside the tumor that confines the TC proliferation to
the outer rim of the tumor (Drasdo and Höme, 2005). This
is the regime we focus on here.
If the local O2 concentration coxy(r) at such a tumor

surface site r exceeds a threshold yoxy this site is occupied
with a TC with probability w(t(r,t) ¼ 0- t(r,t) ¼ 1) ¼
Dt/Tt and cGF(r,t) is updated. Tt estimates the TC
proliferation time, which can vary enormously with
different tumors (Hirst et al., 1982).

Vessel growth: (Fig. 1b) Adult normal vessels are
quiescent, whereas EC-s in pathologic tumor vessels are
stimulated to proliferate and migrate by a local increase in
GF concentration to form sprouts (Risau, 1997), migrate
and either meet with an other EC forming a tube, or retract
(Nehls et al., 1998). In melanoma TC-s also use existing
vessels (Paku, 1998) and the high density of anastomosing
network (interconnected vascular tubes) arises from an
interplay between cooption of old vessels and subsequently
induced sprouting (Thompson et al., 1987; Holash et al.,
1999b). The latter scenario was applied in our model.
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Fig 1. Sketch of the dynamical processes in the model. Yellow boxes represent individual TCs (of lateral size Dr ¼ 10 mm), blue boxes represent tubular

vessel segments of length Dr ¼ 10mm and diameter er, which is initially also Dr ¼ 10mm. Note that several vessel segments build one vessel running

between two branching points of the network. Light blue boxes represent weakly perfused vessel segments with low shear force ef, white boxes represent

non-circulated vessels. (a) TC proliferation at a tumor surface site r occurs with a rate 1/Tt if the O2-concentration coxy at r is larger than the threshold yoxy.

(b) Vessel growth from a starting site r occurs with a rate 1/Te if the GF-concentration cGF at r is larger than the threshold yGF and the distance to the next

level is smaller than the maximum sprouting distance Mmax. The new vessel must not touch other vessels except at the start and end-point. (c) Vessel

dilatation: vessel segments at site r inside the tumor (indicated by the yellow back-ground) with a radius er(r) less than rmax increase their radius with a rate

1/Te if the GF-concentration cGF at r is larger than the threshold yGF. The increase of the radius er(r) is indicated by an increase of the cross-section of the

corresponding box: vessel connecting two junctions in the network can have segments with varying radius. (d) TC death: if a TC at site r was longer than

the time TuO in an under-oxygenated state, it is removed. (e) Vessel collapse: if the shear force f inside a vessel at site r inside the tumor (indicated by the

yellow background) is smaller than fcrit it collapses with a rate 1/Tc. Such a collapse event can leave other vessel segments un-circulated, as indicated. (f)

Vessel regression: un-circulated vessels are removed (with probability 1).
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New straight vessel segments between two circulated
vessels at site r and r0 are introduced with probability Dt/Te

(where Te is the estimated EC proliferation time) if:
cGF(r,t)4 yGF, no site in the migration path is occupied
by TCs, no site and no neighbor site of the migration path
is occupied by ECs except r and r0, and |r�r0|oMmax. (The
latter condition incorporates the experimental observation
(Nehls et al., 1998) that sprouts migrate only a maximum
distance and retract if they do not meet another vessel their
path, thus not forming a new vessel. Mmax therefore has the
meaning of a maximum sprout migration distance.) In case
of such an event e(r,t) ¼ 1 and er(r,t) ¼ r0 along this path,
and Scirc(t) and coxy(r,t) are updated.

Vessel dilation: (Fig. 1c) Vessel diameter increases in
response to GF, vasodilation is reported to occur
concomitantly with capillary growth (Carmeliet and Jain,
2000). Vessel perimeters were found to be increased inside
the tumor, in the tumor center EC-s were suggested to
participate in vessel dilation (Döme et al., 2002).

In our model a vessel segments at site r that is
surrounded by TCs and has a GF concentration cGF(r,t)
larger than yGF increase its radius er(r,t) by an amount
r0/2p with probability Dt/Te as long as erprmax, the
maximum vessel radius. Note that r0/2p corresponds to the
amount by which a cylindrical vessel segment increases if a
single EC of lateral size r0 would be inserted into its vessel
wall. To mimic the smoothening effect caused by the
surface tension of the vessel walls the location of the
dilation is shifted to a neighboring vessel segment if a
radius difference larger than r0/2p would arise at the
original location.

Vessel collapse: (Fig. 1e) Focal necrosis is commonly
observed in solid tumors in regions, where the vascular
network is inadequate (Griffon-Etienne et al., 1999;
Ramanujan et al., 2000). Reduced perfusion of these
vessels can be the result of a solid stress of neighboring
tumor cells causing the collapse of vessels, or due to
apoptosis of ECs induced by local inhibitors of angiogen-
esis (Dimmeler and Zeiher, 2000). Long-term reduction of
wall shear stress is associated with dramatic reduction of
the vessel diameter, up to complete vessel occlusion. We
used both criteria to identify critical vessels: circulated
vessels, which are surrounded by TCs, collapse with
probability p ¼ Dt/Tcollapse if the wall shear stress ef(r,t)
is below a critical value fcrit, c.f. Fig. 2b–d. After each
collapse event e(r,t)-0 first the set of circulated sites
Scirc(t) and then coxy(r,t) is updated.

Vessel regression: (Fig. 1f) Vessel network sites r that are
not circulated and under-oxygenated (coxy(r,t)oyoxy,EC)
are eliminated with probability ½. yoxy,EC is set 10 times
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Fig. 2. (a–d) Series of images showing the time evolution of the tumor and vessel configurations in our model at different time steps. The normal

vasculature, to be seen far away from the tumor, is characterized by straight lines arranged in a grid like network with a characteristic line-to-line distance

(here 100mm) defining the normal MVD (here 100/mm2). The color of the blood vessels indicate their blood flow. Blue corresponds to normal, red to high

and yellow to low flow values. The thickness of the lines represents the vessel radius. Sites occupied by TCs are color coded in green to black, increasing

darkness indicating their age. White regions are empty sites, i.e. inside the tumor the necrotic regions. For the parameter values see the text and Table 2.

Only the part of the whole system (L ¼ 512) containing the peritumoral region is shown. (a) One time step (t ¼ 1) after the initialization of the system: the

irregular structure of the initial tumor is typical for an Eden cluster (Eden, 1961). One sees that five new vessels are formed within one time step at the

boundary. (b) t ¼ 50: extensive formation of new vessels can be seen at the peritumoral region. New vessels frequently have lower blood flow values than

vessels in the original network. The original vessels are almost all intact. (c) t ¼ 100: the progressive tumor growth pushes the peritumoral plexus further

into the normal tissue. Inside the tumor, MVD is drastically reduced leaving large regions of the tumor underoxygenated. (d) t ¼ 200: TCs inside the low

MVD region visible in (c) died after being 100 times steps in an underoxygenatd state leaving a large necrotic region to be seen a white spots.
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higher than the corresponding threshold for TCs, see
below.

TC death: (Fig. 1d) TCs adapt their metabolism to
hypoxic conditions, therefore yoxy,TC is set 10 times lower
as yoxy,EC. TC lifespan under hypoxia and normoxia is
difficult to estimate because hypoxia was found to induce
apoptosis of TCs but simultaneously lead to selection of
p53 deficient colonies induced in hypoxic regions (Yu et al.,
2002).

In our model a TC is eliminated with probability ½ only
if O2 concentration is under the low (adapted ) yoxy,TC for a
time TuO. After elimination cGF(r,t) is updated.
3. Results

3.1. Base case scenario

A scenario is chosen to describe a melanoma type tumor,
characterized by an inter-capillary distace of the original
vessel network of a ¼ 100 mm, a small GF threshold
(yGF ¼ 0.01), a large GF activation radius (RGF ¼ 200 mm),
a small O2 threshold (yoxy ¼ 0.05), a small O2 diffusion
radius (Roxy ¼ 100 mm), relatively high vessel collapse
probability (T�1collapse ¼ 0.1 h�1 and fcrit ¼ 0.5f0). We set
TC proliferation time Tt to 10 h, EC proliferation time Te

to 40 h, initial vessel radius r0 to 10 mm, the maximum
vessel radius rmax to 35 mm and the maximum sprouting
distance to 100 mm, the initial tumor size to TC0 to 103 and
the survival time TuO to 100 h. The unit of time Dt needs to
be smaller than the fastest process in the model, which is
TC proliferation: Dt ¼ 1 h turns out to be sufficiently
small, we checked that decreasing it further leaves our
results unaffected.
The inter-capillary distance a of the original network is
chosen to reproduce the MVD of normal skin tissue:
experimentally the MVD is measured by cutting tissue
slices and counting the vessels that cross this slice and these
two-dimensional slices are taken from a three-dimensional
sample and gives an MVD0 of ca.100 vessels per mm2

(Döme et al., 2002), which gives an average capillary
distance of a ¼ 100 mm. We adopted this distance also for
our two-dimensional model, for which one obtains then an
average oxygen concentration of coxy ¼ 0.2.
The value for RGF was motivated by the size of the

peritumoral region with increased MVD around melanoma
measured in (Döme et al., 2002). A small value for yGF

makes sure that indeed new vessels can be formed in this
region. The value for Roxy is taken from the experimental
data reviewed in (Carmeliet and Jain, 2000). A small value
for yoxy is chosen because increased cellular proliferation in
tumors results in a switch from O2 consuming to glycolytic
pathways providing TCs with an alternative energy source
during low O2 supply (Iyer et al., 1998; Minchenko et al.,
2002). As already mentioned above, the estimates for the
TC proliferation time Tt can vary enormously with
different tumors (Hirst et al., 1982), Tt ¼ 10 h is not
unreasonable, and we assume ECs to proliferate four times
slower. Parameter values for collapse probability and
critical shear force are taken more or less deliberately
(fcrit ¼ 0.5 means that vessel become unstable once the
shear force becomes less than ½ of that in normal
capillaries). As results do not depend critically on these
choices quantitative dependencies are discussed later.
The initial and maximum vessel radii, r0 and rmax, are set

to 10 and 35 mm, respectively, motivated by experimental
data for melanoma (Döme et al., 2002). The maximum
sprouting distance rmax is assumed to be 100 mm since



ARTICLE IN PRESS

0
200

400
600

800
1000

t

50
100

150
200

250

r

0
0.2
0.4
0.6
0.8

1

D
T
 (

r,
t)

0
200

400
600

800
1000

t

50
100

150
200

250

r

0

0.5

1

1.5

2

M
V

D
 (

r,
t)

/M
V

D
0

(a)

(b)

Fig. 4. As a function of the radial distance r from the tumor center

(measured in units of Dr) and the time t (measured in units of Dt) it is

shown: (a) the average tumor density DT(r,t) as defined by the average

number of TCs per lattice sites at time t, (b) average microvascular density

MVD(r,t), the average number of vessels per lattice site, relative to normal
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sprouting occurs mainly in the peritumoral region where
the intercapillary distance is less than 100 mm. The time TuO

that TCs can survive in an underoxygenated state is
deliberately set to 100 h, it defines the time lag between
removal of one or more vessels and the death of TCs
depending on these vessels. The initial tumor size is chosen
to be large enough to produce a peritumoral region with
sufficiently large GF concentration.

Fig. 2 demonstrates the time evolution of the tumor and
vessel configuration in the model with the set of parameter
values above (see also Table 2). At late stages of the
emergence a phenomenological compartmentalization be-
comes transparent, see Fig. 3: (1) The outer region close to
the tumor surface (peritumoral tissue) is highly vascular-
ized by thin vessels, its thickness depends on yGF and R

GF
;

(2) a well circulated tumor region (tumor periphery)
containing vessels grown via sprouting in the outer shell
and then enclosed by the growing tumor; (3) the
intermediate region inside the tumor with lower MVD
and thicker vessels; and (4) the necrotic core with only a
few large and stable vessels enclosed by a cuff of TCs, the
thickness of which depends on yoxy and Roxy. The border
between regions 2 and 3 is diffuse.

A quantitative analysis of this time evolution is
performed as follows: at each time MVD, O2 and GF
concentration, vessel radius, shear stress, blood flow and
pressure inside the vessels are calculated as a function of
the radial distance r from the tumor center. Results for the
tumor density and MVD is shown in Fig. 4. The peak in
the height profile of the tumor density indicates the
boundary of the tumor (stochastic fluctuations in the TC
Fig. 3. The state of the system with the same parameters as in Fig. 1 after

t ¼ 1000 time steps. The color coding is the same as in Fig. 2. The lateral

size of the region shown is 5.1mm.

tissue MVD0. The average is done over an annulus of width 10Dr with

central radius r.
proliferation as well as inhomogeneities in the O2

concentration cause the finite width of this step). The
tumor radius RtumorðtÞ ¼ maxfrjDðr; tÞ ¼ 1=2g, also shown
in Fig. 4a, grows linearly with time, a fit yields Rtumor(t) ¼
0.21t + 30 (time and radius measured in units of Dt and
Dr, respectively). The radial growth rate (0.21) is approxi-
mately twice the TC proliferation rate (Dt/Tt ¼ 0.1), which
is typical for Eden growth. As long as the peritumoral
vessel plexus develops fast enough (small yoxy,EC, large
RGF) Rtumor(t) displays the same time dependence.
At the peak DT develops a plateau of width �50Dr

before it decreases substantially due to the appearance of
necrotic regions in the tumor center. The irregularities in
the density profile reflect the exact spatial locations of these
necrotic regions, which is random. An average over several
realizations of the stochastic process that is described by
our model would remove these fluctuations and yield
smooth curves. This remark holds for all Figs. 3 and 4.
The average growth factor concentration cGF(r,t) has

approximately the same shape as the tumor density, which
is due to the fact that all viable TCs contribute to cGF(r,t)
in the same way (data not shown).
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Fig. 4b shows the MVD, which has a sharp maximum at
a radius RMVD(t), corresponding to a highly vascularized
tumor periphery, which evolves also linearly with time. A
fit yields RMVD(t) ¼ 0.21t+30, implying that it is identical
with the tumor radius Rtumor(t) and demonstrating the
appearance of a highly vascularized region in the peritu-
moral tissue. For radii roRMVD(t) the MVD drops quickly
(within ca. 50Dr) to values around the normal tissue MVD0

before slowly decreasing to values significantly lower than
MVD0 (corresponding to a poorly vascularized tumor
center). In (Döme et al., 2002) the morphometry of human
malignant melanoma (hMM) was analysed and data for
MVD and vessel perimeter were obtain in three different
regions of the tumors: (I) the tumor center, (II) the tumor
periphery—a 100 mm wide band of tumor immediately
adjacent to the invasive edge; and (III) the peritumoral host
tissue—a 200 mm wide band of host connective tissue
immediately adjacent to the tumor periphery. It was found
that for melanoma larger than 1.5mm the MVD at the
tumor centre was ca. 50% of the normal tissue MVD0, at
the tumor periphery it was ca. 50% more than MVD0,and
at the tumor perimeter it was ca. two times MVD0. These
data are in good agreement with ours.
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Fig. 5. As in Fig. 4 it is shown as a function of the radial distance r from the tu

flow per vessel Q(r,t) ¼ eq (r,t), (c) the shear stress F(r,t) ¼ ef(r,t). (d) The differ

the local blood pressure inside the vessels does not have the radial symmetry of

t ¼ 600minus the normal pressure P0(x,y) at t ¼ 0 (i.e. for normal vasculariz

spatial location and extent of the circular tumor in the middle. The global flow

(512,512). Looking along this direction, the pressure is decreased in front of t
The O2 concentration profile coxy(r,t) (not shown) has
approximately the same shape as MVD(r,t) reflecting the
fact that all vessel segments contribute in the same way to
coxy(r,t). Hypoxic conditions in the tumor center can thus
directly be read off from the MVD.
The average vessel radius is found to grow linearly with

time inside the tumor, as can be seen in Fig. 5a. The
maximum vessel radius, set to rmax ¼ 3.5Dr, appears as a
plateau at sufficiently large times. This behavior is
characteristic for a situation in which the GF concentration
cGF(r,t) inside the tumor (roRtumor(t)) is always larger
than the actual GF-threshold (yGF). Comparing again our
results fro the vessel radius in the three tumor regions
(center, periphery and perimeter) with the experimental
data for melanoma (Döme et al., 2002) one observes a
good agreement.
The average blood flow per vessel, shown in Fig. 5b,

increases proportionally to (Rtumor(t)�r)4 towards the
tumor center, due to the fact that the flow depends on
the 4th power of the vessel radius, which increases linearly
according to Fig. 5a. Finer variations of the flow in the
peritumoral region are present but not visible on the
chosen scale, but see Fig. 5c.
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ence in the blood pressure inside the vessels (with respect to normal). Since

the other quantities studied in a–c we show the pressure field P(x,y) at time

ation), where (x,y) are the coordinates of the vessels. One recognizes the

direction, enforced via the boundary conditions, is from left (0,0) to right

he tumor (left) and increased at the back of the tumor (right).
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The shear stress F(r,t) acting upon the vessel walls is
shown in Fig. 5c. It displays a pronounced dip where the
MVD (Fig. 4b) has its maximum, i.e. in the peritumoral
plexus. This is due to the fact that an increased MVD in
some region reduces the average blood flow per vessel and
concomitantly the shear stress F. According to the
definition of the model vessels with FoFcrit ( ¼ 0.5F0 here)
can collapse resulting in MVD decrease, flow increase and
shear stress increase–which is visible in Fig. 5c towards the
tumor center (see Fig. 6).

Fig. 5d shows the difference between the blood pressure
in the vessel at location (x,y) in the normal vasculature and
the blood pressure in the tumor vasculature at time
t ¼ 600, normalized to the maximum pressure in the upper
left corner (x ¼ 0,y ¼ 0). The blood pressure gradient in
the tumor center is up to 50% lower than in normal vessels
in spite of the decreased MVD. This is due to dilated
vessels with a blood flow capacity up to 200 times larger
than that of normal vessels (Fig. 5b).

We determined the fractal dimension df of the vascular
network with the box-counting method (Mandelbrot, 1983)
with boxes ranging from lateral size 1Dr to 100Dr, the
result is shown in Fig. 6, and find it to depend on the tumor
region to which the analysis was restricted. The original
vasculature has df ¼ 2.0 per construction since the Man-
hattan pattern represents a compact structure. The
complete vasculature that was altered by the tumor has
df ¼ 1.8570.05, concurring with the estimate for the
capillary network of various carcinoma df

carc
¼ 1.8970.04

(Gazit et al., 1995), and also with the exactly known value
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Fig. 6. Determination of the fractal dimension df of the vessel network at

time t in the base case (Fig. 2) via the box-counting method: the number of

Boxes of size L that is needed to cover completely the vasculature is

plotted as a function of L in log–log scale. The slope df of the curve is the

fractal dimension. We confined the measurement to annuli with fixed outer

radius that is determined by the limit of the peritumoral plexus and with

varying inner radius Ri. The slope of the curves decreases with increasing

Ri: df ¼ 1.8570.05 for Ri ¼ 0 (full squares, which corresponds to the

complete tumor vasculature) and df ¼ 1.6070.05 for Ri ¼ 200 (which

corresponds to the peritumoral plexus exclusively), indicating that the

fractal dimension is not a homogeneous measure over all regions of the

tumor vasculature.
for conventional percolation df
perc
¼ 1.891 (Stauffer and

Aharony, 1992). The restriction of the analysis to
concentric annular rings of width 50Dr yields a value of
df ¼ 1.6070.05 for the peritumoral region and slightly
decreasing values for decreasing radii of the rings reflecting
the increasing sparseness of the vessels towards the tumor
center. All measurements of fractal aspects of tumor
vasculature suffer from the fact that the possible box-sizes
span only 2 decades (in real tumors as well as in our
model): the minimum size is ca. 10 mm (approximately the
minimum diameter of a capillary) and the maximum is
around 1mm (for a tumor of size 5–10mm). Taking into
account error bars and transient regimes it is clear that a
precise estimate of df is hardly feasible. Differences in df of
the order of 0.1 are, however, significant, and indicate that
the local values for df correlate strongly with local values
for the MVD.

3.2. Parameter dependencies

In the following we analyse the various parameter
dependencies of the model. Since tumor growth in our
model depends strictly on the concentration field coxy(r) it
is useful to clarify the shape of this field in the original
vasculature, which is shown in Fig. 7 for different values of
the lattice constant of the original vasculature a (i.e.
different values of the original MVD0 ¼ 1=a2). The oxygen
concentration in the original tissue varies spatially only
within a few percent when RoxyXa and its mean value c0oxy

is proportional to MVD0. TCs at the tumor surface will
always survive and proliferate when yoxyoc0oxy. On the
other hand when yoxy4c0oxy or when Roxy is smaller than a

the regions between two neighboring vessels in the original
network have a O2 content much lower than c0oxy (or even
zero if Roxyoa=2), the survival and eventual growth of the
tumor becomes probabilistic and depends upon the speed
with which new vessels are formed—survival probability
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decreases drastically in this parameter region and the
tumor morphology can become non-circular and even
disconnected. In later stages of the tumor growth Roxy and
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ideal tumor with different RGF.

Fig. 9. Effect of a large value of RGF on the tumor morphology. Left: shows a c

as in the base case. Compared to Fig. 3 the necrotic regions are much smaller an

as in the left figure except the critical shear stress fcrit, which is now 0.7 (instead

large collapse probabilities only a small variation of fcrit produces large necro
yoxy determine the diameter of the cuffs surrounding the
large vessels inside the necrotic regions of the tumor.
To clarify the effect of RGF and yGF we show the GF

concentration field cGF(r) produced by an ideal circular
tumor with density 1 and radius 50Dr in Fig. 8a. In the
tumor center cGF(r) ¼ 1 due to the normalization of the
function fGF(r). At the boundary the concentration profile
decreases in a sigmoidal shape from 1 to 0 over a width of
2RGF, being 0.5 approximately at the tumor surface. In
Fig. 8b we show cGF as a function of the distance r from the
tumor surface for different values of RGF. cGF scales
linearly with RGF which implies that the limit of EC
growth, i.e. the width of the region outside the tumor with
increased MVD, increases linearly with RGF, as is
illustrated by the straight line at cGF ¼ 0.05, from which
the maximum width of this region can be read off for the
case yGF.
A non-trivial consequence of large values of RGF (e.g.

40Dr), which produce a wide and dense vasculature in the
peritumoral region, is that they are accompanied by larger
MVDs also inside the tumor thus inhibiting the emergence
of necrotic regions for a large range of collapse probabil-
ities and critical flows—Fig. 9a shows an example of a
Monte-Carlo simulation for RGF ¼ 40Dr and all other
parameters as in the base case.
The collapse probability pcollapse ¼ Dt/Tcollapse and the

critical shear stress fcrit determine the total necrotic volume
and the total vessel number, as is demonstrated by the
examples shown in Figs. 9b and 10. In Fig. 9b all
parameters are the same as in Fig. 9a, only fcrit is changed
from 0.5 to 0.7, which means that higher flow values are
necessary to stabilize vessel. This moderate change
decreases MVD inside the tumor drastically and produces
large necrotic regions. In Fig. 10 a series of configurations
with increasing collapse probability pcollapse is shown. The
necrotic volume relative to the total tumor mass as well as
to the total number of vessels as a function of time for
onfiguration after 1000 time steps for RGF ¼ 40Dr but all other parameters

d the MVD is homogeneously increased with the tumor. Right: parameters

of 0.5). Whereas the morphology in the left figure is rather stable even for

tic regions and decreased MVD within the tumor.
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Fig. 10. Sequence of configurations with increasing collapse probability (from left to right it is pcollapse ¼ 0.02, 0.04, 0.1, 0.5) and fcrit ¼ 0.5. Here we have

chosen RGF ¼ 10, yGF ¼ 0.01 and the other parameters as in the base case. The same seed for the random number generator for the simulations in all cases

is chosen to emphasize the effect of the variation of pcollapse.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

200 300 400 500 600 700 800 900 1000

V
ne

cr
 / 

V
tu

m
or

t

pcoll = 0.015
pcoll = 0.05
pcoll = 0.2
pcoll = 0.5

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 100 200 300 400 500 600 700 800 900 1000 1100

(V
ve

ss
el

 - 
V

ve
ss

el
0) 

/ V
ve

ss
el

0

pcoll = 0.015
pcoll = 0.05

pcoll = 0.2
pcoll = 0.5

(a)

K. Bartha, H. Rieger / Journal of Theoretical Biology 241 (2006) 903–918 913
different collapse probabilities is shown in Fig. 11
(fcrit ¼ 0.5 and the other parameters as in the base case).
The necrotic volume relative to the tumor mass starts to
increase with time for t4tuO and saturates around t ¼ 500,
ranging from 0.2 for pcollapse ¼ 0.05 to 0.35 for
pcollapse ¼ 0.5. This means that the tumor has reached a
more or less stationary state in which a constant fraction of
the tumor mass is necrotic, except for very small values of
pcollapse, where the necrotic regions are confined to a small
region at the tumor center: the data for pcollapse ¼ 0.015
show a slow decrease in the relative necrotic regions for
t4500. The total number of vessels at time t decreases
linearly with time for pcollapse40.05, and decreases with
increasing pcollapse. For instance for pcollapse ¼ 0.5 (and
again the other parameters as in the base cae) the total
vessel number in the system is 25% less than the total vessel
number in the original tissue (in the space region
considered) after t ¼ 1000 time steps although the MVD
is substantially increased in the peritumoral region. Only
for small values of pcollapse the MVD increases for t4500,
concomitantly with the decrease in relative necrotic
volume: since vessel collapse is rare the increased MVD
in the peritumoral region also survives inside the tumor.

The TC proliferation time Tt determines the tumor
growth speed in well oxygenated regions. The EC
proliferation time Te determines the speed with which
new vessels are formed in regions with sufficient GF
and therefore also effects the tumor growth speed if
yoxy is smaller than the critical value (0.12 for
MVD0 ¼ 100/mm2).
t(b)

Fig. 11. (a) The total volume of the necrotic regions with the tumor

divided by the total tumor mass as a function of time for different collapse

probabilities (parameters as in Fig. 9). (b) The relative deficit/excess

volume of the vasculature as a function of time for different collapse

probabilities (parameters as in Fig. 9).
4. Discussion

Within the base case scenario we have demonstrated that
the model describes phenomenologically very well the
spatially resolved experimental data of Döme et al. (2002)
for vessel radii and MVD in melanoma. The model can
also be adopted to other tumor growth scenarios, ranging
from tumors with a low oxygen demand that exclusively
coopt pre-existing vessels to tumors that produce a
characteristic peritumoral vascular plexus because of high
oxygen demand or high GF production rate. It also
describes scenarios in which tumors are completely filled
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with viable TCs and high MVD in the center on one side
and morphologies containing large necrotic regions and
only a few very thick vessels on the other side.

An important prediction of our model is that large parts
of the vascular network can be cut off from the blood
circulation by the collapse of only a few vessel segments,
namely those which are located in the perimeter of this part
of the network. Consequently the emergence of necrotic
regions does not necessarily rely on the presence of large
amounts of anti-angiogenic factors (Ramanujan et al.,
2000). We find that failure of only a few vital ECs induced
by the local mechanical pressure of high tumor densities
might also be sufficient to disrupt the oxygen supply of a
whole region leading to massive cell death therein. The
vessel segments need not only to be connected to the
exterior network via an uninterrupted path but at least bi-
connected (equivalent to the existence of at least two link-
disjoint, uninterrupted paths) in order to be circulated by
the blood flow, which lowers the number of collapses that
would lead to the necrosis of a region even further.

Vessel collapse events have been shown to correlate with
elevated levels of solid pressure exerted by the growing
tumor on the intratumoral vessel wall (Boucher and Jain,
1992), which is considered qualitatively in the present
version of our model by the criterion that collapse events
only occur, if the vessel is surrounded by TCs. Varying
stiffness of the surrounded matrix in different tumors can
phenomenological be described in our model by varying
values for the collapse probability.

In addition to the criterion that vessels are surrounded
by TC-s, shear stress was chosen as a second parameter to
correlate collapse events. This was motivated by the data
obtained on normal vessels, where temporal changes in the
hemodynamic flow pattern causing locally a decrease in
wall shear stress were shown to lead to a structural
reduction of the internal vessel diameter (Pries et al., 1995).
We suggest therefore that for a vessel which is surrounded
by TC-s (also exerting solid stress) such a contraction could
lead to complete collapse.

Another important prediction is that vessel collapse and
the local blood flow characteristics have to be correlated
Fig. 12. Tumor and vessel configurations after time t ¼ 2000 for the model with

shear foce determining the vessel collpase)—from left to right it is pcollapse ¼ 0

tortuous, in particular a global directedness of the vessel is absent and only f

completely filled nor completely void with thick vessels threading the tumor.
via the local shear stress. If the collapse events would occur
independent from one another with some probability p, a
fundamental law in percolation theory (Stauffer and
Ahorony, 1992) predicts that either the interior of the
tumor is completely filled (i.e. does not contain large
connected necrotic regions) or it is completely void up to a
small boundary region—except for one special value for
the parameter p, the percolation threshold pc. We
confirmed this scenario by testing different model variants
containing uncorrelated collapse events (see Appendix and
Fig. 12). The existence of a model parameter like the
collapse probability that has to be fine-tuned to a special
value in order to reproduce vessels that thread the whole
tumor would obviously be unsatisfactory. Only if we
correlated the vessel collapse with the shear stress the
model predicts a realistic vascular network morphology
that is robust against parameter variations. The basic
mechanism for this robustness is the redirection of the flow
after collapse events into still intact vessels resulting in an
increased shear stress in the remaining vessels and thus a
drastically reduced collapse probability. Shear stress rather
than blood flow as a hemodynamic criterion for vessel
stability appears to be plausible, since the ECs in the vessel
wall have informations about the shear stress but probably
less about the total flow. We checked that a correlation of
vessel collapses with the blood flow also leads to unrealistic
network morphologies in which only a few vessels survive
within the whole tumor (i.e. a tumor periphery with
increased MVD is completely missing). The reason for this
is the dependence of the flow from the fourth power of the
vessel radius. This leads to a strong variation of the flow
between vessels of only slightly different radius implying
the survival of only the thickest vessels if collapse is
correlated with the flow.
Blood vessels are exposed not only to shear stress but

also to the transmural pressure. Since the physiologically
relevant difference between the microvascular pressure and
interstitial fluid pressure is generally very low in tumor
vessels due to their leakiness (Boucher et al., 1996), the
pressure-shear hypothesis (Pries et al., 1995) implies an
adaptation of the vessel walls towards low equilibrium
uncorrelated vessel collapse (i.e. without blood flow and without a critical

.04, 0.05 and 0.06. The morphology of the vessel network is much more

or values of pcollapse around 0.05 the inner region of the tumor is neither
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shear-stress via vasodilation. Together with the effect of
GF this mechanism explains the ubiquitous presence of
dilated vessels in tumors. Nevertheless blood pressure in
tumor vessels remains enigmatic: it is usually larger than
the pressure in normal vasculature in spite of the increased
MVD and larger vessel diameter in tumors. In addition to
geometrical effects also the solid stress exerted by the
tumor might play an important role. It appears promising
to incorporate solid stress into our model, by using a
continuum description for the growing tumor.

The analysis of the parameter dependencies of our model
revealed that the morphology of the tumor vasculature
depends most strongly on the potential width of
the peritumoral plexus (related to the diffusion range of
the growth factor molecules) and on the way in which the
process of vessel collapse takes place. Varying the
probability with which vessels can collapse translates
immediately into a variation of the necrotic volume, even
more dramatically upon variation of the critical shear
force.

A general feature of the remodeling process of the
normal vasculature into the tumor vasculature in the
model—and we propose this to hold also for in vivo
tumors—is that none of the initial characteristics of the
original vessel network survives this process: we assumed a
original vascular network that consists of capillaries of
equal diameter arranged in a regular grid with a given
MVD, which guarantees a homogeneous distribution of
oxygen and a constant shear stress in all vessels. Once the
tumor grows over it, it gets transformed into a compart-
mentalized network with irregularly arranged dilated
vessels and a decreasing MVD from the tumor periphery
to the tumor center, resulting in an inhomogeneous oxygen
distribution.

Variations in the structural characteristics of the original
vascular network will not influence the compartmentaliza-
tion of the tumor reported here but will certainly have
implications for the emerging network morphology and for
the absolute values of microvascular pressure. For instance
we observe a global directedness of the central vessels in
our model, which is a consequence of the boundary
conditions for the hydrodynamic pressure that we as-
sumed, which imprints a global net flow in one particular
direction through the tumor. The resulting pressure
distribution within the whole network has a diagonal
gradient, with higher pressures always on the upper left
side of the tumor and lower pressure on the lower right
side. Natural vascular networks are organized in arterial
and venous trees connected by capillary beds, with blood
pressure generally decreasing from arteries over arterioles
to capillaries and venoules. Their pressure distribution has
therefore a structural basis. It would be useful to initialize
our model with an original network that is organized in the
same way, because then one can also expect to obtain a
realistic distribution of the absolute values of the hydro-
dynamic pressure within tumor vessels. The modulus of the
pressure gradient within tumor vessels should, however,
remain decreased towards the tumor center, as in the
present version of our model.
The fractal analysis of the tumor vasculature predicted

by our model showed that for the base case scenario the
fractal dimension df is around 1.85, which is close to the
value found in various carcinoma df

carc
¼ 1.8970.04

(Gazit et al., 1995). This value is close to the exactly
known value for conventional percolation df

perc
¼ 1.891

(Stauffer and Aharony, 1992), describing a fractal structure
that is obtained by randomly removing bonds from a
regular two-dimensional network. We therefore propose
that the fractal structure of the tumor vasculature is
determined by the stochastic vessel collapse inside the
tumor and not by vessel growth processes in the
peritumoral region. This view contrasts the with the view
of (Gazit et al., 1995), where it has been emphasized that
their estimate for df of carcinoma vasculature corresponds
closely to the one for invasion percolation, (which is,
however, df

inv�perc
¼ 1.81 (Furuberg et al., 1988)), hence

relating the growth of tumor vasculature to the expansion
of a network throughout a medium with randomly
distributed heterogeneities in strength. Our model does
not involve any heterogeneity aspects of an extracellular
matrix surrounding a growing tumor, nevertheless the
fractal characteristics of the tumor vasculature turns out to
be similar to the one of real tumors.
The tumor radius grows always linear with time in the

model and depends strictly on the TC proliferation time,
which is a consequence of the restriction of TC prolifera-
tion to surface sites, provided they are sufficiently
oxygenized. Only in the case of low original MVD it
depends on the speed with which the peritumoral region
expands into the underoxygenated areas via sprouting. The
tumor would stop growing if the MVD in some region of
the original tissue is substantially smaller than necessary
for TC proliferation, depending on yoxy and Roxy. In the
examples we discussed here it grew linearly because we
assumed a homogeneous original tissue. Other possible
growth limiting factors include growth inhibitors either
produced by the TCs or the host tissue, which could be
added as new concentration field into our model, and solid
stress generated by a growing tumor in a confined space
(Helmlinger et al., 1997) also elevating microvascular
pressure (Griffon-Etienne et al., 1999). However involve-
ment of solid stress into the model would lead to a
mechanism for growth inhibition only in later stages of
tumor development, at present the maximum diameter of
the tumor we consider was 5mm. It would certainly be
worthwhile to incorporate elastic TCs into our model
according to the lines of (Drasdo and Höme, 2005).
A correlation between tumor expansion and a local

MVD value is visible in our model only in the case when
the original MVD is too low to meet the metabolic demand
of the TC-s. In this case tumor growth will occur and
sustain only if GF production is sufficient to stimulate
sprouting in the peritumoral region (yGF is small or RGF is
large), MVD must be elevated here. In the tumor center the
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MVD depends on the vessel collapse probability, thus can
be larger or smaller than, or equal to the normal tissue
MVD. On the other hand if the original MVD is large,
there is no correlation between tumor growth and
increased (outside) or decreased (inside) levels of MVD,
neither locally nor globally. Based on this general behavior
of our model we conclude that MVD even when measured
in different regions of the tumor is not a reliable diagnostic
tool to predict the growth of a single tumor. The
correlation found between central MVD of human
melanoma and the outcome of the disease (Döme et al.,
2002) is probably due to metastasis formation which we did
not consider here.

Finally a remark on the two-dimensionality of the model
we have presented here: It is straightforward to extend our
model to three space dimensions (Lee et al., 2006), for
which we obtain essentially the same behavior for tumor
radius, MVD, vessel radius, flow, pressure gradient, etc.,
not only qualitatively but also to some extend quantita-
tively. A difference is for instance that there the fractal
dimension of the vessel network is the one for conventional
percolation in 3d.

Conclusion: On the basis of a theoretical model, tested on
experimental data for human melanoma, it was shown that
the microvascular environment of the host is the dominant
condition for tumor progression, once this is initiated.
Microvascular density within the tumor can be drastically
decreased due to the instability of tumor vessels without
disturbing the growth at the tumor periphery, implying
that MVD measurements might be an unreliable diagnostic
tool for tumor progression.
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Appendix

Here we consider a variant of our model in which the
process of vessels collapse is uncorrelated with the blood
flow pattern on the network.

We change the definition of the model introduced in the
main text by canceling the flow computation and introduce
a fully stochastic vessel collapse with a probability pcollpase:
circulated vessels, which are surrounded by TCs, collapse
with probability pcollpase ¼ Dt/Tcollapse. After each collapse
event e(r,t)-0 first the set of circulated sites Scirc(t) and
then coxy(r,t) is updated. Vessels that have a radius that is
larger than a certain threshold rstab are supposed to be
stable and cannot collapse any more (without any
stabilization mechanism all vessels would eventually
vanish).

Fig. 12 shows the result of the simulation of this model
with for different values for pcollpase (and other model
parameters as in the base case) and demonstrates that the
absence of a correlation between vessel collapse and blood
flow leads to unrealistic vessel morphologies and a sharp
percolation transition from configurations with small
disconnected necrotic regions for small collapse probabil-
ities to configurations consisting only of small annulus of
viable tumor cells.
A more detailed analysis (data not shown) reveals a

sharp percolation transition takes place at pcollapse ¼ 0.049
which is in the same universality class as conventional
percolation (Stauffer and Aharony, 1992): essentially in
this model variant the vessels can collapse only for a fixed
time interval—starting at the point when the tumor grows
over them and ending at the point when they reach the
stabilization radius (note that the radius grows linear in
time once vessels are surrounded by TCs). The collapse rate
multiplied with this time interval yields the total prob-
ability with which a vessel segment is removed. This
process leads naturally to a connectivity percolation
transition, and much earlier (i.e. for smaller values of
pcollapse) to a bi-connectivity percolation transition.
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