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Abstract

Dynamical properties of the transcriptional regulatory network of Escherichia coli and Saccharomyces cerevisiae are studied within the
framework of random Boolean functions. The dynamical response of these networks to a single point mutation is characterized by the
number of mutated elements as a function of time and the distribution of the relaxation time to a new stationary state, which turn out to
be different in both networks. Comparison with the behavior of randomized networks reveals relevant structural characteristics other
than the mean connectivity, namely the organization of circuits and the functional form of the in-degree distribution. The abundance of
single-element circuits in E. coli and the broad in-degree distribution of S. cerevisiae shift their dynamics towards marginal stability
overcoming the restrictions imposed by their mean connectivities, which is argued to be related to the simultaneous presence of

robustness and adaptivity in living organisms.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Living organisms depend simultaneously on a stable
internal environment and a capability to adapt to a
fluctuating external environment (Causton et al., 2001).
Since the biological characteristics of an organism are
determined by the interplay between its gene repertoire and
the regulatory apparatus (Babu et al., 2004), robustness
and adaptiveness should be generic features of the
molecular interactions composing the gene regulation
machinery. The organization of the gene transcriptional
regulatory network has been analyzed for numerous
organisms, in particular for the prokaryote Escherichia
coli (E. coli) (Thieffry et al., 1998; Dobrin et al., 2004;
Shen-Orr et al., 2002) and the eukaryote Saccharomyces
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cerevisiae (S. cerevisiae) (Guelzim et al., 2002; Lee et al.,
2002; Luscombe et al., 2004).

Adaptivity of an organism implies the production of
different cell types with different functions from the same
genome. This begins with a regulated transcription by
certain proteins, transcriptional factor (TF) (Orphanides
and Reinberg, 2002). The identification of the target genes
for each TF allows the construction of a gene transcrip-
tional regulatory network, where the nodes are the genes or
operons that produce TF’s or are regulated by TF’s, and
the directed edges indicate a regulatory dependence:
A directed edge from node A to node B implies that a
TF encoded by gene A4 is involved in the regulation of the
expression of gene B. The expression level of each gene
defines the dynamical state of the network. To achieve
robustness and adaptiveness at the same time one expects
the regulatory network dynamics to be neither chaotic nor
fully insensitive to perturbations, but marginally stable.
Structural characteristics of the network must support
these dynamical features.
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Our study reveals specific topological features in the
transcriptional regulatory network architecture of E. coli
and S. cerevisiae that shift the dynamics towards marginal
stability. E. coli’s network has a very low mean con-
nectivity, the number of edges per node, which would lead
to a high stability thus deteriorating adaptiveness in
random networks, where all regulating rules are equally
probable. But we find that single-element circuits which are
anomalously rich in E. coli’s network help mutations
triggered by random perturbations to persist, favoring an
unstable dynamical behavior. S. cerevisiae on the other
hand has a sufficiently high mean connectivity which favors
chaotic dynamics in the random networks deteriorating
stability. Here we find that S. cerevisiae’s network has a
broad (algebraic) node degree distribution and we demon-
strate the stabilizing effect of this feature upon the
dynamics.

Practically, the information about the transcriptional
regulatory network structure—which TF binds to which
gene—is available, for example, via the chromatin-immu-
noprecipitation microarray experiments (Lee et al., 2002).
The question, whether a specific TF enforces or inhibits the
expression of a specific target gene has to be studied
separately. However, those individual interactions do not
necessarily occur independently and these regulatory
interactions are often combinatorial (Buchler et al., 2003)
and time-, cell cycle-, or environment-dependent, limiting
the available information on the complete regulation
profile. Generic dynamical features then have to be
extracted using model interactions as suggested by Kauft-
man (1969, 1993): One digitizes the continuous expression
level to a Boolean variable, 0 (inactive) and 1 (active), and
assumes a random static regulation rule for each gene in
the form of a random Boolean function for each gene
determining its state at the next time step by the current
states of its regulators. Here random means that the output
value of these Boolean functions is 0 or 1 with equal
probabilities.

Based on considerations of random Boolean networks
with a fixed number of regulators k for every element,
Kauffman (1969, 1993) hypothesized that distinct station-
ary states—limit cycles—correspond to different types of
cells. This idea got some support from the agreement of the
scaling behavior of the number of limit-cycles for k& = 2-
random Boolean networks and the number of cell types
with respect to the genome size, but was also debated
(Samuelsson and Troein, 2003; Klemm and Bornholdst,
2005). Among networks with fixed in-degree, k =2 is a
critical point distinguishing two different dynamical
phases: stable and unstable against perturbations, suggest-
ing that the regulatory network dynamics of living
organisms is “on the edge” between order and chaos
(Kauffman, 1969, 1993).

However, real regulatory networks do not have a fixed
in-degree but a heterogencous connectivity, even their
average in-degree (k) is usually different from 2. Never-
theless the Boolean model itself is useful, and recently the

effects of the nature of the regulating rules on the
dynamical stability were studied within its framework
(Harris et al., 2002; Kauffman et al., 2003, 2004), which
will be discussed later in connection with our results. We
propose that the network structure itself is also relevant for
the stability/instability aspect mentioned before. Therefore
we construct a network from the data for the transcrip-
tional regulatory interactions for E. coli and S. cerevisiae,
and study how a point mutation, i.e., an altered dynamical
state of a single element, spreads over the whole network
by inducing another mutation through regulatory interac-
tions in the random Boolean functional form.

2. Method
2.1. Datasets

The transcriptional regulatory network in E. coli has
long been studied and the obtained results are well inte-
grated e.g., in RegulonDB database (http://regulondb.
ccg.unam.mx). We used the dataset of Ref. Shen-Orr et al.
(2002), which are based on the Regulon DB and enhanced
by literature search. The resultant network consists of 418
operons and 573 interactions with 111 nodes having at least
one outward edge. On the contrary, the transcriptional
regulation of S. cerevisiae on the genome scale became
available only very recently via the combination of
chromatin-immunoprecipitation and DNA microarray
analysis (Lee et al., 2002). We used the data of Ref. [Lee
et al. (2002)] and chose the P value threshold 0.01 to yield a
network of 4555 nodes and 12455 directed edges with 112
nodes having at least one outward edge. Isolated nodes and
those possessing only self-regulation have been excluded in
both networks since they have no interaction with other
elements.

2.2. Random Boolean functions

These experimental data establish a directed network G
of N nodes, and we assign a dynamic Boolean variable o;
(that can take on the values 0 or 1 only, corresponding to
an inactive or active state, respectively) to each node i.
These dynamical variables evolve synchronously via
oi(t + 1) = fi(0:4(D),0,(2), ..., 0 (1), with the nodes iy, 1,
..., Ix, having the outward edges incident on the node i and
k; the in-degree of the node i. The output value of f,; for
each input configuration {o;,(¢),5;,(?),...,0; (1)} is 1 with
probability p or 0 with probability 1 — p. Once determined
at the beginning, the regulating rule f; does not change
with time. If k; =0, o; is fixed at f;; gi(t+1)=f;
regardless of the value of ¢;(f). Here we introduced a
parameter p controlling the distribution of the regulating
rules. If p = 0 (1), the output value should be 0 (1) for any
input configuration, yielding ¢; = 0(1) for all i. On the
other hand, if p = %, an input configuration can lead to the
output ValueI_O and 1 with the same probability %, and as a
result, all 22" regulating rules for a node with in-degree k;
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are equally probable. While presenting the results, we will
use another parameter A defined as the probability that a
regulating rule yields different output values from different
input configurations. This is useful in understanding the
dynamic stability introduced below, and one can find easily
that it reduces to 2p(l —p) in the random Boolean
networks, which is just twice the probability that one
output value is 0 and the other output value is 1. An
example network with this Boolean dynamics is given in
Fig. 1.

2.3. Stability measure

The stability of a time-trajectory 2(¢) is assessed by the
effects of a point mutation ¢; — 1 — g; on the dynamical
evolution of the subsequent states. For this, we choose a
configuration 2 = {0}, 0,...,0y}, and prepare its mutant,
5 =1{61,62,...,6y), where 6; = o; for all i except j with j
chosen arbitrarily. Evolving X and ¥ on the same network
with the same regulating rules, we count #,,(f), the number
of element s with o;(¢)#6,(¢), at each time step 7. A node
with Agi(t) = |o;(f) — 6,(¢)]>0 is considered as mutated.
We average npy(f) over different realizations of the
regulating rules and different initial pairs of configurations
to get the average, N,,(t) = (n,,(¢)), which converges to its
stationary value N,,. For each individual normal-mutant
pair (X, ), one can measure the relaxation time 7, after
which 7,,(f) reaches its stationary value. Its distribution
P(t;) is investigated as well.
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oa(t) op(t) oc(t) | op(t+1)

Fig. 1. An example of Boolean dynamics. (a) A Boolean network of four
nodes and three directed edges. Each node has a Boolean variable o;
(i = A, B, C, D). (b) Regulating rules f;’s determining the node /s state at
time ¢ + 1 with its regulators’ states at time ¢ as input. The nodes 4 and B
have no regulator and their Boolean variables take constant values,
respectively, at time 7+ 1 regardless of their values at time ¢ (c) An
example of the time evolution of those Boolean variables under the
regulating rules in (b).

3. Results
3.1. Time evolution of the number of mutated elements

Fig. 2(a) and (b) present the results for the number of
mutated elements N,,(t) and N,,. At p = % or equivalently
at A=2p(1 —p) = %, N,,(f) decreases very rapidly from
N,,,(0) = 1 to a much smaller value in E. coli. On the other
hand, N, for S. cerevisiae increases with time up to about
3, indicating the occurrence of a mutation cascade. As the
parameter A decreases, N,, decreases both in E. coli and
S. cerevisiae. In E. coli, N, is smaller than 0.3 for all A<}
indicating that system-wide mutations are suppressed in
the random Boolean dynamics. Fig. 2 also shows that in
S. cerevisiae, N,, is smaller than in E. coli for 2<0.2 but
increases with A very rapidly to become larger for 120.2.

The functional form of P(z;) for p =% in Fig. 2(c) is
strikingly different between E. coli and S. cerevisiae: it is
exponential for E. coli and a power-law, P(t,)~t;1®?), for
S. cerevisiae. This long tail of P(t;) implies that in the case
of S. cerevisiae an element can be mutated and recovered
even at very late times in the dynamics.

3.2. Mean connectivity

These differences in the mutation spread dynamics may
be primarily attributed to a difference in the mean
connectivity and can be understood by a mean-field
approach (Derrida and Pomeau, 1986; Aldana and Cluzel,
2003): The probability H(f) = limy_ e Ny(f)/N that a
randomly chosen node i is mutated at time ¢, also called the
Hamming distance, is given in terms of the probability that
a regulator of the node i is mutated, which we denote by
H(?), and the probability that the regulating rule f; yields
different output values from different input configurations,
A, as

H(+1)=>_ il == H@®))Pyk).

kin

Hi+1)=> il —(1-H@p)=C2F (1)

qP(k,q)
= (@)

Here P,(k,q) is the joint probability that a node has in-
degree k and out-degree ¢ and is related to the in-degree
distribution Py(k) =5  Falk,q). H(t) and H(t) evolve
towards their stationary values H and H. Setting H(¢+
1)= H(t) = H and expanding the second line of Eq. (1)
for small H, one finds H ~ Hilkq)/(q) — I-_Izﬂh(kzq>/
() + @(1:13) provided (g), (kq), and (k2q> are all finite.
Therefore H and H are zero for A smaller than a critical
value A, with 1, =1/K and K = (kq)/{g) and non-zero
otherwise. The expression . = K~! for the critical point
holds true as long as K is finite. Since the Hamming
distance H can be positive only if K>2, N,, >~ HN for
finite N should be small in E. coli that has the value K ~
1.08 and can be large, of order N, for 132042 in
S. cerevisiae that has K ~ 2.35. Although the Hamming
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Fig. 2. Number of mutated elements N,,(¢) and N,, = lim,_, o, N,,(¢) and
distribution of the relaxation time P(z;). (a) Plot of the stationary value
N,, versus A=2p(l —p) in the original network and two types of
randomized graphs (see the text for the definition) for E. coli. The data are
averages over 107 initial pairs of configurations for each of more than 10°
realizations of regulating rules. The approximation given in Eq. (2) is
drawn together. The inset shows the time developments N,,(¢) for selected
values of 1 in the original E. coli network. (b) The same data as (a) for
S. cerevisiae. (c) Plots of P(t;) with p = % L= %) on the original networks
and the randomized graphs for E. coli and S. cerevisiae.

distance is not necessarily of order N~! at /., one finds the
value of / for which N,, = 1 very close to the value K~ ~
0.42 in the latter. The in-degree k& and the out-degree ¢
show no significant correlation in the two networks
according to our analysis not presented here, that is,
Py(k,q) >~ Py(k)Py(q), which yields (kq) =~ (k){¢q) and
K >~ (k).

3.3. Comparison with randomized networks

Next we studied the same dynamics in two kinds of
randomized networks derived from the regulatory net-
works of E. coli and S. cerevisiae. The first type of
randomized graphs (type I) are constructed by the
repetition of removing an edge connecting nodes v; and
wi and creating a new one between v, and w;, where both
v; and v, had at least one outward edge and the node
pair v, and w, were not connected before this change.
Thus these type-I randomized networks have the same
number of nodes, edges, and TF’s as the original networks,
but the edges connect randomly chosen pairs of TF
and target gene. Our results for N,, and P(¢,) are shown
in Fig. 2. For type-I randomized graphs derived from
E. coli, N, is substantially suppressed as compared with
the original network. In type-I random graphs derived
from S. cerevisiae, N, increases much more rapidly passing
A 2>~ 0.3. The relaxation time distribution for the random
graphs from E. coli is broader than for the original network
but still decays faster than that for S. cerevisiae. The type-I
randomization does not change significantly the relaxation
time distribution for S. cerevisiae.

The type-Il randomized graphs we considered are
constructed by exchanging the end points of two edges:
Two randomly chosen edges e¢; = (v;, w;) and e; = (va, wy)
are replaced by €] = (v1, w2) and ¢, = (v2, w;), respectively.
These graphs preserve the joint degree distribution Py(k, q),
but their local connectivity patterns may be different from
that in the original network. We present the plots of N,,
and P(t;) in Fig. 2. This type-II randomization does not
change the relaxation time distribution for S. cerevisiae
neither. Thus much faster decay of the relaxation time in
the original and randomized networks for E. coli than in
those for S. cerevisiae can be ascribed to the much lower
mean connectivity, (k) >~ 1.24, of the former than that of
the latter, (k) ~ 2.73. Interestingly the quantities N,, and
P(t,) for these randomized graphs agree well with those for
the original network of S. cerevisiae, but not for E. coli:
This implies that it is the degree distribution that is mainly
responsible for the spread of mutation in S. cerevisiae while
other (local) structural factors must be important in E. coli.

3.4. Abundance of single-element circuits in E. coli

One might expect that circuits (directed closed paths) in
the regulatory network play an important role for the
spread of mutations, because in networks with a tree-
structure, i.e., without circuits, point mutations spread
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without circulation and a node that is mutated will recover
at the next time step and never become mutated again as
indicated in Fig. 3(a). The nodes on a circuit, on the other
hand, can return to a mutated state even after recovery
(Fig. 3(b)). The nodes lying on circuits or those on bridges
connecting distinct circuits can in principle switch their
status permanently and thus they can be considered as
comprising a core in the dynamics of mutation spread. As a
subnetwork including all such circuits and the bridges
connecting them, we define the core of a network as the
maximal subgraph in which each node has at least one
inward edge coming from and at least one outward edge
incident to an element of the core.

By deleting the edges having at either end a node that
does not meet the requirement for the core elements, we
found the core subnetwork in the regulatory networks of
E. coli and S. cerevisiae. Note that if an edge has the same
node at both ends, the node, which regulates itself,
becomes the element of the core. The relevance of the core
to the mutation spread dynamics can be understood e.g.,
by investigating the relaxation time distribution P(¢,) in
S. cerevisiae depending on the location of the initial point
mutation. Our analysis shows that initial mutations in the
core lead to a qualitatively equal (power-law with the same
exponent) distribution of the relaxation time. On the other
hand, initial mutations in the output module, consisting of
all nodes that have inward edges coming from the nodes in
the core and their edges, decay very fast since the output
module has a tree structure and cannot cause mutations in
the core.

The organization of the core turns out to be very
different in E. coli and S. cerevisiae as shown in Fig. 4(a)
and (b), respectively. Most of all, the nodes are much more
densely connected in S. cerevisiae than in E. coli. This
difference can be first ascribed to different mean con-
nectivities of the nodes in the core: it is about 1.47 in E. coli
and 2.65 in S. cerevisize. However, a more striking
difference exists in their core organization. In E. coli, all
54 circuits are identified, all of which are single-element
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Fig. 3. Network structure dependence of mutation spread. The regulating
rules are given by f;(¢) = ¢ or 1 — ¢ for nodes /s with one input and
fi=1 or 0 for nodes /’s with no input. Thus a mutated regulator
necessarily makes its target node mutated at the next time step. Time
evolution of Ag; = |6; — 6;| for each node is shown in tables. (a) No circuit
(tree structure). All nodes recover at # = 3 and thus the Hamming distance
H is zero. (b) A circuit of length 3. The point mutation circulates with
period 3, resulting in H = % (c) A single-element circuit together with tree
structure. All nodes are mutated at ¢ = 2 and thus H = 1.
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Fig. 4. Organization of the core in E. coli and S. cerevisiae. (a) Core of
E. coli. It consists of 57 nodes and 84 edges. (b) Core of S. cerevisiae. It has
63 nodes and 167 edges. (c) Histogram of the shortest circuit lengths. In
E. coli, a circuit longer than 1 is not observed but all 54 circuits are single-
element ones. In S. cerevisiae, 836 pairs of nodes among all possible 1953
pairs in the core are connected by circuits and the shortest circuit length
ranges from 0 to 19.

circuits representing self-regulation. There are no circuits
whose length (i.e. the number of edges on the cycle) is
larger than 1 (Thieffry et al., 1998). On the contrary, only
one or two single-element circuits are formed in its
randomized graphs. This organization of circuits in E. coli
is also contrasted with the one in S. cerevisiae. We
computed the shortest circuit for each pair of nodes in
the core and counted the numbers of node pairs for each
given shortest-circuit length. The distribution of shortest-
circuit length obtained for S. cerevisiae is broad as shown
in Fig. 4(c). We propose that the presence of single-element
circuits in E. coli is the main reason for the enhancement of
Ny, of E. coli compared with both of its randomized
graphs. Once a node i regulating itself is mutated, the input
configurations to the regulating rule f; are necessarily
different between the normal-mutant pair (2, 2) since it is
guaranteed that at least one of its regulators, the node i
itself, is mutated. Recalling that a node can be mutated at
the next time step only if the input configurations from the
normal-mutant pair are different, one can see that single-
element circuits have a higher probability to be mutated
than nodes which do not regulate themselves (see Fig. 3(c)).
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Therefore networks with more single-element circuits can
be more adaptive. The absence of multi-element circuits in
E. coli may be coming from incompleteness of the dataset
we used and a few multi-element circuits may exist in
reality. Even so, there is no difference in the contribution of
abundant single-element circuits to the adaptivity of the
network.

In the core of E. coli network, 54 edges are used for
single-element circuits and the remaining 30 edges connect
pairs of distinct nodes. As a result, the network has many
isolated nodes and few small connected components,
resulting in the rapid decay of the relaxation time. In
Fig. 2(c), we find that the relaxation times observed in
E. coli are mostly 1 or 2. From this, we can analytically
predict the value of N,, as a function of A. Suppose N,,(?)
saturates no later than time 2. From Eq. (1), H(l) =
JKN~' + O(N~?) since H(0) = N~ and

N~ NHQ2)~ NAKH(1) ~ }°K>. )

This is in good agreement with the true value as shown in
Fig. 2(a).

3.5. Broad in-degree distribution in S. cerevisiae

In S. cerevisiae, the most significant dynamical feature
that we found and that we need to explain is the slower
increase of N, with A1 as compared with the type-I
randomized graph, shown in Fig. 2(b). Contrary to the
type-II randomized graphs, those of type-I do not preserve
the degree distribution of the original network. From this,
we can conjecture that the degree distribution of
S. cerevisiae causes the slow increase of N,,. To check
this, we analyze in detail the dependence of the Hamming
distance on the degree distributions.

With uncorrelated in- and out-degree as is the case in the
regulatory networks considered here, Eq. (1) is reduced to
H(t) = H(t) and

H(t+1) =2 [1 = (1 — H®))|Py(k). (3)
k

Thus the in-degree distribution Py(k) determines the
behavior of the Hamming distance H(#). The in-degree
distributions of E. coli and S. cerevisiae shown in Fig. 5(a)
are quite different from each other. The maximum degree is
31in S. cerevisiae while it is only 6 in E. coli. The in-degree
distribution of S. cerevisiae is broader than that of its type-
I randomized networks, too. The log—log plot of P;(k) in S.
cerevisiae suggests that it fits into a power-law P (k)~k™"
with y >~ 2.7 £ 0.2 as shown in Fig. 5. In Ref. (Guelzim et
al., 2002) where about 900 regulatory interactions among
the yeast genes are analyzed, the in-degree distribution was
shown to be of an exponential-form with the maximum
degree 13. This discrepancy may be attributed to analyzing
different datasets of different sizes. While it is true that the
data in Fig. 5(a) do not fit perfectly into the power-law,
we use the power-law as a good approximation for the
asymptotic behavior of the in-degree distribution of the
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Fig. 5. Connectivity pattern and its effect on the critical behavior of the
Hamming distance. (a) In-degree distributions Py(k) for E. coli,
S. cerevisiae, and its type-I randomized networks. P;(k) of S. cerevisiae
is broader than that of its type-I randomized networks or E. coli. Fitting
Py(k) of S. cerevisiae with a power-law gives an approximate expression,
Py(k)~k™" with y >~ 2.7 £ 0.2. (b) Hamming distance H as a function of 4
numerically obtained from Eq. (3) with P;(k) of the static model (Lee
et al., 2004), which has a power-law tail as P;(k)~k~" with the exponent 7y
tunable. The inset shows that H~4 commonly for y — oo and y = 3.5,
and that H~4° for y = 2.5, in agreement with Eq. (4).

yeast network, distinguishing it from that of the type-I
randomized graphs following a Poisson distribution,
Py(k) = (kY*e=® /k!. Given Py(k)~k™", we find from
Eq. (3) that the Hamming distance in the stationary state
behaves as H~A” for ) larger than the critical value . with
A = A/A. — 1 and the critical exponent f§ given by

! (>3,
’3:{1/@—2) @<y <3) @

The derivation of Eq. (4) is given in the Appendix. We
restricted the range of 7y to y>2 because the mean
connectivity diverges with y<2. When the in-degree is
subject to a Poisson distribution or an exponentially
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decaying distribution, it corresponds to y — oo and the
critical behavior is the same as that for y>3. We present
the numerical solution to Eq. (3) in Fig. 5(b) for y — oo
(Poisson distribution), y = 3.5, and y = 2.5.

The increase of § with decreasing y below y = 3 indicates
a difference in the behavior of the Hamming distance near
the critical point between networks with y>3 and those
with 2<y<3. Suppose we have two networks with a
power-law in-degree distribution P,;(k)~k~": One has y =
3.5 and the other has y = 2.5, and both have (k) = 4. Then,
in the region 0<4 = A/A. — 1 <1, the Hamming distance
behaves as H~A for y = 3.5 and H~A* for y = 2.5: the
former increases more rapidly than the latter in the region
A<1. Also the region where the Hamming distance
remains non-zero but small, e.g., H<0.05 is larger with
y = 2.5 than with y =3.5: it is given by 4 € (0.25:0.29]
with y=3.5 and 1€ (0.25:0.35] with y=2.5. Such
dependence of the Hamming distance on the in-degree
exponent y can thus explain different network responses
between S. cerevisiae and its type-I randomized graphs.
It is the broad in-degree distribution with y = 2.7(2)
that makes the number of mutated elements increase
with 4 more slowly than in the corresponding type-I
randomized graphs that have y — oco. Due to such a slow
increase of the Hamming distance, S. cerevisiae can keep
the size of mutation small for a wider range of the
parameter p or A, which would be much larger with random
structures.

3.6. Canalyzing Boolean functions

We study in this section the dynamic stability of the
regulatory networks under the canalyzing rules, instead of
random rules, as suggested in recent studies (Harris et al.,
2002; Kauffman et al., 2003, 2004). Harris et al. have
compiled about 150 regulating rules of various eukaryotic
genes from literatures and reported on the possibility of a
bias in their distribution (Harris et al., 2002). They were
nested canalyzing functions described as follows (Kauff-
man et al., 2003). A rule f; for a node with in-degree k; has
its input nodes ranked from 1 to k; and the canalyzing
Boolean input values Iy,...,I;, together with their
respective canalyzing output values Oy,...,0Of,. For a
given input configuration, {a1, 02, ..., 0%}, the output value
isequal to O, if 6, = I, and ¢;#1; for all j<{. If ¢;#1; for
all 1<j<k;, the output value is 1 — O,. While E. coli is a
prokaryotic organism and the canalyzing rules have not
been shown to dominate all the regulatory interactions in
S. cerevisiae on the genome scale, the canalyzing rule may
be a biologically relevant principle in the regulatory
interaction and thus it is worth studying the stability of
the regulatory networks which allow only the canalyzing
functions for their regulatory interactions.

The canalyzing rules are known to make the regulatory
network of the yeast (Kauffman et al., 2003) and model
networks with general in-degree distributions (Kauffman
et al., 2004) stable against a point mutation. We also

obtained the same results for E. coli’s and S. cerevisiae’s
regulatory networks. Introducing the distributions for I;
and O; commonly given by P(I;=1)=PO;=1)=
exp(—27a)/[1 + exp(—2~a)] with o = 7 as in Refs. (Kauff-
man et al., 2003, 2004), we computed the number of
mutated elements N,, in the stationary state as shown in
Fig. 6. In both networks, N,, does not reach 1, implying the
absence of mutation on a global scale. While the networks
with larger mean connectivities become more unstable and
S. cerevisiae’s network is unstable under random Boolean
functions, large mean connectivities lead to stability
(Kauffman et al., 2004) and the regulatory network of
the yeast is stable, under canalyzing Boolean functions.
This shows the sensitivity of the dynamic stability to the
nature of the regulating rules.

However, even under the canalyzing Boolean functions,
the architecture of the regulatory networks of E. coli and
S. cerevisiae serve to shift the dynamics towards marginal
stability. We present the number of mutated elements in
the original network and those in the type I and type II
randomized networks in Fig. 6. While all those networks
are stable under the canalyzing regulation rules, the values
of N,, of the real regulatory networks are far larger than
those in their respective randomized networks, implying
that the organization of E. coli’s or S. cerevisiae’s network
is far from random but serving for enhancing the spread of
mutation. This corroborates our finding of the bias
towards marginal dynamic stability in the organization of
the regulatory networks. It would be desirable to identify
the network properties responsible for enhancing the
mutation spread under the canalyzing Boolean functions,
which is in progress.

a b
0.6 T T T 0.18 T T T
0.16 | 1
05 1
0.14 1
04 1 o012 f 1
o1 1
= 03 | 1=
0.08 1
02 1 006 f 1
0.04 1
0.1 ¢ 1
0.02 - 1
0 0

E. coli

type 11 Yeast typel typell

type I

Fig. 6. Number of mutated elements N,,(¢) with the canalyzing Boolean
functions used for the regulating rules. (a) Values of N,, in the original
E. coli network and in the two types of randomized networks. The data are
averages over 10° initial pairs of configurations for each of more than 10°
realizations of regulating rules. (b) The same data as (a) for S. cerevisiae.
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4. Conclusion

Dynamical robustness of biological networks such as the
yeast cell-cycle network (Li et al., 2004) or the yeast
transcriptional regulatory network (Kauffman et al., 2003,
2004) has been intensively studied and is well understood.
Our results in this paper illuminate another aspect of the
biological networks, adaptivity, as well as robustness, and
suggest the possibility of an evolutionary pressure in the
biological network organization towards the coexistence of
robustness and adaptivity.

We performed numerical experiments—spread of muta-
tion—to probe the dynamic stability of the recently unveiled
networks of gene transcriptional regulation of E. coli and
S. cerevisiae and provided analytical confirmation for the
results by analyzing their structural features. While the small
number of edges per node in E. coli fundamentally prohibits
a global spread of mutation, a relatively large number of
edges in S. cerevisiae enables a global mutation conditionally
depending on the regulating rules. We further identified the
relevant structural features which are distinguished from
those of random graphs: All circuits of the regulatory
network of E. coli are single-element circuits and the in-
degree distribution of S. cerevisiae takes a power-law form.
Single-element circuits in E. coli have higher probability to be
mutated than nodes without self-regulation. The broad in-
degree distribution in S. cerevisiae smoothens the increase of
the number of mutated elements. This increase would be
sharper for an exponential distribution, as is the case in the
random graphs.

These biological networks appear to follow design
principles that tend to balance the size of mutation. The
small mean connectivity of the regulatory network of
E. coli would restrict the size of mutations drastically,
which is compensated by the abundance of single-element
circuits that lead to the required enhancement of the
mutation size. In the case of S. cerevisiae, its global
characteristics of the regulatory network, a mean con-
nectivity larger than 2, would lead to a very large mutation
size, but a very heterogeneous interconnectivity pattern
suppresses it. These local structural features demonstrate
that both genetic networks have evolved, in spite of the
restrictions imposed by the global characteristics, in such a
direction that they can stay dynamically between stable
(i.e., rarely mutated on a global scale) and unstable (easily
mutated). Being neither stable nor unstable appears to be
necessary for living organisms to maintain their stable
internal state and adapt itself to fluctuating external
environment simultaneously. Therefore our finding sug-
gests that such a marginal dynamic stability of the whole
system is supported by a selected structural organization of
the internal systems on smaller scales, as the transcriptional
regulatory network studied in this work. While we have
concentrated only on the average in-degree, the organiza-
tion of circuits, and the in-degree distribution of the
network, further structural analysis will be helpful to
illuminate how structure supports function.
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Appendix A. Derivation of Eq. (4) from Eq. (3)

To find the behavior of H = lim,_, ., H(¢) as a function
of / near the critical point . = (k)~!, we set H(t+ 1) =
H(t) = H and expand Eq. (3) for small H since H is small
around the critical point. Using the approximation 1 —
H ~ e for |H| <1 and the expansion e =Y > (—1)"
x"/nl, we obtain

00 1yrtln
n=1

(A.1)
n!

Here (k") is the nth moment of the in-degree distribution
Py(k), ie., (k") =) k"Py(k). It is finite for all n only if
P,(k) decays exponentially. In this case, all the terms in the
right-hand side of Eq. (A.1) are analytic and keeping the
first two leading terms, one finds that Eq. (A.1) is expressed
as H ~ AMk)H — /l(kz)Hz/Z. This allows us to see that H =
0 for A<i. = (k)~" and H ~ 2(A(k) — 1)/(A{k*)) or H~A
with 4 = 1/, — 1 for A> 4.

When the in-degree distribution is a power-law asymp-
totically, P,(k)~k~", all the moments (k") are not finite:
(k"y for n>n, with n, =[y—2] diverges as k&;‘;’(“/
(n—7y+ 1), where [x] is the smallest integer not smaller
than x and knax is the (average) largest in-degree. The
largest in-degree diverges as N'/0~D_ which is derived from
the relation Y., Py(k)~N~". Thus (K")~N"—7+D/G=D
Such diverging terms are arranged as H’f’_lzwm(—l)'“rl
Vemax H 7 /[n!(n — y + 1)] in the right-hand side of
Eq. (A.1). Here the summation converges to a constant
in the limit k. H — oo due to alternating signs and fast
decay of the coefficients (Lee, 2005). Thus the small-H
expansion of Eq. (A.l1) reads as H = /IZZ":l(—l)”Jrl
(K"YH" /n! 4 A(constant)H'~' +.... The H’~' term is
relevant to the critical behavior of H for y<3 since it
holds for y<3 that H ~ A(k)H+ A(const.)H'~!, yielding
H~A4"0=2_ On the other hand, the linear and quadratic
terms are relevant for y>3 as for exponentially decaying
in-degree distributions. In summary, the Hamming dis-
tance H with a power-law in-degree distribution P,(k)~k™"
behaves near the critical point as

4, (>3),
H ’“{ AVG=2),

2<y<3). (A.2)
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