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Abstract

Tumors acquire sufficient oxygen and nutrient supply by coopting host vessels and neovasculature created via angiogenesis, thereby

transforming a highly ordered network into chaotic heterogeneous tumor specific vasculature. Vessel regression inside the tumor leads to

large regions of necrotic tissue interspersed with isolated surviving vessels. We extend our recently introduced model to incorporate

Fahraeus–Lindqvist- and phase separation effects, refined tissue oxygen level computation and drug flow computations. We find,

unexpectedly, that collapse and regression accelerates rather than diminishes the perfusion and that a tracer substance flowing through

the remodeled network reaches all parts of the tumor vasculature very well. The reason for decreased drug delivery well known in tumors

should therefore be different from collapse and vessel regression. Implications for drug delivery in real tumors are discussed.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A malignant tumor, cancer, remodels actively the blood
vessel network of normal tissue into a characteristic tumor
vasculature (Holash et al., 1999a, b): A well perfused
region of the network at the tumor periphery provides
sufficient oxygen and nutrient for further tumor growth,
whereas an extremely sparse network with a low vascular
density in the tumor center produces a necrotic core. The
process leading to a high vascular density at the outer rim
is known as angiogenesis, the production of new vessels
from old ones via the stimulus of tumor secreted growth
factors (Carmeliet and Jain, 2000). The regression of
vessels inside the tumor is related to unstable vessel
morphology and abnormal blood flow dynamics as well
as increased solid stress generated by the tumor—for a
discussion see Bartha and Rieger (2006). The emerging
vascular tumor network is thus extremely inhomogeneous
and has geometric, in particular fractal, properties that are
very different from normal vasculature (Baish and Jain,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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2000). As a consequence also blood flow patterns inside
this network are highly irregular and might have an impact
upon drug delivery (Minchinton and Tannock, 2006).
This paper is concerned with a mathematical model for a

situation sketched above. There is already a large amount
of work on the mathematical modeling of tumor-induced
angiogenesis (for reviews see, e.g., Mantzaris et al., 2004;
Preziosi, 2003) and can roughly be classified into two
groups: The first group concentrates on blood vessel
densities rather than vessel morphology, as in continuum
partial differential equation (Byrne and Chaplain, 1995;
Levine et al., 2001) or in locally coupled map lattice
(Sansone et al., 2001) approaches. Todays most sophisti-
cated models (Breward et al., 2003), so-called multi-phase
models even track density profiles of different tissue types.
Mechanical interaction is included in terms of constitutive
laws. Hence, also the effect of solid pressure on cells can be
respected. The current research situation is reviewed in
(Byrne et al., 2006). Due to the absence of individual blood
‘‘vessels’’ these models do not contain neither the
information on the geometrical and morphological proper-
ties of the vascular network nor on hydrodynamic blood
flow characteristics.
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The second group of works represents vessels as
interconnected lattice patterns, line segments, or contin-
uous curves. As a crucial simplification either a static
tumor is assumed (Anderson and Chaplain, 1998; McDou-
gall et al., 2002; Tong and Yuan, 2001; Sun et al., 2005), or
a proliferating tumor is considered in a static network
topology. An example for the latter is the work of (Alarcon
et al., 2003), where a cellular automaton model was
introduced in which automaton elements, are identified
with vessels, extracellular matrix (ECM), tumor cells (TCs)
or normal cells. TCs and normal cells can proliferate or die
according to the O2 level and other factors, creating a
competition between TCs and normal cells. The vessel
network is initialized to a hexagonal grid and remains
static. The O2 concentration is computed by a standard
diffusion equation with vessel sites as sources and other
tissues as consumers. Based on this the invasiveness of TCs
under different O2 conditions is studied. This work has
been progressively extended into a complex multi-scale
model (Betteridge et al., 2006) which includes an improved
model for dynamic vessel radius adaption in response to
various stimuli (Pries et al., 1998), ‘‘pressure’’ effects i.e.
competition for space, a vascular endothelial growth factor
(VEGF) concentration field, implemented in analogy to
O2, biochemical details, including cell cycles and factors
related to proliferation and apoptosis, modeled via
ordinary differential equations. Despite these improve-
ments the basic limitation of a topologically static vessel
network remains and for many tumor types the applic-
ability of this model is restricted to the first few days of the
existence of the tumor.

A paradigmatic angiogenesis model with a static tumor
(Anderson and Chaplain, 1998) describes actually the
experimental situation in the so-called ‘‘rabbit eye model’’
(Gimbrone et al., 1974), in which a small growth factor (or
TAF, i.e. tumor angiogenic factor) source is implanted in
the cornea of the eye. Stimulated by TAF, angiogenesis
occurs, whereupon multiple sprouts migrate toward the
tumor. Excessive branching and loop formation happens
close to the tumor, culminating in an extremely dense
network. Since the cornea is initially free of normal vessels
this situation can also be denoted as ‘‘pure vessel-
ingrowth’’. The continuous theoretical model of (Anderson
and Chaplain, 1998) includes three fields for: endothelial
cell (EC) density, fibronectin, a component of the ECM
also secreted by ECs; TAF concentration. The TAF field is
initialized once with a decreasing profile from the tumor to
the parent vessel. Later on, TAF is locally consumed by
ECs. Fibronectin is produced and consumed locally by ECs
and does not diffuse. EC fluxes are driven by a random
motility (diffusion), chemotaxis via GF gradients, and
haptotaxis via fibronectin gradients (gradients of adhe-
sion). The discretized version uses probabilities (derived
from discretized diffusion equations with source and sink
terms) for biased random walks of individual ECs at
sprouting tips. These tip ECs leave a path occupied with
trailing ECs, which can randomly initiate further sprouts if
TAF concentration is high enough. The basic model has
received considerable upgrades; see (Chaplain et al., 2006)
for a review. The most recent version (McDougall et al.,
2006) includes blood flow rate computations and the
sophisticated dynamic vessel radius adaptation procedure
(Pries et al., 1998) as used in (Betteridge et al., 2006),
making it feasible to study drug delivery by simulations of
a tracer substance flowing through the vasculature. A
shortcoming that needs to be addressed is that vessels do
not penetrate the tumor. In the latest studies (with the most
realistic network), the tumor is actually not explicitly
represented, instead the lower boundary of the simulated
domain is identified with the invasive edge. Hence drug
uptake by the tumor varies by three orders of magnitude,
depending on whether a thick vessels is near the boundary
or not.
This general concept has been adopted in third group of

tumor simulators for modeling pure vessel in-growth into a
non-static tumor, neglecting existing host vessels. For
instance Zheng et al. (2005), designed a hybrid tumor
simulator to study highly invasive tumor types like glioma
brain cancers. There, an extensive framework is developed,
where the tumor is treated as viscous fluid and the topology
of the sharp tissue-tumor interface is described by
sophisticated level-set techniques. The discrete part in-
volves the angiogenesis model by Anderson and Chaplain
(1998), where the generated capillary network serves as
additional source for nutrients and influences the evolution
of the tumor considerably. In recent work Lowengrub et al.
(2007) presented a glioma model where temporal and
spatial development of cell densities as well as nutrients is
described by convection–reaction–diffusion equations also
including mechanical properties like intercellular adhesion
forces. For angiogenesis a discrete lattice free variant has
been adopted (Plank and Sleeman, 2003, 2004).
Here we also want to go beyond the ‘‘static network’’

and the ‘‘static tumor’’ models and combine a dynamically
evolving network in the presence of a dynamically
changing tumor. Most relevant for our work is the cellular
automaton model that was introduced recently by two of
us (Bartha and Rieger, 2006) for a two-dimensional and
later for a three-dimensional set-up (Lee et al., 2006),
designed to reproduce experimental results for solid human
melanoma type tumors (Döme et al., 2002, 2007). There it
was found that in cutaneous melanoma during tumor
growth, there are no signs of directed vessel ingrowth;
instead, these tumors appear to grow by co-opting the
massive vascular plexus present in the peritumoral con-
nective tissue. The intention in Bartha and Rieger (2006)
was to clarify the basic mechanisms leading to the
abnormal tumor vasculature, and discuss the implications
for assessment of tumor growth. In the model TCs and ECs
occupy sites on a regular lattice. ECs form a vessel network
circulated by blood. Tumor and vessels interact via O2 and
GF diffusion fields. The temporal evolution of the system is
governed by stochastic rules for certain events like TC
death, proliferation, sprout formation or vessel collapse.
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Fig. 1. Illustration of vessels and TCs. A tumor cell (TC) is indicated as

yellow hexagon. TCs are centered at lattice sites. Sites always represent

single cells. Thereby the diameter of the cells is of the order of the lattice

constant. Vessels are indicated as blue bars. In contrast to TCs, they are

associated with the bonds of the lattice, thereby constraining their

orientation to the main lattice directions. A single vessel a ¼ ði; jÞ is
highlighted by a black outline. This vessel spans between sites labeled xi

and xj . Vessel may span multiple sites like those that are indicated here.

The initial networks for the studies in Section 3.2 consists of a hexagonal

pattern. The hexagonal vessel arrangement here would represent a tiny

part of such a network. Note that the tumor grows in it’s own layer

unhampered by vessel. Interactions are predominantly mediated by

growth factor and oxygen fields, although information about the spatial

coverage also plays an important role.
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It turned out that these comparably simple rules and little
numerical effort are sufficient to explain many important
aspects of tumor vessel morphology.

In this paper we modify and extend this model and
incorporate the details taken into account by Alarcon et al.
(2003) for static network topologies as described above,
and discuss their relevance for the tumor vessel morphol-
ogy. Then we analyze on the basis of our model how a drug
injected into the blood stream distributes over time within
the tumor vasculature and compare the results with those
for a pure vessel ingrowth-model (McDougall et al., 2006).

The paper is organized as follows: In Section 2 we
describe our model. In Section 3 we present the results of
the model which can be compared to experimental data,
discuss the effect of parameter variations and the relevance
of various model details for the global model behavior. In
Section 4 we describe how drug flow is modeled and
present results of the simulation of an injection of a tracer
substance into one part of the vasculature. Section 5
summarizes our results and provides an outlook to further
research.

2. The model

The following model definition is conceptually similar to
Bartha and Rieger (2006) but implements higher level of
detail in the modeling of physiology.

2.1. Description of the system state

Basics: Elements are managed on a regular two
dimensional triangular lattice of l � l ¼ n sites, i.e. we
define the set of sites as

L ¼
ðdðxÞ; d sinð60�ÞyÞ if y even

ðdðxþ 1
2
Þ; d sinð60�ÞyÞ else

(
jx; y 2 ½0; lÞ

( )
.

(1)

Each site can be occupied by a single tumor cell, and each
bond by a vessel segment. Unoccupied space is part of the
extracellular matrix and/or healthy tissue. Fig. 1 illustrates
how TCs and vessels are aligned on the lattice. The lattice
constant is d ¼ 10mm, chosen deliberately to be of the
order of the typical diameter of TCs and ECs.

Definition of the tumor: The tumor is defined as a set of
sites T ¼ fx 2 L; TC present at xg. This means sites in T

are associated with single TCs. For any given site x 2 T it
is assumed that the space occupied by the cells corresponds
roughly to the Voronoi region around x, i.e. the points in
space that are closer to x than any other site. The hexagon
shown in Fig. 1 is exactly such a Voronoi region and
indicates a TC. During the growth of the tumor necrotic
regions will arise. At the time t, we refer to these by the set
of sites Tnecro where a TC was removed at some time in the
past t0ot, excluding the current set of tumor cells:
Tnecro ¼

S
t0otTðt

0ÞnTðtÞ. To determine whether a site x is
inside of the tumor we use a polar map xT ðyÞ which tracks
the extend of the tumor in radial direction, where y is the
polar angle measured relative to the center of the tumor.

Definition of the micro-vascular system: The micro-
vascular system evolves in a separate layer, i.e. vessel
elements can pass sites where TCs are also present. From
the theoretical point of view the vessel network is a graph
where the edges represent vessel segments with associated
hemodynamic and geometry properties. Hence, the topol-
ogy is described by the graph G ¼ ðN ;V Þ, where V ¼

fði; jÞ; i; j 2 Ng is the set of vessel segments, i,j denote
attached junction nodes in N. We denote the position of a
node i with xi 2 L. Analogously we refer to various
properties of vessels, nodes or TCs via sub-scripts, i.e qa

for the flow-rate in some vessel a.
In our current implementation vessels are allowed to

span multiple bonds/sites. For convenience x 2 a denotes a
site that is covered by a vessel a 2 V , including the
endpoints xi,xj. For each vessel in the set of potentially
perfused vessels Vcirc � V it is required that least two
disjoint paths to the system boundaries must exist.

Blood flow modeling: Blood flow for vessels in V circ is
modeled as laminar steady flow through ideal pipes of
radius r and length l. Therefore Hagen–Poiseuille’s Law is
applicable to compute flow rate q and wall shear stress f

from the blood pressure difference of the endpoints pi2pj:

q ¼
p
8
�

r4

Z
�

pi � pj

l

� �
, ð2Þ

f ¼
r

2
�

pi � pj

l

� �
. ð3Þ

To account for the fact that blood is a non-Newtonian fluid
with complex flow behavior, it is common to introduce an
effective viscosity Z ¼ Z0 � ZrelðH; rÞ depending on local
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vessel radius r and hematocrit H (red blood cell volume
fraction). In simulations which incorporate this effect, we
base our calculations on the formula in Pries et al. (1994).
It is derived from in vivo data and is used in various other
works (Ji et al., 2006; Alarcon et al., 2003; McDougall
et al., 2006). Since the definition of Zrel is rather lengthy we
refer to Fig. 8 and to the original work of Pries et al.

In blood vessel networks the distribution of hematocrit is
usually not homogeneous, instead RBCs tend to enter the
branch with faster flow—known as phase-separation or
plasma-skimming effect (Fung, 1993). To calculate the
hematocrit we rely again on an empirical formula. Pries et
al. (1990) found a ‘‘bifurcation law’’:

QHb ¼ gðQHa; ra; rb; rc; qa; qb; qcÞ, (4)

which relates the RBC flow QHb ¼ qbHb in a branch b to
the RBC flow QHa in a parent vessel a in dependence on
the radii and the flow rates of all three vessels a, b, c at the
bifurcation.

For the definition of the function g we refer again to the
original work. Note that the relation is valid only for
arterial bifurcation. The case where two or more branches
merge into a larger one is trivial for obvious reasons.
Furthermore g is symmetric in b and c such that RBC mass
is conserved QHb þQHc ¼ QHa. During the simulation
it is ensured that no more that three vessels meet at
some node.

To compute the global hematocrit distribution when the
blood flow rates are known, vessels must be processed in
consecutive order such that the upstream hematocrit has
already been determined when a downstream child is
processed. That is because via (4) the hematocrit in a given
vessel depends on the hematocrit of all vessels stream
upwards. The hematocrit H0 at the uppermost in-flow
vessels is fixed as a boundary condition. Graph-theoreti-
cally this problem of traversal order is known as finding a
topological sorting and standard algorithms can be applied
(Cormen et al., 1990).

Furthermore mass preservation dictates that the sum of
inflow and outflow equals zero for each node i 2 N

(Kirchhoff’s Law):

0 ¼
X

j2NbðiÞ

qij ¼
X

j2NbðiÞ

Sij � ðpi � pjÞ, (5)

where NbðiÞ are adjacent nodes of i in the network. To find
the flow and pressure distribution when the flow con-
ductivities Sij—and therefore hematocrits—are known, the
system of linear equations in the nodal pressures (5) must
be solved with appropriate boundary conditions.

Together (2), (5) and the hematocrit computation
procedure form a complex system of non-linear equations
where it is impossible to solve for flow and hematocrit
simultaneously. Hence an iterative approach was suggested
in the literature Pries et al. (1990) which is commonly used
now (Ji et al., 2006; Alarcon et al., 2003): First an initial
guess for the hematocrit is chosen. Until convergence, flow
and hematocrit are updated successively assuming constant
hematocrit and constant flow respectively. To solve the
pressure–potential equations we use a modern sparse LU
factorization library (Davis, 2004) which can efficiently
handle large systems with 10,000 of variables. The naive
outer fix-point iteration however resulted in poor conver-
gence due to over-and- undershooting. Therefore we
employ a dampened iteration which has the same fix-
points:

qiþ1 ¼ qðHiÞ,

Hiþ1 ¼ Hi � 2=3þ 1=3 �Hðqiþ1Þ, ð6Þ

with the stopping condition kHiþ1 �Hik2o10�3, where i is
the iteration number while H and q denote vectors which
contain data values from the individual vessel segments.
We choose dirichlet type boundary-conditions, where the
pressure in boundary nodes is prescribed and decreases
from pðmaxÞ at ð0; 0Þ to ðpðmaxÞ þ pðminÞÞ=2 at ð0; lÞ and ðl; 0Þ
further to pðminÞ at ðl; lÞ.

Definition of the oxygen field: The tumor and the vascular
system interact via oxygen and growth factor fields. Our
unit-less oxygen field co is given by the solution of the
stationary diffusion-equation:

Dco � kco þ aðcðBÞo � coÞ ¼ 0, (7)

with the consumption-rate coefficient k, the source
coefficient a, and the blood oxygen level cðBÞo . We update
the O2 field by finding the stationary state because the O2

diffusion constant is of the order of 2:4� 10�5 cm2=s which
means that the relaxation time after a configuration change
is negligible compared to cell proliferation rates, which is of
the order of an hour.
For simplicity and efficiency we define a linear O2-

uptake �kco, as approximation to a more realistic non-
linear Michaelis–Menten type relationship (i.e.
�Aco=½Bþ co�Þ. At least within, or close to the tumor the
saturation regime of a MM-uptake would be irrelevant,
since tumor cells usually suffer from hypoxia. Furthermore
k varies with the tissue type: it is set to kðTÞ for x 2 T

(tumor), 0 for x 2 Tnecro (necrotic tumor) and kðMÞ

otherwise (ECM/normal tissue). The O2 transport through
the vessels wall is predominantly a diffusion process driven
by the PO2 difference between blood (cðBÞo ) and tissue (co) at
the vessel wall. Therefore it is common to model the
oxygen release as the source term aðcðBÞo � coÞ. In the
context of our continuum description the coefficient ahas
the meaning of O2 amount released per time per volume
element, which implicitly includes parameters like wall
permeability and circumference. For simplicity we treat all
vessels equal i.e. aðxÞ ¼ að0Þ at vessel occupied sites
x 2 a 2 V circ, where að0Þ is a constant. Naturally aðxÞ ¼ 0
at non-vessel-sites.
For the blood-O2 level cðBÞo , we assume that it is

essentially proportional to the blood hematocrit—follow-
ing (Alarcon et al., 2003)—and neglecting the fact that
oxygen leaves the vessel. Considering that the PO2 drops
only by about a factor of 2 while blood flows through the
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body this is likely not to pose a problem. Performing
computations with a sophisticated model as presented by
Secomb et al. (2004), would be numerically very hard.
Their model includes intravascular O2 variability, as well as
the nonlinear saturation behavior of hemoglobin. In our
simple approach however we set cðBÞo ðxÞ ¼ Ha for a given
x 2 a 2 Vcirc. At junctions, the average hematocrit is used.
An additional pre-factor is not necessary because (i) it
would only scale the field values globally; (ii) co is unit-less.

Discretizing the diffusion equation by finite differences
for the Laplace operator yields the linear system of
equations

2

d2
þ aðxÞ þ kðxÞ

� �
coðxÞ

�
2

jNbðxÞjd2
X

x02NbðxÞ

coðx
0Þ ¼ aðxÞcðBÞo ðxÞ, ð8Þ

where NbðxÞ is the set of neighbor sites. It is solved
numerically by a multi-grid V-Cycle with a fixed number of
Jacobi iterations at each level (Briggs et al., 2001). Since the
sources have only a spatially limited effect, the field does
not change much when vessels are added or removed.
Hence, the solution from the previous time-step is taken as
initial guess. This allows rather efficient updates with a
small number of iterations.

Definition of the growth factor field: The modeling of
growth factor distribution cg is also based on a reaction–
diffusion equation:

0 ¼ Dcg � ~kcg þ ~a,

~aðxÞ ¼ ~að0Þ for x 2 Tuo; 0 else,

~k ¼ const, ð9Þ

where Tuo � T denotes the set of tumor sites for which
cooyðprolÞ

o . We assume that (i) under-oxygenized TCs
produce GF at a constant rate ~að0Þ, (ii) free GF is removed
with the rate ~kcg due to binding and degradation. This
simple formulation facilitates the solution following a
‘‘Greens-function’’ approach for the operator D� ~k by
super-positioning contributions of individual TCs:

cgðxÞ ¼
X

x02Tuo

~gðx� x0Þ, ð10Þ

~g ¼ r 7!max½0; 1� r=RðgÞ�, ð11Þ

where RðgÞ is the GF diffusion radius. For our convenience
we use a linearly decaying ‘‘Greens-function’’ instead of the
correct exponential decay. The model is not critically
dependent on the exact GF profile nor on the value range
of cg and this simplification allows us to tune the distance
up to which angiogenesis is triggered intuitively via RðgÞ.
RðgÞ also provides a natural cutoff for the ‘‘Greens-
function’’ ~g so updating the field after removal(addition)
of TCs is very efficient because it is sufficient to simply
subtract(add) the contribution of the respective cells.
2.2. Description of dynamical processes

The system dynamics are governed by the following
procedures which are executed in sequence for each time-
step of length Dt ¼ 1h.

TC proliferation: New TCs are put on empty neighbor
sites xeT of existing TCs with probability Dt=t

ðprolÞ
TC if the

local oxygen level is high enough coðxÞ4yðprolÞ
o :

T  T [ fxg. Naturally this restricts proliferation to the
outer rim. Experiments (Bru et al., 2003) and simulations
(Drasdo and Höhme, 2005) have shown that following an
exponential growth, proliferation is indeed confined to a
small band behind the invasive edge. The simple model
here, reminiscent of the Eden model (Eden, 1961) does not
capture all the aspects of tumor growth dynamics. For
example cell motility is not included. But we consider this
as an acceptable approximation for studying vessel
morphology under a growing solid tumor (Fig. 2a).

TC death: TCs are removed with probability p
ðDeathÞ
TC ¼

1=2 if the local O2 concentration is low enough cooyðdeathÞ
o

for longer than t
ðuoÞ
TC : T  Tnfxg. Since TCs adapt to low

oxygen conditions (Iyer et al., 1998), yðdeathÞ
o ¼ yðprolÞ

o =10 is
very small. The survival time under hypoxia actually
depends strongly on the cell genotype (Yu et al., 2002),
promoting the selection of certain species. However for
simplicity t

ðuoÞ
TC has been given a fixed value (Fig. 2b).

Angiogenesis: While adult vessels are normally quiescent,
angiogenesis is induced in close proximity to tumors via
increased growth factor levels. Thereby the migration of
ECs at the sprouting tip is guided by GF gradients
(Gerhardt et al., 2003). Tumors also coopt existing vessels
(Paku, 1998) but no explicit modeling is required for this
phenomenon because tumor cell proliferation is not
occluded by vessels. Incorporation of angiogenesis is split
into two subprocesses: sprout initiation and migration.
Sprouts are initiated with probability Dt=t

ðsproutÞ
EC at vessel-

sites if (i) the location x 2 a 2 V is outside of the tumor (i.e.
no sprouting inside the tumor (Holash et al., 1999a));
(ii) the GF level is above a threshold cgðxÞ4yðprolÞ

g ; (iii) the
path length to the next bifurcation is greater than lðsprÞ. At
the respective sites segments with l ¼ d, r ¼ rðinitÞ are
appended in the direction of the steepest GF increase
(Fig. 2c).
At each sprouting tip one further d segment is added

with probability Dt=t
ðmigrÞ
EC . If another vessel is located at a

neighboring site in front of the tip, the new segment creates
a junction to the other vessel, forming a potentially blood
circulated loop. Here we assume that the sprout direction
remains constant, which is not a severe simplification
because due to the two-dimensional setting sprouts usually
migrate at most ca. 100 mm until another vessel is hit (the
situation is different in three space dimensions). Sprouts
have been observed to regress after a certain time of not
having formed connections (Nehls et al., 1998). To model
this, vessels have an associated countdown s (in analogy to
hypoxic TCs) which is incremented each time-step. While
sosðmaxÞ vessels are guaranteed not to be removed due to
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Fig. 2. Illustration of the dynamic processes of the system. Tumor cells are indicated as yellow hexagons. Circulated vessels are indicated as blue bars.

Vessels are drawn in gray color if uncirculated. This also includes sprouting tips. The meaning of each subfigure is as follows: (a) Tumor cells proliferate by

occupying neighbor sites if coðxÞ4yðprolÞ
o with a rate DT=t

ðprolÞ
TC ; (b) tumor cells die if they have been exposed to low oxygen coðxÞoyðdeathÞ

o for longer than t
ðuoÞ
TC

with a rate DT=t
ðdeathÞ
TC ; (c) sprouts form if cgðxÞ4yðprolÞ

g with rate DT=t
ðsproutÞ
EC ; (d) sprouts grow further with by appending segments with rate DT=t

ðmigrÞ
EC until

s4sðmaxÞ; (e) vessels dilate with rate DT=t
ðdilÞ
EC for each subsegment where cgðxÞ4yðprolÞ

g ; (f) vessels collapse with rate pðcÞða; xÞ if for some subsegment

f aof ðcÞðxÞ and (g) Uncirculated network components are eliminated with rate 1/2.
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being uncirculated. During this period vessels can also start
new sprouts which inherit s from their parents. Vessels for
which sXsðmaxÞ (i.e. normal non-sprouting vessels) regress
rapidly if not circulated (Fig. 2d).

Vessel collapse: Long-term reduction of wall shear stress
can cause vessel regression. In tumors solid stresses might
cause vessel collapses resulting in reduced perfusion and
thereby low shear stresses. Also local angiogenesis inhibi-
tors might be involved in EC apoptosis (Dimmeler and
Zeiher, 2000). Furthermore dilated tumor vessels, although
tortuous and leaky with inadequate support structures,
apparently remain stable (Holash et al., 1999b). In the
model this behavior is realized as follows: Let a 2 V be a
vessel then each occupied lattice bond ðk; lÞ 2 a causes a to
be removed with probability pðcÞða; ðxk þ xlÞ=2Þ. For
uncirculated vessels with saXsðmaxÞ it is pðcÞ ¼ 1=2. Sprouts
are protected from removal, i.e. pðcÞ ¼ 0 for saosðmaxÞ. For
normal circulated vessels pðcÞ ¼ pðcÞða; xÞ depending on local
system properties as follows: If either shear force or vessel
radius is above a critical threshold f a4f ðcÞðxÞ or ra4rðstableÞ

then pðcÞ ¼ 0. Thereby we let f ðcÞ vary spatially to account
for increased solid stresses in the tumor. Several functional
dependencies are studied, but the basic case involves a
radial triangular profile g1, with limited support 2dðfcÞ and
peak height f ðc;maxÞ centered dðfcÞ microns behind the
invasive edge:

f ðcÞðx; aÞ ¼ f ðcÞðx� xcenterÞ

¼ f ðc;maxÞ
� g1ðkx� xcenterk; yÞ,

g1:¼x; y 7!max 0; 1�
jx� xT ðyÞ � dðfcÞj

dðfcÞ

 !
. (12)

This is inspired by Breward et al. (2003) where it is assumed
that the replacement of TCs with necrotic material reduces
the solid pressure exerted on vessels. If f apf ðcÞðx; aÞ and
raprðstableÞ and a 2 V circ then pðcÞ ¼ pðc;maxÞ � g1ðkx�
xcenterk; yÞg2ðraÞ40. For the basic case we also tried to
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modulate pðcÞ with a vessel radius dependent linear function
g2 for which g2ðr

ðstableÞÞ ¼ 0 and g2ðr
ðinitÞÞ ¼ 1 (Fig. 2f).

Vessel regression: Uncirculated vessels cannot contribute
to nutrient delivery and there is no mechanism in the model
that would ‘‘repair’’ such vessels. Hence uncirculated
vessels VnVcirc are simply removed with probability 1=2
(Fig. 2g).

Vessel dilation: Vascularization and remodeling of the
vascular system surrounding the growing tumor is primar-
ily dependent upon angiogenic sprouting as modelled
above. Within the tumor the vascularization program
switches to circumferential growth of the initial vasculature
by proliferation of endothelial cells within the vessel walls
(Erber et al., 2006). This we model by a stepwise vessel
dilation in the presence of a high enough VEGF
concentration. Experimentally it is found that the radius
of tumor vessels is limited by a maximum radius rðmaxÞ

(Döme et al., 2002). Using the polar map xy defined above
it is decided whether a vessel segment lies within the tumor.
If it does vessel dilatation can occur: each bond ðk; lÞ 2 a

occupied by a vessel a increases the radius of the respective
vessel with probability Dt=t

ðdilÞ
EC if cgððxk þ xlÞ=2Þ4yðprolÞ

o

and raorðmaxÞ. The added value d2=2pla corresponds to the
surface area contribution of an additional EC. To account
for surface tension, a smoothing effect is generated by
dilating the thinnest vessel at junction bonds (Fig. 2e).
3. Results

Following (Bartha and Rieger, 2006), the base case
scenario is one for a malignant melanoma, guided by data
from Döme et al. (2002). Further parameter variations and
simplifications are presented after the base case results.
3.1. Parameters

The size of the lattice is l ¼ 1000 in all of the following
experiments. With the mentioned bond length d ¼ 10 mm,
this corresponds to a 10� 8mm2 rectangular area of tissue.

Following (Alarcon et al., 2003), we chose a hexagonal
pattern as initial network which is physiologically more
reasonable than the ‘‘Manhattan’’ or square pattern in
(Bartha and Rieger, 2006) since only three vessels meet at
junctions. Also not at least because this facilitates the
incorporation of the blood phase-separation effect straight
forward as described. Fig. 1 depicts a tiny network section,
whereas in Fig. 3 half of the domain is visible. We
determined the size of the hexagons according to the
microvascular density (MVD) of normal skin. Experimen-
tally MVD is measured by counting the number of vessels
which cross a thin slice of tissue. Data from Döme et al.
(2002) indicate an MVD of ca. 100 vessels per mm2. This
means the average inter vessel distance is ca. 100mm. With
60mm edge-length for the hexagons, the vessel–vessel
distance through the center of a hexagon lies between 100
and 120mm. Furthermore the fraction of vessel occupied
sites is ca. 0:15. The rectangular grid in our previous work
yielded the value 0:2.
The initial tumor is generated by placing a single TC in

the center of the system and attaching new TCs at
randomly chosen surface sites until the tumor contains
jTðt ¼ 0Þj ¼ 1000 cells.
We set the TC proliferation time to t

ðprolÞ
TC ¼ 10 h, and

assume that ECs proliferate four times slower. Hence,
sprout generation time is t

ðsproutÞ
EC ¼ 40 h. The sprout

migration time t
ðmigrÞ
EC ¼ 1 h is motivated by the experi-

mental results of Nehls et al. (1998): Apparently the
sprouts extend roughly 200 mm per 20 h. This matches with
the migration rate here, where a 10mm segment is added
per hour. The duration for which sprouts remain active
sðmaxÞ is set to 20 h, also in line with these experiments. The
minimum distance from a new sprout to existing junctions
lðsprÞ, is a crucial parameter as it controls the MVD in the
growth region. It is set to lðsprÞ

¼ 30mm, in order to match
MVD data for the peritumoral region in Döme et al.
(2002).
The time for dilation t

ðdilÞ
EC ¼ 20 h as well as the maximum

radius rðmaxÞ ¼ 30mm are estimated from vessel perimeter
measurements in that paper. The stable vessel radius is set
to rðstableÞ ¼ 20mm due to the absence of thin vessels in
tumors. The boundary pressures pðmaxÞ and pðminÞ must now
generate typical flow and shear stress values for capillaries.
In contrast to Bartha and Rieger (2006) the hemodynamics
is here based on empirical formulas. pðminÞ is set to 0
arbitrarily. pðmaxÞ is set to 90 kPa such that the shear force
in the initial network is within realistic ranges for
capillaries: approximately 10 Pa (Gödde and Kurz, 2001).
ðpðmaxÞ � pðminÞÞ gives rise to a gradient in the diagonal of

about qP=ql �
ffiffiffi
2
p
� 9Pa=mm. Multiplying this by cosð45�Þ

for a horizontal vessel and multiplying by 1
2
r ¼ 5

2
mm to get

the shear force, results in f � 20Pa. The actual value
obtained is of4 ¼ 10Pa, due to the network geometry.
Clearly the pressure values are not realistic, but this has

no negative impact on the model because pressures
influence the model only indirectly via flow and shear
force. The critical shear force f ðc;maxÞ is set to 1 Pa and the
collapse probability to pðc;maxÞ to 0:01. The collapse
probability determines how far the high MVD zone reaches
into the tumor. This value is chosen deliberately, because
higher values lead to drastic vessel regression just at the
invasive edge. Whereas lower values (e.g. o0:005) would
be unfeasible because the mean survival time must not be
longer than the time to reach the stable radius. Having
pðc;maxÞ fixed means that the critical shear force is the
prominent factor determining the central MVD. Parameter
variations thereof will be presented after the base case
results. The support width dðfcÞ ¼ 1mm of the collapse
region is motivated by results from Breward et al. (2003).
að0Þ controls the strength by which co scales with

increasing MVD. Giving an estimate is difficult due to
the quasi two-dimensional layer that is supplied by a
network of three dimensional pipes. We factorized að0Þ into
(i) the volume of a lattice cell C ffi d2h, (ii) the length of a
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Fig. 3. Left: Tumor and vessel network at t ¼ 50; 200; 400; 800. The width of the picture equals 5mm of tissue. Tumor is yellow, older cells are darker.

Vessels are colored coded by flow rate. 0 is green, half the maximum is blue, the global maximum value is red. The global flow goes from the bottom left to

the top right. Light green regions indicate GF influence zones. Gray indicated necrotic tissue. Right: Tissue oxygen level: 0:55 is white. The tumor is

indicated as thin dark outline. The lower bar shows a cross section profile through the center of the system. The vertical lines indicate the thresholds for

proliferation yðprolÞ
o and death yðdeathÞ

o .
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vessel subsegment over one lattice-bond L ¼ d, (iii) the
resistance to radial O2 transport through the vessel wall per
axial length K ¼ 3� 108 ½cm smmHg�=mlO2 (Secomb
et al., 2004), and (iv) the Krogh diffusion coefficient
Da ¼ 5� 10�10 mlO2=½cm smmHg�: að0Þ ¼ L=ðK C D aÞ.
The parameter h corresponds to the height of the supplied
tissue layer and is deliberately set to 333mm. Our choice is
motivated by two considerations: increasing the MVD
should result in noticeable increase in hcoi and the oxygen
diffusion range should support 150 mm tissue above and
below the vasculature. With parameters as chosen above,
we obtain að0Þ ¼ 0:002. The diffusion radius can be related
to the consumption coefficient k via the Green’s function of
the operator ½D� k� which exhibits asymptotically expo-
nential decay on the length scale

ffiffiffiffiffiffiffiffi
1=k

p
. Therefore we set

kðMÞ to ð80 mmÞ�2. The tumor consumption is set to
kðTÞ ¼ 4kðMÞ, i.e. the diffusion radius is halved within the
tumor. These parameters yield a mean O2 concentration of
hcoi ¼ 0:27 in normal tissue and 0:16 at the tumor center.
With the proliferation threshold yðprolÞ

o ¼ 0:29 the tumor
cannot grow without neovascularization. The threshold for
extreme under-oxygenation is set to a value much smaller
Table 1

List of parameters and their symbol together with the values used for the bas

Parameter Value Descrip

d 10mm Lattice

l 1000 Lattice

Dt 1 h Time st

jTðt ¼ 0Þj 1000 Initial #

að0Þ 0.02 O2 sou

kðMÞ ð80mmÞ�2 Consum

kðTÞ 4kðMÞ Consum

yðprolÞ
o

0:29 � 1:07hcoi TC O2

yðdeathÞ
o yðprolÞ

o =10 TC hyp

RðgÞ 200mm Growth

yðprolÞ
g 10�4 Sprout

H ð0Þ 0.45 Initial h

ZðplasmaÞ 4:0� 10�6 kPa s Plasma

pðminÞ; pðmaxÞ 0, 90 kPa Bounda

t
ðuoÞ
TC

100 h TC sur

t
ðprolÞ
TC

10 h TC pro

t
ðsproutÞ
EC

40 h Sprout

t
ðdilÞ
EC

20 h Vasodi

t
ðmigrÞ
EC

1 h Sprout

rðinitÞ 5mm Initial v

rðstableÞ 20mm Stable

rðmaxÞ 30mm Max ve

sðmaxÞ 20 h Sprout

lðsprÞ 30mm Inter-sp

f ðc;maxÞ 0.5 Pa Peak cr

pðc;maxÞ 0.01 Peak co

For the cases in which experimental data are available a reference is given. The

with respect to variations of these values was studied.
than the proliferation threshold: yðdeathÞ
o ¼ yðprolÞ

o =105hcoi.
TCs remain viable under low oxygen conditions for
t
ðuoÞ
TC ¼ 100 h. Because the absolute values of the oxygen
field are arbitrary, comparisons to experimental data can
only be done by observing relative variations.
The growth factor radius is RðgÞ ¼ 200mm, motivated by

the size of the peritumoral region with increased MVD in
Döme et al. (2002). The vessel proliferation threshold is
very low yðprolÞ

g ¼ 10�4, so that essentially all vessels within
the full GF radius are affected. In Table 1 all parameter
values of the base case scenario are summarized.

3.2. Base-case scenario

System configurations for one representative run at
different times are shown in the left column in Fig. 3. The
right column shows a map of the oxygen level. Since most
TCs are initially under-oxygenized, new vessels emerge
within the GF radius in the region around the tumor.
Sprouts grow toward the tumor and eventually make
contact with other vessels. Once blood flow is established,
vessels contribute to the O2 supply. This leads to increased
e case scenario

tion Reference

const.

size

ep

TCs

rce coefficient (Secomb et al., 2004)

ption in normal tissue (Carmeliet and Jain, 2000)

ption tumor tissue

proliferation threshold

oxia threshold

factor diffusion radius (Döme et al., 2002)

ing GF threshold

ematocrit (Pries et al., 1990)

viscosity (Pries et al., 1990)

ry pressure

vival time under hypoxia (Yu et al., 2002)

liferation time

generation time

lation time (Döme et al., 2002)

extension time (Nehls et al., 1998)

essel radius

vessel radius (Döme et al., 2002)

ssel radius (Döme et al., 2002)

extension limit (Nehls et al., 1998)

rout-site distance (Döme et al., 2002)

itical shear force

llapse probability

other cases are based on educated guesses and the sensibility of the model
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O2 levels, indicated by a small bright band surrounding the
low oxygen region. Simultaneously the radius of the central
vessels increases. This initial remodeling creates a distur-
bance in the almost homogeneous global flow also causing
long range O2-field variations due to the coupling via the
hematocrit. Apparently the O2/hematocrit increase dom-
inates regions close to the central diagonal axis where most
blood enters/leaves the tumor. Thereby asymmetrical
growth is induced showing that despite neovascularization
O2 supply is the limiting factor for TC proliferation. When
the tumor grows over the highly vascularized region, vessels
begin to collapse. Vessels in the vicinity of tumor cells are
continuously exposed to growth factors and thus increase
their radius up to rðmaxÞ. In regions void of vessels, tumor
cells die after t

ðuoÞ
TC , due to the lack of oxygen. As expected ca.

100 mm wide cuff remain alive around few surviving vessels.
Despite the star like structure of the network, which is

clearly an artifact of the unrealistic flow boundary
conditions, we can reproduce general tumor-network
features in agreement with the rest of the literature (Holash
et al., 1999a, b; Bartha and Rieger, 2006; Döme et al.,
2002). Fig. 4 gives a quantitative analysis of the dynamical
evolution. The curves are averaged over 20 runs, with
different random number generator seeds but otherwise
identical parameters. Statistical fluctuations are of the
order of 10%, growing toward the tumor center. Fig. 4(f)
shows how the tumor density varies with distance r to the
center of the system. The tumor periphery moves outward
linearly with a speed of 2mm=h ¼ 2Dr=t

ðprolÞ
TC . The factor 2 is

typical for Eden growth (Eden, 1961). Fig. 4(a) shows the
average microvascular radius (MVR). Since tumor vessels
are always enclosed by TCs that produce GF, the radius
grows everywhere inside the tumor at a constant rate. At a
fixed location this means that as soon as the tumor as
grown over it, the radius increases linearly until the
threshold rðmaxÞ is reached. Hence a plateau is observed
when the spatial variations at a fixed time are considered.
Fig. 4(b) shows the MVD and agrees with the pictures in
Fig. 3 regarding the compartmentalization of the system.
There is a region of high MVD which coincides with the
TC density drop. Inside the tumor, the MVD drops to 1=4
of the original MVD, since only few vessels survive the
collapse process. In Fig. 4(d) it can be seen that the wall
shear stress drops by almost two orders of magnitude, even
below the critical collapse force f ðc;maxÞ

¼ 1Pa. Considering
that the support of the band where vessels collapse due to
solid pressure is dðfcÞ ¼ 1mm broad, this means that vessels
collapse in a narrow shell in the tumor periphery. Hence,
altering the rules for the collapse process, leads to different
MVDs and network structures as evident in Section 3.4.
The drastic reduction in shear stress stems from equally
drastic reduction in pressure gradients. In contrast to flow
and shear stress, the pressure gradients assume near
constant values after the drop at the tumor boundary.
Hence, near the tumor center, the vessel radius dependence
which is rðvÞ4 and rðvÞ for the blood flow rate and shear
stress, respectively is responsible for variations of the latter
properties. Fig. 4(e) shows the radial oxygen variations,
which are strongly correlated to the MVD variations.
Naturally the O2 level drops in the tumor center. The
average value in the tissue is hcoi ¼ 0:275. In the highly
vascularized zone it increases by 30%. In contrast to our
previous work the O2 increase is not proportional to the
MVD due to the O2 dependent source strength.
Quantitatively our results agree well with the morpho-

logical data provided in Döme et al. (2002). They analyzed
human malignant melanoma spatially divided into three
regions: (i) the tumor center, (ii) the tumor periphery—a
100mm wide band of tumor immediately adjacent to the
invasive edge, and (iii) the peritumoral host tissue—a
200mm wide band of host tissue immediately adjacent to
the periphery. It was found that for tumors larger than
1.5mm the MVD in (i) drops to 25% of the MVD in
normal skin. In (iii) the MVD reaches values up to two
times the normal MVD. In terms of radii, the MVR grows
from � 8 to � 30235mm in the center, at day 15, and
remains constant. From day 12 on the MVR in (ii) and (iii)
also remains constant, and grows from (iii) to (ii) to (i).

Boxcounting analysis: The concept of a fractal dimension
is often used to characterize differences between normal
vasculature and tumor vasculature (Baish and Jain, 2000).
One commonly used method to estimate fractal dimension
is box-counting, which is carried out by superimposing a
grid with box diameter l on the fractal object and counting
the number of boxes n which overlap the object. The self
similar nature of true fractal object leads to a power law
relationship between box count and box size with the
fractal dimension df as exponent:

nðlÞ / l�df . (13)

df is usually extracted by a linear fit in a log–log plot.
However in experiments one can usually only measure l over
two orders of magnitude. Furthermore natural objects (or
rather photographs thereof) are usually not perfectly fractal
i.e. box-counting plots exhibit non-constant slopes. There-
fore even a small constant regime is often considered
sufficient to speak of a fractal dimension (or more truthfully
named box-counting dimension); see the discussion in
Chung and Chung (2001a, b). Therefore what we mean in
following with ‘‘fractal dimension’’ is the number that we
obtained by the procedure described below and which is
analogous to the way in which this number is extracted from
the analysis of experimental data (Gazit et al., 1995; Baish
and Jain, 2000; Chung and Chung, 2001a, b).
We did box-counting for the tumor as well as for

different parts of the vessel network at the time t ¼ 1000 h.
At this time the diameter of the tumor is ca. 5mm. Vessels
are treated as ideal line segments, and overlapping boxes
are visited by a digital differential analyzer algorithm
(Glassner, 1994). TC occupied locations were treated as
points. Boxes with size L were shifted by
maxfL=10mm; 16g2 different offsets equidistantly distribu-
ted in ½0;LÞ2, and the minimum box-count was taken. The
fractal dimension is then estimated as average over the
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Fig. 4. Various dynamic variables in dependence on the radial distance r to the tumor center: (a) Shows the vessel radius. It decreases with the distance to

the tumor, whereas at a fixed distance to the tumor center it increases with time. (b) Shows the microvascular vascular density (MVD) dependence. The

MVD is high at the tumor boundary, and low in the tumor center. The maximum value decreases with time due to the asymmetry of the tumor. (c) The

flow rate increases by more than an order of magnitude inside the tumor. Whereas (d) shows that the shear force decreases by almost two orders of

magnitude. (e) The oxygen level follows roughly the same shape as the MVD. Due to implicitly defined source strengths, the increase in high-MVD regions

is much less than simply proportional. (f) Shows the tumor density. One can see that the tumor radius increases linearly in time, as expected according to

the eden rule. The density drop eventually becomes less pronounced due to the asymmetric growth.
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local slopes of the log–log plot, which are first estimated by
least-squares fits of 17 points around the respective pivots.
The averaging is done over a suitable range, i.e. a regime
with constant slope if available and between 200 and
1000mm otherwise. Indicated errors represent root mean
square deviations from the mean local slope. Hence, a large
value would indicate a less fractal object.
The mean fractal dimension of the vasculature was
estimated over three regions as indicated in Fig. 5. The
center of the tumor, for which hdf iðCÞ ¼ 1:59
 0:02 was
obtained. This central region reaches up to a boundary
region ðBÞ, a 400mm wide band along the perimeter,
centered at the invasive edge. The width of the band is
chosen deliberately according to the growth factor radius,
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Fig. 6. Fractal dimension in dependence on critical shear stress. Left: In analogy to Fig. 5, ðBÞ denotes a 200mm wide band around the invasive edge, ðCÞ

the central region, and ðB [ CÞ the entire tumor vasculature. The MVD is averaged over 20 tumors and over a disc with r ¼ 1:6mm. The data were

generated by running simulations with f ðc;maxÞ ranging from 0:1 to 1:1Pa. Right: Four configurations are shown with critical shearforces

f ðc;maxÞ
¼ 1:1; 0:5; 0:3; 0:1Pa. The labels on the left figure correspond to these configurations. The fractal dimension ranges from 1:61 to 1:82.

Fig. 5. Fractal dimension analysis of the base case tumor via boxcounting. Left: Boxsize vs. boxcount logarithmic plots. ðCÞ denotes the vessel network in

the tumor center region. This fills the space up to a 200mm wide band centered at the invasive edge around the tumor ðBÞ. ðCÞ [ ðBÞ contains all vessels in

the union of region ðCÞ and ðBÞ. ‘‘Tumor’’ denotes the viable regions of the tumor. Right: Local slopes of the curves on the left.
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such that the exclusively angiogenesis dominated remodel-
ing is captured. There hdf iðBÞ ¼ 1:63
 0:03 was obtained.
The fractal dimension of the complete tumor vasculature
turned out to be hdf iðC [ BÞ ¼ 1:71
 0:01, and that of the
tumor hdf iðTumorÞ ¼ 1:78
 0:02. These values are lower
than those reported in Bartha and Rieger (2006) for the
simplified model, but are closer to the value df ¼ 1:81

0:04 found experimentally for carcinoma (Gazit et al.,
1995; Baish and Jain, 2000).

Fig. 5 also shows that the local slopes for the tumor and
its vasculature are very similar for box-sizes greater
350mm. This can be explained by considering that all
tumor vessels have cuffs of viable TCs around themselves
with a diameter of ca. 200mm- twice the oxygen diffusion
radius. Further away from vessels no living TCs exist.
Therefore in the large box limit ðLb200mmÞ vessels and
TCs will touch mostly the same boxes and thus yield
similar fractal dimensions.

3.3. Parameter variations

Further experiments reveal that the fractal dimension of
the tumor vasculature is apparently not a universal
constant. Multiple simulations were performed where the
maximum critical shear force ranges from 0:1 to 1:1Pa,
producing tumors with decreasing internal MVD. Fig. 6
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shows the results. The fractal dimension of the boundary
hdf iðBÞ remains constant around 1:68, whereas the dimen-
sion of the complete vasculature hdf iðB [ CÞ ranges from
1:61 to 1:83. Naturally hdf iðBÞ is a lower bound because it
corresponds to the case where no internal vessels are
present. With increasing density the dimension is domi-
nated by the internal vasculature. The dimension of the
tumor follows that of the vasculature for reasons already
discussed.

In order to study the relation to conventional random
bond percolation, simulations were performed with critical
shear stresses ten times higher than normal f ðc;maxÞ

¼ 5Pa.
At normal values for the collapse probability
pðc;maxÞ ¼ 0:01, this would remove all vessels almost
instantly when the tumor grows over them. As shown in
Fig. 7 there is however a sharp transition at pðc;maxÞ ¼ 0:001
from the absence of vessels in the center to configurations
where no vessels collapse at all. Note that the high value
essentially inhibits the shear force stabilization mechanism
which means that collapses are purely random and
uncorrelated with flow. Visually this can be seen by the
absence of the imposed flow direction. As a consequence all
central vessels had the same probability to collapse by the
end of the simulation, namely the probability to collapse
until the stable radius is reached. Therefore the results here
are in agreement with conventional percolation theory as
described in the discussion Section 5.
Fig. 7. Fractal dimension for tumors with uncorrelated vessel collapses. Left:

region, and ðB [ CÞ the entire tumor vasculature. Fractal dimension estimates

1:5� 10�3. Furthermore critical shear force and collapse probability were set c

5 Pa in order to reduce shear force correlation of collapses to an insign

1:25; 1:00; 0:75� 10�3 for (a),(b),(c) respectively.
3.4. Simplifications

In the following the effect of several simplifications
toward the model discussed in Bartha and Rieger (2006)
are discussed: replacing the viscosity term with a constant
or purely radius dependent value; settings the vessel
collapse probability and critical shear force to step
functions; generating perfused sprouts instantly; and
setting the oxygen source strength constant.

Blood viscosity: To compare the effect of different
models for blood viscosity, we set the blood-oxygen
content constant to the initial hematocrit value:
cðBÞo ¼ H ð0Þ ¼ 0:45. Consequently, this removes the large
scale variations in the oxygen field and thus produces
symmetric tumors. With this modification multiple simula-
tion runs were performed with
(i)
ðBÞ d

for t

onsta

ifican
the original viscosity model including hematocrit and
blood phase separation;
(ii)
 a viscosity term which was derived from in vitro data
(Gödde and Kurz, 2001) and which depends only on
the vessel radius Z ¼ ZðplasmaÞZðrelÞðrÞ. (see Fig. 8);
(iii)
 the vessel viscosity set to the constant blood plasma
viscosity. Z ¼ ZðplasmaÞ.
The result is shown in Fig. 9. While the cases (ii) and
(iii) do not differ significantly, the tumor MVD in (i) is ca.
enotes a 200mm wide band around the invasive edge, ðCÞ the central

he three regions are shown, where pðc;maxÞ ranges from 0:5� 10�3 to

nt within the tumor with pðcÞ as indicated f ðc;maxÞ was set very high to

t amount. Right: Three configurations are shown with pðc;maxÞ ¼
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two times lower than in (ii),(iii). This is unexpected but we
think the following is a plausible explanation: The viscosity
in (i) rapidly decreases by 50% from r ¼ 5 to 20mm, i.e.
from outside to inside the tumor, whereas it changes less
drastically in (ii) and (iii). The total flow into the tumor is
generally limited by the flow resistance of the surrounding
network. Let us assume a prescribed constant in-flow Q ¼
Fig. 9. Comparison of viscosity functions. Top: Shown are radial MVD and fl

‘‘adapted mvd’’ denotes data where the critical shear force has been tuned suc

snapshots of tumors of the adapted configurations. (i) Denotes the original fl

unaffected by the blood hematocrit content (ii) uses radius-only dependent visco

Fig. 8. Plot of the relative viscosity as a function of the vessel radius: (a)

according to the formula derived in Pries et al. (1994), evaluated for

hematocrit values H ¼ 0:3–0:9; (b) data derived from in vitro measure-

ments—see Gödde and Kurz (2001). Used here for the simplified model

without hematocrit.
N q / N f r3=Z which has to be supported by N vessels
threading the tumor. Thereby assuming homogeneous
flow-rate q, radius r, and shear force f. Let us further
assume that f is identical to f ðc;maxÞ. Then it is easy to see
that the number of remaining vessels is proportional to the
viscosity Z.
Increasing the critical shear stress from 0:5 to

f ðc;maxÞ
¼ 1:0Pa drops the MVD back to the level of

the base-case at the cost of increased flow rate and
shear stress in the vessels. Fig. 9 shows respective averaged
curves. Apparently there is no fundamental change in
vessel morphology. This is also reflected by fractal
dimension analysis where the mean dimensions only
differ at most by 3%. Thus it is reasonable to assume that
for the purpose of morphological studies an effective
constant blood viscosity—ca. twice the plasma viscosity—
can be used.

Vessel collapse: In the base-case both the collapse
probability pðcÞ and the critical shear force f ðcÞ are
modulated by the function g1 which introduces an explicit
location dependency. In the following we present two cases
with differently designed functions which might be equally
well suited models. With pðcÞ, we refer to the collapse
probability of unstable (fof ðcÞ and rorðstableÞ) normal
perfused vessels.
(i)
ow ra

h tha

ow m

sity fo
Denotes the base-case where g1 has a torus-like profile,
as shown in Section 2.2. And where pðcÞ is additionally
multiplied by a vessel-radius dependent term.
te curves for different viscosity models and parameters at t ¼ 1000.

t the MVD matches that of the original model. Bottom: Shown are

odel. All the simulation runs here where done with the oxygen field

rmula of, Gödde and Kurz (2001) and (iii) assumes a constant value.
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(ii)
Fig. 1

distan

rXrðs

cente
f ðcÞ and pðcÞ assume constant values within the tumor
and zero outside.

f ðcÞða;xÞ ¼ f ðcÞðf;xÞ

¼ f ðc;maxÞ
� yðxT ðfÞ � xÞ, ð14Þ

pðcÞða;xÞ ¼ pðcÞðf; xÞ

¼ pðc;maxÞ � yðxT ðfÞ � xÞ � yðrðstableÞ � raÞ,

ð15Þ

where y is the step function, x is the distance to the
center, f the polar angle and ra the vessel radius. Beside
the dependence on the distance to the tumor, the linear
dependence on ra has also been replace by a step
function, such that the collapse probability becomes 0
instantly once raXrðstableÞ. Without changes to other
parameters this results in decreased central MVD.
Therefore f ðc;maxÞ

¼ 0:25Pa is chosen, which is 1=2 of
the normal value. pðc;maxÞ ¼ 0:01 is left unchanged. In
the latter case no significant difference to the base case
scenario could be observed. Radial curves differ at
worst by 10% and the mean fractal dimension is also in
agreement within the error bounds.
(iii)
 f ðcÞ decays from f ðc;maxÞ at the center of the tumor to 0
at the invasive edge. For pðcÞ the simple form from (ii)
is chosen.

f ðcÞða;xÞ ¼ f ðcÞðf;xÞ

¼ f ðc;maxÞ
�maxf0; 1� x=xT ðfÞg, ð16Þ
0. Comparison of different dependencies of pðcÞ and f ðcÞ on local system prope

ce at t ¼ 1000, (i) is the basic case model, (ii) has positive constant values fo
tableÞ and (iii) has a linear decay from f ðcÞ ¼ f ðc;maxÞ at r ¼ 0 to 0 at the invasiv

r. Bottom: shows snapshots of sample tumors.
pðcÞða;xÞ ¼ pðcÞðf;xÞ

¼ pðc;maxÞ � yðxT ðfÞ � xÞ � yðrðstableÞ � raÞ.

ð17Þ

In this case the original parameters work fine:
f ðc;maxÞ

¼ 0:5 Pa and pðc;maxÞ ¼ 0:01. Fig. 10 shows
that compared to (i) and (ii) a smoother transition
from the high-MVD boundary to the tumor center
with low MVD is obtained. In an experiment not
shown here this effect was enhanced by setting
pðcÞðaÞ / maxf0; 1� ra=rðstableÞg. Further on, peri-
pheral MVD has slightly increased since collapse
events happen now closer to the center where the
critical shear force threshold is high enough. Being
directly correlated to the MVD other measurements
such as oxygen level or tumor density exhibit similar
behavior. The mean fractal dimension of the tumor
vasculature is hdf i ¼ 1:80.
Sprout migration: In analogy to our previous work, we
also checked the results when ‘‘sprouts’’ instantly extend to
the next vessel, possibly creating a perfused loop.
This simplified sprout model works as follows: Starting

at a parent vessel, sites along a straight path are checked
for a destination vessel. As before, the direction is
determined by the local GF gradient at the starting site.
A vessel connection is added, provided that all conditions
for sprout generation—such that it has to be outside the
tumor—are fulfilled for the starting site, and that the
rties. Top: row shows mean shear force and vessel density by radial

r pðcÞ and f ðcÞ inside the tumor, with the exception that pðcÞ ¼ 0 for

e edge. Notice how the MVD decreases much smoother toward the
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destination site has less than three incident vessels.
The resulting tumor’s boundary regions exhibit ca 70%
the MVD of the full model’s tumors. Apparently the
stronger requirements for vessel creation limit the degrees
of freedom for the system’s evolution. For example
in the original model there is the possibility that two
sprouts grow simultaneously and form a perfused wedge
when they meet inside a hexagon. MVD correlated data
vary accordingly, but otherwise no fundamental changes
could be observed.

Oxygen field computation: Solving the O2 diffusion
equation with implicit source strengths can become
expensive, in particular in three dimensions. Therefore we
also performed simulations using a simplified model.
Instead of solving Dco � kco þ aðcðBÞo � coÞ ¼ 0, we do
now consider

DcoðxÞ � kðMÞco þ acðBÞo ¼ 0, (18)

where the coefficient k equals the tissue consumption kðMÞ,
disregarding the tumor. The occurrence of coðxÞ is omitted
in the source term which means that O2 is produced at a
fixed rate. (18) could be efficiently solved by a Greens-
function approach, in analogy to our solution of the GF
distribution. In the present case, q0 is simply a prefactor
that scales the field values globally, and it is chosen to get
the mean O2 hcoi ¼ 0:2. The tumor proliferation threshold
remains at the original value yðprolÞ

o ¼ 0:29.
Fig. 11. Comparison of different oxygen and proliferation models. The top ro

associated oxygen fields and central cross section, (i) is the full O2 model fo

strength, (iii) is the simplified model (ii) with the addition that TC always pro
As a consequence the O2 level increase from normal
MVD to high MVD is overestimated by ca. 50%. Fig. 11
shows snapshots from two runs at t ¼ 1000 h.
(i)
w sh

r cðBÞo

duce
shows a snapshot from the full model. To facilitate
comparisons the effect of hematocrit on O2 has been
disabled, i.e. cðBÞo ¼ H ð0Þ;
(ii)
 shows a snapshot from the simplified model. As can be
seen the tumor grows slower and develops and
elliptical shape. Here TCs produce GF only if
coðxÞoyðprolÞ

o . Due to the higher O2 level, the outer
band where TCs are allowed to proliferate—and do
not produce GF—is almost as wide as the GF radius.
Therefore the GF influence region—indicated by a
bright green background—does not reach as far into
the tissue as in (i), leading to slower vessel generation
and thus slower tumor growth. Depending on para-
meters, the growth of the tumor may even come to halt
in the beginning of the evolution when the O2 level
increases above yðprolÞ

o for all TCs in the nucleus. In the
full model no reasonable parameter set allows such
increase in O2 and therefore this behavior has never
been observed;
(iii)
 shows snapshots from the simplified model—modified
so that TCs always produce GF. Naturally the GF
influence zone now has the largest possible extend,
leading to continuous neovascularization and virtually
undisturbed Eden-like tumor growth. Overestimating
ows vessel, tumor, gf-influence configurations. The lower row shows

¼ H ð0Þ ¼ const, (ii) is the simplified O2 model with constant source

GF.
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the O2 levels also the effect of making the model more
robust regarding the choice of the TC proliferation
threshold yðprolÞ

o . This leads to the observations that
tumor (iii) is denser than tumor (i) and grows slightly
faster. The O2 level in (i) increases by mere 10% at the
high MVD periphery, leaving not much choice for
yðprolÞ

o because at low values TCs can proliferate quickly
along the original vessels which can create holes as
seen in Fig. 11 (i). At high values the tumor might not
proliferate at all.
Simplifications combined: Measurements from tumors
with simplifications combined are shown in Fig. 12. In
these simulations blood viscosity is set constant
Z ¼ ZðplasmaÞ, collapse probability and shear force are also
set constant according to (14), oxygen computations are
done with the simplified model from (18), and all TCs
produce GF. Parameters, f ðc;maxÞ and pðc;maxÞ in particular,
are equal to the settings in the full model simulations. To
get better estimates for data near the invasive edge, it is
compared to the basic model without hematocrit affecting
oxygen levels cðBÞo ¼ H ð0Þ.

All modifications combined lead to changes in many
measurements. Most of which have already been discussed
in the examples above. For example the almost 10-fold
increase in flow rate due to reduced viscosity, increased
oxygen in high MVD regions due to constant source
strengths, faster and denser tumor growth due to better
12. Measurements from simulations with simplified viscosity, oxygen comp

and MVD, (i) is the original model and (ii) the simplified version. The b

s from boxcounting analysis for the complete tumor vasculature.
oxygen supply. Not observable before is an apparent
difference in vessel morphology. Note the tendency to form
compact straight bundles of 3–8 vessels. Vessels in snap-
shots of the basic case—denoted (i) here, see Fig. 3 for
instance do not seem to have this property, instead those
exhibit many small weakly perfused loops and cross-links.
Radial curves (ii) seem to reflect this also by an overall
increase in shear force. Most likely weakly perfused vessels
in (i) survive long enough until the relatively thin ring of
high collapse probability has moved further outwards. If so
they can contribute to the shear force measurement such
that the mean values are lowered. Fractal dimension
analysis also indicates different morphological features.
The mean vasculature dimension has increased to
hdf i ¼ 1:77, although the central MVD has not increased
significantly. Fig. 12 also shows results from box-counting
analysis of a single sample tumor. Over a small range the
local slope reaches peak values of ca. 1:82.
4. Drug flow modeling

This section discusses modeling, and results, of simulated
drug flow through the tumor vasculature. The mathema-
tical model for drug flow is based on McDougall et al.
(2002), where it was demonstrated how the concentration
profile of a tracer substance flowing through a vascular
network can be tracked. The drug flow model is designed
on top of the already established network model.
utations and vessel collapse model. Top row shows radial curves for shear

ottom row shows snapshots on the left. The right-hand side shows local
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Hemodynamic parameters, such as flow rate are precom-
puted (taken over from the results of the tumor simula-
tion). The network is completely static during the
simulation, which is reasonable as as the drug injection
does not last longer than one hour. An iterative algorithm
first propagates drug mass from vessels to downstream
nodes, followed by a second pass where drug is distributed
among the outflow vessels. Thereby mass conservation is
strictly enforced. One such iteration corresponds to a
certain time-step dt. A detailed description is given in the
following.
4.1. Model definition

First, node tupels ði; jÞ which identify vessels now reflect
the flow direction by requiring that piXpj. Geometric and
hydrodynamic properties q,l,r,p have meanings as before
and their values are static. With I i and Oi we denote the
inflow- and outflow-vessels attached to a node i. In
addition to the ideal pipe-flow model, a number of further
assumptions are made: Drug is moved downstream with
the average flow velocity v ¼ q=½pr2� neglecting radial
velocity differences. For each vessel, the simulation tracks
a single drug-containing cylindrical subsection. Let u 2

½0; lÞ be its start at the upstream end, measured along the
central vessel axis. The downstream end is given by
d 2 ðu; l�. The occupied volume is thus V ¼ ðd � uÞpr2,
and it is assumed that the drug mass m inside this volume is
always homogeneously distributed at the concentration
m=V . Thus the description of the concentration profile
inside a vessel segment is limited to a single square pulse.
This does not appear to be a problem, but when necessary,
segments can be subdivided to gain a suitable resolution.

For each time step dt the following is done: First, for
each vessel a ¼ ði; jÞ which has drug m40 drug is moved
downstream by the distance Dx. Let t0 ¼ tþ dt, then:

Dx ¼ q=½pr2�dt,

ut0 ¼ ut þ Dx,

dt0
¼ dt
þ Dx.

The volume is then pruned at the end of the vessel, and the
lost drug mass is accounted to the attached node. This
mean if d4l and uol the drug propagation into the nodes
is as follows:

Dm ¼ mt=V � ½dt0
� l�pr2,

mt0 ¼ mt � Dm,

mt0

j ¼ mt
j þ Dm,

dt0
¼ l.

If the time step is large enough it can happen that a vessel is
completely drained of drug ut04 ¼ l. Care must be taken
that state variables are kept consistent. Instead of the steps
above, all mass is transferred to the node: Dm ¼ mt, and
the drug start and end variables are reset to ut0 ¼ dt0

¼ 0.
In a second stage it is looped over all nodes i 2 N that
have drug mi40. This drug is now propagated further
downstream into connected vessels. At boundary nodes,
drug may be introduced by adding the contribution Dm ¼

ð
P

a2O qa �
P

a2I qaÞC
ðinÞdt from the in-flowing blood

volume. The distribution at branching points assumes
perfect mixing, i.e. the nodal drug mass is split among
outflow vessels proportional the blood volume that flows
into a vessel. Let Q be the total out-flowing volume:
Q ¼ max½

P
a2Oi

qa;
P

a2Oi
qa�. This formal description re-

spects that the correct value has to be computed for
boundary nodes where Kirchhoff’s law is violated due to
exchange with the environment. For internal nodes Q is of
course equal to

P
a2Oi

qa. Then for all vessels a 2 Oi drug
mass is updated according to

mtþ1
a ¼ mt

a þ qa=Q �mt0

i .

Furthermore ua is set to 0, because drug just entered at the
upstream vessel junction. Once again care must be taken to
ensure a consistent system state at the end of the iteration.
In our implementation the downstream drug end must
move forward to dtþ1

a ¼ qa=½pr2a� � dt if the vessel was
empty. Note that in this case it has also been dt

a ¼ 0. The
time step dt must be chosen carefully to ensure that the
location of the drug remains consistent with the network
structure. During a time step drug can only move as far as
the length of a vessel. Therefore it must be ensured that the
in-flowing blood volume qdt is less than the volume of the
vessel: qdto ¼ lpr2. The largest possible dt is thus

dt ¼ min
a2V

lapr2a
qa

� �
. (19)

Drug uptake by the tumor is not considered here. It was
incorporated in McDougall et al. (2006) in a very crude
way: Drug was instantly removed once it reached the
tumor. This is not feasible here, since the goal is to study
the concentration inside tumor and see if there are spots
that are unlikely to be supplied by sufficient drug. It should
be possible with some more numerical effort to include a
diffusion process through the vessel wall in the line of the
O2 concentration computations presented before. But for
simplicity and the lack of experimental data this has not
been done yet. As a consequence the intravascular drug
concentration here can only predict an upper bound to the
real concentration.

4.2. Results

Here we discuss results for two configuration types: (i)
the base-case (Fig. 3); (ii) nearly shear force uncorrelated
systems with pðc;maxÞ ¼ 0:001 and f ðc;maxÞ

¼ 0:5 (Fig. 7).
In both cases first a preprocessing step was applied.

Vessels outside a circular region were removed, such that a
band of approximately 1mm width remained around the
tumor. Doing so ensures that drug arrives evenly at the
invasive edge, which would not be the case if the network
spreads over the entire rectangular domain. Fig. 13 shows
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the flow velocity which is of the order of 0.5mm/s. Regular
capillary networks have high flow resistances and do not
support increased flows inside the tumor. On the contrary,
the dilation causes slower velocity, due to the preservation of
mass (Fig. 14). Thereby (i) and (ii) show similar behavior.
Simulations were done with injection durations tðinÞ ranging
from 2 to 60 s. The injected concentration was always set to
CðinitÞ ¼ 1. Fig. 15 shows a sequence of concentration
profiles for the hexagonal lattice base-case (i) and
tðinÞ ¼ 60 s. Drug enters at the bottom left boundary, and
flows toward the tumor. The concentration at the drug
‘‘front’’ shows an increasingly smooth transition. That is
because at branching points, the front does not arrive
through all inflow vessel simultaneously. Thus drug contain-
ing blood is mixed with ‘‘clean’’ blood, decreasing the
concentration in out-flowing blood. After 60 s tumor vessels
are almost completely saturated with drug. A prolonged
injection would keep the system in a fully saturated steady
state. The second half of the sequence shows how blood
flows out of the tumor after the injection ends.
Fig. 14. Spatial distribution of the blood flow velocity for (i) the base-case scen

show an average over 20 simulation runs at time step t ¼ 1000h, the represente

reduced in the tumor. The flow increases in (i) toward the center due to the s

Fig. 13. Radial measurement of the mean flow velocity v ¼ q=½pr2�. (i)

denotes the base-case (ii) a shear force uncorrelated system with random

collapses (Fig. 7).
For shorter injection times, flow results naturally give a
similar picture (no image sequence shown here). A compact
short burst of approximate length vtðinÞ flows unhampered
in diagonal direction through the tumor. However, the
maximum concentration can be significantly decreased
due to the mentioned mixing effects. For example in the
extreme case where tðinÞ ¼ 2 s, the number of vessels where
the concentration C40:5 is reduced to 30%.
Fig. 16 shows averaged measurements of case (i). The

plot on the left indicates the percentage of vessel network
length that was exposed to a drug concentration greater
than the value on the x-axis. The data are given for
injection times tðinÞ ¼ 10; 20; 30 s. For the 30 s injection,
90% of the vascular network was exposed to the maximum
possible drug concentration CðinitÞ ¼ 1, while all vessels
were exposed to at least a concentration of C ¼ 0:9. This
simply reflects that the systems was nearly saturated with
drug, which is also evident by the snapshots.
The right plot in Fig. 16 shows the percentage of vessel

network length for which the concentration was larger than
a threshold Ct for a total period greater than the value
indicated on the x-axis. The data is again given for several
injection times. For Ct ¼ 0:5 and tðinÞ ¼ 60 s the curve has a
step function profile, whereby the drop occurs at t ¼ 60 s.
This point in time corresponds in good agreement to the
duration in which the high concentration ‘‘pulse’’ passes
through the tumor. The concentration at a fixed location
increases (decreases) smoothly over time before (after) the
plateau of saturation. This means that the lower the
concentration threshold, the longer the exposure times.
Therefore curves for lower thresholds show ‘‘tails’’ beyond
the saturation period. Prolonging the injection interval by
Dt would increase the time where the system is in a
saturated steady state, thus shifting the exposure time
curves uniformly by Dt to the right. This is clear since the
time that the system remains in steady state is irrelevant.
The curves for tðinÞ ¼ 10 and 30 s show the effect very well
that the drop is simply shifted to the end of the injection
period, thereby preserving the trails.
ario (Fig. 3) and (ii) the shear force uncorrelated case (Fig. 7b). Both plots

d area being 12� 10mm2. Compared to normal tissue, the flow velocity is

tar like structure with fewer vessels there.



ARTICLE IN PRESS

Fig. 16. Quantitative measurements of the base-case (i) for various tðinÞ. Right: The plot indicates the percentage of vessel network length that was exposed

to a drug concentration greater than the value on the x-axis. When the system has time to reach a steady state all vessels become exposed to CðvÞ ¼ 1, thus

producing a constant line in the plot. Left: The plot shows the percentage of vessel network length for which the concentration was larger than Ct for a

total period of more than indicated on the x-axis. The steep drops occur at the end of the injection duration. Naturally the mean time where vessels are

exposed to C40 is on the order of tðinÞ plus the time it takes to clear the tumor of drug, depending on the vascular morphology and flow rates.

Fig. 15. Concentration profiles for an injection of tðinÞ ¼ 60 s into the hexagonal base-case vasculature (i). The color code ranges from red at C ¼ 1 over

yellow and green to blue at C ¼ 0. Light gray area represents viable tumor tissue, darker gray represents dead tissue. Drug reaches the invasive edge within

the first 2 s. At the middle of the sequence, the tumor becomes saturated with drug, except for a few tiny spots. Note how the concentration drops gradually

in most vessels as an effect of mixing with ‘‘clean’’ blood.

M. Welter et al. / Journal of Theoretical Biology 250 (2008) 257–280276
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Fig. 17. Concentration profiles for an injection of tðinÞ ¼ 60 s into the hexagonal shear force uncorrelated vasculature (ii). The morphology created by

random collapses inside the tumor exhibits more poorly perfused loops than any other vasculatures. As can be seen a few vessels have not been reached by

the injected drug during the whole simulation period. The qualitative behavior is otherwise in good agreement with the run presented in Fig. 15.
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Plots for the uncorrelated case analogous to Fig. 16 are
not shown here because they are qualitatively as well as
quantitatively very similar but exhibit a few unreachable
loops. This is reflected in a smoother drop in the maximum
concentration curve: ca. 80% of the vasculature had a
concentration greater than 0:8. The exposure time plot
showed slightly smoother drops at the injection times and a
longer trail but is otherwise identical to Fig. 16.

Fig. 17 show concentration profile sequences for the
remaining cases. Most remarkable in the uncorrelated case
(ii) is the occurrence of small unreachable loops. It can
happen when vessels survive which are oriented perpendi-
cular to the global pressure gradient given by the boundary
conditions. Flow rates in these loops are consequently
drastically reduced.

5. Discussion

We have shown that the basic predictions of the model
introduced in Bartha and Rieger (2006) are very robust
against different sophistication levels of mathematical
modeling that we investigated: The base case scenario, in
which model parameters are chosen to the best agreement
with experimental data for melanoma (Döme et al., 2002),
the tumor compartmentalizes after a short time into three
regions: A well vascularized peritumoral plexus with an
MVD that is 2–3 fold larger than the normal tissue MVD,
a well perfused peritumoral region and a necrotic core with
low MVD and only a few thick vessels threading the
tumor, which are covered by a ca. 100mm thick cuff of
tumor cells. Oxygen levels are therefore extremely low in
the tumor vessel. The fractal properties of tumor vascu-
lature are substantially different from the normal vascu-
lature, with estimates for the fractal dimension that are
lower than that of the normal capillary network. Their
characteristics have their origin in the vessel collapse
processes and therefore also depend sensibly on collapse
probability and critical shear force. Concerning the
hydrodynamic blood flow patterns our model shows
substantially reduced pressure gradients and shear flow in
the tumor vasculature, although the blood flow rate is
increased in the extremely thick vessels in the tumor center.
The tumor radius grows linearly in time, which is natural as
long as TC proliferation is confined to the tumor surface
region and no growth inhibition effects, like solid stress,
are incorporated.
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These are robust features that are characteristic for the
model we have studied here and for the simplified model of
Bartha and Rieger (2006). A few differences between the
two versions occur only on a smaller scale.

Calculating oxygen sources implicitly, i.e. driven by
concentration gradients between blood and tissue, instead
of assuming a constant source strength as in Bartha and
Rieger (2006), have the following effect: Surface TCs can
proliferate in the original vasculature while cells behind the
invasive edge now suffer from hypoxia due to increased
metabolic demand inside the tumor. They are thus
secreting GFs to induce angiogenesis. If the oxygen
threshold for proliferation is of the order of the average
tissue-O2 levels (yðprolÞ

o � hcoi), the model predicts a strong
dependency on the micro-scale O2 variations and therewith
also on local vascular morphology. The model with explicit
sources is more stable with respect to the proliferation
threshold, since the O2 level increases rather drastically in
highly vascularized regions. However, by choosing suitable
parameters, the vascular morphology of the model we
studied here and the simplified version with constant
source strength can be matched. Therefore to study the
global features of tumor vasculature the crude approxima-
tions to O2 diffusion fields may be used, in particular in
numerically more challenging situations such as 3d
simulations (Lee et al., 2006).

Progressively simplified blood flow computations alone
have shown limited effects, mainly changes in the flow rates
up to one order of magnitude could be observed within the
tumor. Additional modifications of the collapse rules
influenced the shape of the vascular network visibly,
(Fig. 10.(ii) vs. Fig. 12.(ii)), but still the simplified model
for blood flow can be can be used. Also the incorporation
of the blood phase separation effect does not appear of
significance for vascular morphology. When blood oxygen
levels are allowed to vary proportional to hematocrit, the
model predicts asymmetric growth depending on local
hematocrit levels. Therefore if this aspect is to be neglected,
performing computations according to Pries et al. (1994)
with a constant hematocrit H0 ¼ 0:45 appears to be a good
compromise.

Inserting completely new perfused vessels rather than
generating migrating sprouts that eventually join to target
vessels does not lead to substantial changes. The latter
model version merely leaves more degrees of freedom for
forming circulated loop. In two dimensions the space to
grow in is confined between the initial vessels. Therefore
incorporating a randomized sprout migration dynamics
becomes relevant in a three dimensional model, where it is
not a priori clear that sprouts migrating in a random
direction hit a target vessel in a reasonable distance. Here
chemoattractants and the size of the growth cone (i.e.
extension of filopodia in real sprouts) become essential
model features.

Concerning our drug flow simulations we have demon-
strated that drug flows relatively well through all of the
networks. Even in the extreme case—the uncorrelated
system—an infusion time of the order of a few minutes is
sufficient to saturate the vasculature with drug. Therefore
our model predicts that blood-borne drug transport to and
into tumors that grow within a homogeneously vascular-
ized tissue is not limited by the particular morphology of
tumor vasculature. Considering the underlying mechan-
isms that are responsible for this morphology in our model
(and in real tumors) it is plausible that drug reaches
(nearly) all parts of the vasculature: Shear force correlated
vessel collapse naturally leads to elimination of weakly
perfused vessels. In the case of random collapses, pressure
gradients are still sufficient to drive blood through the
vessels, but an order of magnitude slower.
In related work concerning modeling of tumor induced

angiogenesis, McDougall et al. (2006) found that the
morphology of tumor vasculature plays a crucial role in
drug delivery and that changes to key system parameters
could have big impact on the structure of the vasculature.
The origin of this discrepancy with our conclusion lies in
the different model assumption. As outlined in the
introduction, they consider a strictly avascular tumor,
where sprouts migrate toward the tumor, but are not
allowed to enter it. The resulting vessel networks exhibit
extremely high connectivity close to the tumor surface,
however the involved angio-adaptation mechanisms lead to
vasodilation of comparably few pathways. Depending on
the model parameters, the number of high-throughput
vessels, and their distance to the tumor varies sufficiently to
lead to uptake rates which vary by several orders of
magnitude.
In contrast to this we study here a type of tumors like

melanoma, which are primarily vascularized by co-option
rather than vessel ingrowth (Döme et al., 2002, 2007). For
them, as we have demonstrated, a blood-borne ‘‘delivery
problem’’ does not exist. This does however not auto-
matically imply that drug reaches all tumor cells since
neither drug transport through the tumor tissue nor drug
uptake have been addressed (Minchinton and Tannock,
2006). Regarding tissue transport it is known that the
difference between interstitial fluid pressure (IFP) and
microvascular pressure (MVP) is low due to vessel
leakiness. Since convective transport is driven by pressure
differences, high IFP could pose a barrier to drug delivery
(Hassid et al., 2006). On the other hand, leakiness and
MVP-IFP gradients could lead to premature release
predominantly in locally restricted regions around vessels
where blood enters the tumor. Vessels in the outflow
regions would thus be depleted of drug. Locally released
drug would then be transported by IFP gradients out of the
tumor. Furthermore drugs usually consist of large macro-
molecules. Their low diffusibility through the vessel wall
and generally lower diffusibility than O2 could lead to
situations where sufficient O2 reaches certain TCs to let
them remain viable, but not enough drug reaches them to
kill them off due to the lower diffusion radius. Thus we
conclude that much more than the vessel morphology,
processes like transportation out of the vessels through
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convection and diffusion seem to be a key factor in
successful drug delivery.

In future work it would be useful to study the remodeling
of an arterio-venous network. Getting access to a realistic
initial network is likely to pose a hard problem in
particular if it must be artificially created. Further aspects
to assess are interstitial fluid transport and O2 release with
associated intravascular O2 decrease. Finally, vessel col-
lapse and regression dominate the network remodelling
process of the vasculature in the tumor center. In addition
to anti-angiogenic factors solid stress is assumed to play a
pivotal role in these processes. Therefore it would be highly
desirable to incorporate an appropriate description of the
dynamic evolution of solid stress in the tumor and its
surrounding tissue to go beyond the phenomenological
treatment of vessel collapse that we used in the model that
we have presented in this work.
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Döme, B., Hendrix, M.J.C., Paku, S., Tóvári, J., Tı́már, J., 2007.
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