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ABSTRACT: The capillary rise of liquid in asymmetric
channel junctions with branches of different radii can lead to
long-lasting meniscus arrests in the wider channel, which has
important implications for the morphology and dynamical
broadening of imbibition fronts in porous materials with
elongated pores. Using a microfluidic setup, we experimentally
demonstrate the existence of arrest events in Y-shaped
junctions, and measure their duration and compare them
with theoretical predictions. For various ratios of the channel
width and liquid viscosities and for different values of the
feeding channel length, we find that the meniscus within the
wider branch is arrested for a time that is proportional to the time that the meniscus needed to reach the junction, in very good
quantitative agreement with theoretical predictions.

1. INTRODUCTION

Fluid flow through porous media has been a topic of
considerable interest due to its scientific importance and
practical applications.1−3 Among others, imbibition in disor-
dered media plays a fundamental role in various industrial areas,
ranging from paper and textile treatment to oil recovery and
groundwater hydrology.1,4 Spontaneous imbibition is a
particular type of fluid advancement into a medium driven by
capillary force. The average position of the liquid front follows
the Lucas−Washburn scaling law,1,5,6 which turned out to
remain valid down to nanoscopic pore scales7−9 independent of
the geometrical complexity of the porous medium.
In most porous materials such as paper and sand, the

propagating imbibition front forms a single connected interface
between the propagating and the displaced liquid,10 giving rise
to dynamical roughening behavior described by universal
scaling laws.11−15 For pore networks, in which the porous
space forms a three-dimensional random network of
interconnected pipes with a sufficiently large aspect ratio
(ratio between pipe length and radius), the interface between
the propagating and the displaced liquid is disconnected and
consists of many isolated menisci.2,16,17 The characteristics of
the imbibition dynamics of this ensemble of menisci in such
pore networks can be expected to be very different from the
propagation of continuous interfaces in random media. In
Figure 1, a schematic sketch of imbibition in porous material
with short and elongated pores is illustrated. Indeed, a recent
experiment on nanoporous Vycor glass (NVG) representing a
pore network of elongated pores with an aspect ratio of
between 5 and 10 showed anomalously fast imbibition front
roughening.18 The width of the imbibition front, which is the

distance between the most- and the least-advanced menisci,
grows rapidly with time with a growth exponent of close to 1/2.
Recently a scaling theory for spontaneous imbibition in pore

networks with elongated pores was proposed,19 which relies on
the hypothesis of meniscus arrest at asymmetric pore junctions,
i.e., junctions with pores of different radii. The arrest times were
predicted to be proportional to the time that the front needs to
reach the adjacent junctions, which implies that the front width
scales in the same way with time as the average front position,
i.e., with an exponent of 1/2. This theory could explain the
dynamics of spontaneous imbibition in pore networks with
elongated pores. One expects that meniscus arrest at channel
junctions in pore networks is cooperative, which means that the
time at which a channel is filled depends on the fluid
configuration in adjacent channels beyond the nearest
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Figure 1. Schematic shape of the imbibition front in porous structure
consisting of (a) large and (b) short aspect ratio pores.
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neighbors.20 Computer simulations of a pore network model
show clear indications of this cooperativity.19

In this article we study the capillary rise of liquid in
asymmetric Y-shape pore junctions experimentally using a
microfluidic setup and compare it with the theoretical
predictions. Particular focus will be on the meniscus arrest
and its dependence on geometrical parameters, namely, the
lifetimes of, according to ref 21, very stable meniscus
configurations inside pore junctions. A related channel
geometry can be found in the pore-doublet model,22,23 which
consists of two parallel channels of different radii attached to a
common feeding and exit channel via Y junctions. Until now
only the different meniscus travel times in the two channels
have been studied22,23 but not the arrest time of the meniscus
of the wider channel at the feeding junction, which we do in
this article. In a network composed of Y junctions, some
nonwetting phases become trapped, which broadens the
front.18 A similar sketch is demonstrated in Figure 4 of ref 18.
The article is organized as follows. Section 2 is devoted to the

description of the microfluidic experimental setup. The details
of the theoretical modeling of spontaneous imbibition in Y-
shaped channels are presented in section 3. In section 4 the

experimental results are presented and discussed by comparing
them with the theoretical predictions. Finally, the article is
concluded in section 5.

2. EXPERIMENTAL SECTION
A Y-shaped junction is considered in a planar microfluidic device
(Figure 2), which allows us to neglect the hydrostatic pressure. The
junction consists of three rectangular channels: a feeding channel of
width wf and length l0 where the liquid enters the device and two
branch channels, one of them having a wider channel width ww and
another one having a narrow with width wn (wn < ww). In all
experiments wn < wf < ww, although wf is not restricted in the
theoretical approach.

The two branch channels are symmetric with respect to the x axis
whereas the opening angle of the Y junction is α = 60°. The
microfluidic devices are fabricated from Sylgard 184 (Dow Corning)
molded from photolithographically generated SU-8 (MicroChem
Corp.) structures on silicon wafers.24 The height of the positive SU-
8 structures thus defines the channel height of the Sylgard device, δ =
95 ± 10 μm. After curing the Sylgard at 70 °C for 5 h, we remove the
PDMS rubber from the SU-8 master. Occasionally, dust particles
which were previously on the master or small fragments from acute
edges of the SU-8 master are included in the liquid Sylgard and remain

Figure 2. (a) Schematic of the experimental setup. (b) Detailed structure of a Y junction.

Table 1. Different Types of Y-Junction Geometries Labeled A−H, with the Variation in the Length of the Feeding Channel
Indicated with a Number

geometry Wf [μm] Wn [μm] Ww [μm] l0 [μm] Ww/Wn τ [s] lresume [mm]

A1 52 ± 1 47 ± 1 83 ± 1 1070 ± 150 1.8 0.08 ± 0.02 0.14 ± 0.02
A2 53 ± 1 44 ± 1 82 ± 1 3300 ± 80 1.8 1.48 ± 0.04 0.58 ± 0.02
A3 53 ± 1 44 ± 1 82 ± 1 3700 ± 40 1.8 0.66 ± 0.04 0.79 ± 0.02
A4 50 ± 1 40 ± 1 85 ± 1 5100 ± 150 2.1 0.46 ± 0.04 1.22 ± 0.02
B1 53 ± 3 44 ± 2 122 ± 3 1400 ± 80 2.9 0.22 ± 0.02 0.44 ± 0.02
B2 59 ± 1 45 ± 1 131 ± 1 3600 ± 230 2.9 0.92 ± 0.04 1.12 ± 0.02
B3 59 ± 1 45 ± 1 131 ± 1 5500 ± 150 2.9 3.42 ± 0.04 2.06 ± 0.02
B4 59 ± 1 45 ± 1 131 ± 1 8800 ± 120 2.9 7.14 ± 0.04 2.95 ± 0.02
C1 49 ± 1 37 ± 1 50 ± 1 960 ± 140 1.4 0.01 ± 0.02 0.03 ± 0.02
C2 48 ± 2 37 ± 1 54 ± 1 1270 ± 140 1.5 0.03 ± 0.02 0.06 ± 0.02
D1 57 ± 1 44 ± 2 70 ± 1 1020 ± 70 1.6 0.03 ± 0.02 0.09 ± 0.02
D2 55 ± 3 45 ± 1 68 ± 2 1340 ± 130 1.5 0.03 ± 0.02 0.08 ± 0.02
D3 56 ± 1 45 ± 1 68 ± 1 1540 ± 130 1.5 0.06 ± 0.02 0.11 ± 0.02
E 50 ± 1 38 ± 1 66 ± 1 990 ± 180 1.7 0.06 ± 0.02 0.15 ± 0.02
F1 52 ± 1 44 ± 2 102 ± 1 1020 ± 100 2.3 0.11 ± 0.02 0.31 ± 0.02
F2 50 ± 1 41 ± 1 99 ± 1 1180 ± 180 2.4 0.17 ± 0.02 0.41 ± 0.02
G1 59 ± 1 49 ± 1 169 ± 2 790 ± 60 3.4 0.08 ± 0.02 0.29 ± 0.02
G2 60 ± 3 50 ± 2 172 ± 3 1520 ± 90 3.4 0.31 ± 0.02 0.73 ± 0.02
H 51 ± 1 39 ± 2 137 ± 1 1190 ± 130 3.5 0.22 ± 0.02 0.50 ± 0.02
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in the cured Sylgard after removal from the mold. Care was taken that
these objects did not alter the advancing meniscus of an invading
liquid. The Sylgard device and a cleaned glass microscopy slide are
activated in nitrogen plasma (Diener Electronics) and bonded to each
other. Subsequently, the closed device is heated for 2 h at 150 °C and
given time to rest for another 12 h to guarantee a good bond and to
restore the hydrophobic properties of the Sylgard and a reproducible
wettability for the used liquid. The Sylgard devices are cut open at the
channel ends, resulting in feeding channel lengths l0 ranging from 0.8
to 8.8 mm. The width of the feeding channel wf ranges from 49 to 59
μm, and the width of the wide channel ww is varied between 52 and
171 μm to achieve a ratio of ww/wn of between 1.4 and 3.5. Table 1
summarizes the geometrical parameters for all experimentally used
devices.
Fluorinated oil FC-7025 is used as a wetting liquid which does not

swell the microfluidic device and thus guarantees constant channel
geometry throughout the imbibition experiments. Each experiment
was repeated three times and shows quantitatively reproducible results
within the stated error bars. The error bars are determined by an
accuracy of 10 images and depend on the time resolution used in the
experiments. The fluorinated oil has a contact angle of θ ≈ 0° with the
device material as well as with the glass coverslip. The surface tension
σ was determined to be σFC‑70 = 18 ± 1 mN/m using the pendant drop
method.
By fitting the Lucas−Washburn law (section 3, eqs 2−4 and 6) to

the liquid imbibing the straight feeding channel, we absorb several
potential uncertainties into an effective viscosity ηeff. The most obvious
ones are temperature variations in the laboratory, error in the channel
geometry, local imperfections due to the roughness of the channel
walls, and uncertainties in the experimentally determined surface
tension. Of minor importance might be the uncertainty in the
wettability of the Sylgard matrix by FC-70, a potential loss of FC-70
diffusing into the Sylgard matrix, and the shortcomings of the Lucas−
Washburn law neglecting inertia effects. At a laboratory temperature of
22 ± 2 °C, the viscosity is determined to be ηeff = 42 ± 2 mPa s. This
value is a mean value averaged over several realizations at different
laboratory temperatures using different devices. The statistical error
mainly represents the influence of varying temperature. Potentially
systematic errors resulting from other sources such as an error in the
surface tension are not explicitly included. To compare experimental
and theoretical imbibition behavior, ηeff is extracted from a particular
experiment with an effective viscosity very close to the mean value
(caption of Figure 7). The viscosity provided by the data sheet of the
manufacturer25 is about η = 27 mPa s.
An experiment is started by placing a drop of approximate 5 μL of

the fluorinated oil on the cover slide right in front of the feeding
channel, which spreads due to its small contact angle. After a short
time, the spreading droplet reaches the microfluidic Y junction. An
upper value of the positive Laplace pressure of a feeding droplet can be
estimated to be PL < 1 Pa using a contact angle of <10° for FC-70 on
glass and an in-plane diameter of >2 mm. Such a small Laplace
pressure of the feeding droplet can be safely neglected with respect to
the negative Laplace pressure of the meniscus in the microfluidic
channels, which is about 1000 Pa. The liquid imbibition is observed
through the glass slide of the device using an inverted microscope
(Reichert-Jung MeF3) and a high-speed camera (Photron, SA3) with
up to 500 fps at a resolution of 1 k × 1 k pixels. The sample was
illuminated in transmission with an LED light source minimizing
temperature and viscosity changes in the course of the experiment.
The camera is continuously recording in continuous buffer mode, and
recording is stopped when the liquid filaments are sufficiently long.
The recorded raw images are smoothed by applying an anisotropic

filter using free available software ImageJ.26 The subsequent analysis is
conducted with Image Pro Plus 6.3 (Media Cybernetics). An image of
the Y junction without liquid is subtracted from all other images in a
time series. The resulting images showing just the liquid are segmented
by applying a gray-level threshold to identify the menisci of the
imbibing liquid. The positions l of the menisci in the narrow and wide
channels are analyzed separately. The images are rotated so that the

respective channel is aligned horizontally and the horizontal
coordinate of the center of the meniscus is determined automatically.

3. THEORETICAL PREDICTIONS
In the analytical treatment, the same type of Y junction is
considered as described in the section 2. The dynamics of the
liquid rise is governed by volume conservation, viscous drag,
and capillary force, whereas gravity is negligible in the
microfluidic device we intend to describe. In the theoretical
considerations, we will neglect the volume of the Y junction
that connects the three channels. The volume flux (liquid
volume per time) Q of a laminar flow of a viscous fluid in a
straight channel of length l is given by

= ΔQ P
l

c
(1)

where ΔP is the pressure difference between the channel entry
and the channel exit and c is a constant that depends on the
viscosity, η, of the liquid and the geometry of the channel cross
section. For cylindrical channels, it is c = πR4/8η (with R being
the radius of the circular cross section), and for rectangular
channels, as considered in our experimental setup, it is27,28
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The pressure difference at the liquid−gas interface, i.e., at the
meniscus, in the channel is given by the Laplace pressure PL =
−2σ cos θ/R for a cylindrical channel with radius R and

σ θ δ= − +⎜ ⎟⎛
⎝

⎞
⎠P

w
2 cos 1 1

L (4)

for rectangular channels.
The capillary rise of the liquid within a channel is described

by the time dependence of the distance l(t) of the meniscus
from the channel entry, which is according to eq 1

= = −=Q A l
t

P P
l

cd
d

l 0 L
(5)

where A is the cross-sectional area of the channel, i.e., A = πR2

for cylindrical channels and A = wδ for rectangular channels,
and Pl=0 is the pressure at the channel entry. Consequently,

= = −=l t Dt D P P c
A

( ) with 2( )l 0 L (6)

The time t0 when the meniscus of the feeding channel reaches
the junction is then given by l(t0) = l0, i.e.,

= = | |t
l
D

Al
P c20

0
2

0
2

L (7)

where PL is the Laplace pressure for the meniscus in the feeding
channel, given by eq 4 with w = wf.
To proceed, we assume that the junction is immediately filled

and that the two menisci in the narrow and wide channels are
formed instantaneously once the liquid reaches the junction.
The Laplace pressure in the narrow channel, PL,n, is less than
the Laplace pressure in the wide channel, PL,w,
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Thus, the meniscus in the wide channel cannot propagate as
long as the pressure in the junction, P0, is less than PL,w. Upon
liquid invading the narrow channel, the pressure in the junction
P0 rises from the initial value when the liquid arrives at the
junction, P0 = PL,n. When the pressure in the junction reaches
the pressure in the wide channel, the liquid also starts invading
the wide channel. During this arrest time, the liquid in the
narrow channel continues to rise until the distance lresume
measured from the junction is reached. It is expected that
during spontaneous imbibition of asymmetric Y or T junctions
the channel with the thinner width is filled first because it has
the lower Laplace pressure. The displacement sequence in
junctions with four channels could actually be different, as
reported in ref 29, where the channel which is reached first by
the contact line is filled first. In the Y-junction geometries that
we consider, the latter is always the narrow channel.
The distance lresume can be estimated using P0 = PL,w. Suppose

the feeding channel and the junction are filled with liquid and
the narrow channel is filled until a distance ln from the junction.
Then volume flux conservation at the junction requires Q = Qf
= Qn, where Qf and Qn are the volume fluxes in the feeding and
narrow channels, respectively:
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cf, cn, and cw are the constants in eqs 2 and 3 with w = wf, wn,
and ww, respectively. This yields

=
+

P
P

1 l
l

c
c

0
L,n

n

0

f

n (10)

The condition P0 = PL,w for the meniscus in the wide channel to
resume propagation is fulfilled when
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Thus, the distance lresume that the meniscus in the narrow
channel has reached when the meniscus in the wide channel
starts to propagate is proportional to the length of the feeding
channel l0.
The time that the meniscus in the narrow channel needs to

propagate from the junction to the distance lresume is the arrest
time τ of the meniscus in the wide channel. Inserting P0 from
eq 10 into eq 5 yields
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This equation describes the propagation of the meniscus in the
narrow channel. After integration from t = t0, when the
meniscus first arrives at the junction, up to the time t = t0 + τ,
when the meniscus at the narrow channel reaches the distance
lresume, we obtain the arrest time:
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This equation is the equivalent of the scaling relation in a
network of elongated pores19 with lresume from eq 11. Note that
the arrest time is proportional to l0

2, the square of the feeding
length channel with a proportionality constant
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Finally, when the meniscus in the wide channel resumes
propagation at times t > t0 + τ the evolution of distances ln(t)
and lw(t) of the meniscus in the narrow and wide channels,
respectively, is determined by pressure P0 in the junction, which
is determined by the mass balance condition for the flow

= = +Q Q Q Qf n w (15)

with Qf = −P0cf/l0, Qn = (P0 − PL,n)cn/ln, and Qw = (P0 − PL,w)
cw/lw. One obtains
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and the equations of motion
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for j = n,w. Asymptotically one recovers the Lucas−Washburn
behavior for both channels: For t → ∞, one has lj(t) → ∞ (j =
n,w) and thus P0 → 0. Consequently, 17 simplifies for large
times to
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with Dj = 2|PL,j|cj/Aj for j = n,w. The velocity of the moving
menisci is obtained via
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Figure 3. Different stages of menisci propagation along the time line.
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The different stages of menisci propagation are shown in
Figure 3.

4. RESULTS AND DISCUSSION
In this section, we present our experimental results and
compare them with our theoretical predictions. Figure 4 shows
close-ups of the time series of a typical experiment. The liquid
spontaneously invades the feeding channel; upon reaching the
junction, the liquid fills the Y junction and the meniscus is split
into two. Subsequently, the liquid invades first the narrow
branch channel and after a certain arrest time τ also invades the

wide branch channel. During the arrest time, the length of the
liquid in the narrow channel spreads upward a distance lresume
before the meniscus in the wide channel moves forward.
The Lucas−Washburn law does not satisfactorily describe

the imbibition for very short liquid filament lengths, i.e., very
short times.30−32 The crossover time τ* = ρr2/4η30 from the
Bosanquet regime to the Washburn regime is on the order of
10−4 s for our experimental parameters and therefore negligible
compared to the considered time scales for filling the feeding
channel and the arrest times τ. Also the Ohnesorge number Oh
= η/(rρσ)1/2, which reflects the ratio of viscous forces
compared to capillary and inertia forces, is on the order of
10, suggesting that inertia forces are negligible. Thus, the
experimentally analyzed lengths of the imbibing liquid filaments
are sufficient long and it is justified to apply the Lucas−
Washburn law for the theoretical description of the considered
imbibition behavior.
A closer look at the meniscus evolution, as displayed in

Figure 4h, reveals complex dynamics of the meniscus shape
before and after it splits into two menisci, involving even
intermittent backward motion of parts of the wide meniscus
during the propagation of the small meniscus, as demonstrated
more clearly in the time series depicted in Figure 5.
Qualitatively, this behavior is similar to the dynamical evolution
of the meniscus shape based on a diffuse interface model for
capillary rise in a two-dimensional asymmetric junction.33 The
backward motion is more pronounced the larger the difference
between ww and wn and the larger the feeding channel l0 and
also leads to an experimental limitation of the length of the
feeding channel as the large meniscus can even be dragged into
the narrow channel. In our system this happens for channel
length l0 larger than approximately 10 and 5.5 mm for branch
channel ratios of ww/wn = 2.9 and 1.8, respectively. For larger
feeding channels the particular behavior of the liquid menisci in
the junction is no longer negligible.

4.1. Arrest Time and lresume. Experimentally, we identify
the arrest time τ as the difference between the time when two
separate menisci first appear in the branched channels and the
time when the meniscus in the wide channel starts moving
forward. lresume is then given by the distance the meniscus in the
narrow channel advances in this time period. Our results for
different feeding channel lengths (l0) and for different aspect
ratios of the channel cross sections (ww/wn) are shown in
Figure 6(a).
The theoretical prediction for lresume, according to eqs 11, 4,

and 2, depends on l0, wn, ww, εn, and εf as

δ
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It turns out that the last factor f(εn)/f(εf) is very close to 1 for
all parameters we used (1.03 < f(εn)/f(εf) < 1.09), which is why
we plotted in Figure 6(a) lresume as a function of scaled variable
l0((δ + wn)/(δ + ww)(ww/wn) − 1)(wn

3/wf
3) for the

experimental data listed in Table 1. According to eq 21, lresume
increases linearly with the length of the feeding channel l0,
which agrees nicely with experimental observations as
demonstrated for lresume varying by more than 1 order of
magnitude.
According to the prediction of eq 13, the arrest time τ should

increase linearly with l0
2 for a fixed branch aspect ratio ww/wn.

In Figure 4b the arrest time τ is plotted as a function of l0
2 for

two junction geometries with a fixed ratio of the branch

Figure 4. (a)−(g) Time series of FC-70 invading microfluidic Y-
junction B1 in Table 1. Time steps are 0.02 s between images (a) and
(e), whereas the time steps between images (e) and (f) and between
(f) and (g) are 0.12 and 0.44 s, respectively. (h) Schematic
representation of the meniscus evolution as extracted from the back
side of the meniscus in tiles (a) red, (b) green, (c) blue, (d) yellow,
(e) pink, (f) white, (g) black. Note that the meniscus is broad due to
the slanted interface being a result of the out-of-plane curvature of the
meniscus. The different ticks on the side of the branch channels are
scaling marks with a pitch of about 50 m.
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channels of ww/wn = 2.9 and 1.8, respectively, where the feeding
channel length l0 was varied systematically up to the maximum
length. The maximum length of the feeding channel l0 which
can be analyzed for these junction geometries is limited by
approximately 5.5 and 10 mm for branch channel ratios ww/wn

of 1.8 and 2.9, respectively. For larger feeding channels the
meniscus of the wider channel is dragged into the narrow
channel and the theoretical model loses its validity. The arrest
times derived from all other channel geometries are in very
good agreement with this scaling behavior but were varied only
in a smaller range of feeding channel length l0. Equation 13 is
plotted as solid lines for the two Y-junction geometries, and we
again achieve very good agreement between theoretical
predictions and experimental data.
4.2. Dynamical Evolution. An example of the complete

time evolution of menisci positions in the main feeding channel
as well as in the wide and narrow channels of Y junctions with
ww/wn≃ 3 is presented in Figure 7 together with theoretical
predictions. The large ratio of the channel width allows us to
nicely discuss the characteristic behavior.

The liquid enters the feeding channel at x = 0 and t = 0, and
the time t0 at which the meniscus reaches the junction at x = l0
is indicated in Figure 7(a). The meniscus in the feeding channel
is analyzed until it is clearly split into two menisci at the narrow
and wide branches whereas the menisci in the two-branch
channels are already analyzed when they touch the wall of the
channels. Because of this analysis we obtain a small overlap of
the three data sets which corresponds roughly to the extension
of the junction. In our model, however, the volume of the
junction is neglected. Thus, after the junction the theoretical
data lag behind the experimental data as expected. To account
for this time lag we subtract this difference from the
experimental data. Moreover, an additional time shift of
about 0.1s for all setups takes into account the time the
menisci need to adapt their shape to the channel geometry and
orientation.
A fit of the Lucas−Washburn behavior, eqs 2−4 and 6, to the

liquid meniscus imbibing the feeding channel was used to
determine the effective viscosity ηeff for each experiment. By
this protocol we could absorb uncertainties in device or system
parameters as discussed in the methods section and also

Figure 5. (a)−(l) Time series of FC-70 invading a microfluidic Y junction with a long feeding channel demonstrating the slow backward motion of
the meniscus in the wide channel during the initial propagation of the meniscus in the narrow channel. The device used here is B4 (see table).
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account for the differences in viscosity due to temperature
variations. The thus-determined effective viscosity is used to
derive the meniscus position in the narrow and wide channels
using eqs 17. The agreement of the theoretical predictions and
the experimentally obtained behavior is good throughout the
entire imbibition of the Y junction.
In Figure 7 it can be seen that the meniscus in the wide

channel remains arrested for time τ until the other meniscus
travels the distance lresume in the narrow channel. The arrest
time τ and the corresponding lresume are both indicated in Figure
7(a). From eq 13 one obtains an arrest time of τ ≃ 0.20 s for
the given example, which is in agreement with the
corresponding experimental value of τ = 0.22 ± 0.02 s. Figure
7(b) shows the filament length in the wide channel for three
different feeding channel lengths l0. The theoretically predicted
and experimentally determined arrest time τ are indicated by τth
and τex, respectively. Both arrest times agree within the error
bars, confirming the scaling relation τ ≈ l0

2 of ref 19. The error
bar of the theoretical prediction τth emerges from the
uncertainties in S0, wf, wn, ww, surface tension σ, and effective
viscosity.
Figure 8 shows the experimental velocity data for the two

menisci in the narrow and wide channels and the theoretical
prediction from eq 17 for a single experiment. As long as the
meniscus in the wide channel remains arrested, the velocity is
equal to zero in the theoretical prediction and only the velocity
in the narrow channel can be provided. However, for times
larger than τ, the meniscus velocities in both the narrow and

wide channels can be described. In fact, the agreement between
the experimental results and theoretical prediction is very good
up to the interval in which the meniscus in the wide channel is
slightly moving backward (as is visible in Figure 5), which was
neglected in the theory. Theoretically, the time when the
velocity of the wide meniscus becomes larger than zero
determines the arrest time τ.

5. CONCLUSIONS
We studied spontaneous imbibition behavior in asymmetric
microfluidic Y junctions. We found that the meniscus in the
wide channel is arrested for a time that is proportional to the
time the meniscus of the feeding channel needs to reach the
junction (i.e., proportional to the square of the feeding length
channel). The distance lresume that the meniscus in the narrow
channel propagates from the junction until the meniscus in the
wide channel starts to move forward is found to be
proportional to the feeding channel length. These experimental
observations agree quantitatively with theoretical predictions

Figure 6. (a) lresume, as a function of the rescaled length of the feeding
channel l0, cf. eq 21. Experimental data are presented for junction
geometries shown in Table 1. The line displays the theoretical
prediction (group D (□), group A (◯), group B (Δ), group G (▽),
group C (◊), E (left-pointing triangle), group F (right-pointing
triangle), group H (hexagon)). (b) Arrest time τ plotted as a function
of l0

2 for two junction geometries A and B(B1−B4). (See Table 1.)
The line displays the theoretical predictions according to eqs 13 and
14. Error bars in the x and y directions are omitted if they are smaller
than the symbol size.

Figure 7. (a) Time evolution of the menisci positions in wide and
narrow channels and the main feeding channels in device B1 (See
Table 1.) The determined value for the effective viscosity is ηeff = 42.23
mPa s. The solid, dotted, and dashed-dotted lines are the theoretical
prediction via eq 19. τ and lresume are the corresponding theoretical
predictions. Typical values of the error bars are shown for a few points.
(b) Comparison between the arrest time τ of similar devices with
different feeding channel lengths l0 (group B). The amounts of l0 and
the theoretical and experimental values of τ are shown. Vertical lines
show the corresponding arrest time τth. The large error bars represent
the uncertainty in the length of the feeding channel l0; this error is
constant for all data points.
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based on a simple model involving Poiseuille flow in all three
channels and neglecting the complex meniscus dynamics inside
the junction, which is justified as long as the dimensions of the
junctions are small as compared to the channel length. Using
the viscosity as a fit parameter for the dynamical evolution in all
three channels, the proportionality constants of experiment and
theory also agree quantitatively.
It has been hypothesized that long-lasting meniscus arrests

are possibly the physical origin of anomalously fast imbibition
front broadening in nanoporous Vycor glass.18,19 Here we have
provided the first experimental evidence that the basic
ingredients of the scaling theory for imbibition front broad-
ening in pore networks with elongated pores19 is indeed
correct, as the experimental data of Figure 6 confirm the scaling
relation τ ∝ l0

2.19 Concomitantly, we also found that for
extremely elongated pores new physics beyond meniscus arrest
might occur, namely, when the backward motion of the
meniscus in the wide junction is so strong that the entrainment
of air/gas bubbles into the narrow meniscus occurs. A detailed
study of the entrainment process in asymmetric junctions with
long feeding channels as well as its implication for spontaneous
imbibition in pore networks remains for a forthcoming study.
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