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Flocking with a g-fold discrete symmetry: Band-to-lane transition in the active Potts model

Matthieu Mangeat®,"-" Swarnajit Chatterjee ©,>" Raja Paul,>* and Heiko Rieger!-*®
!Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbriicken, Germany
2School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India

® (Received 29 July 2020; accepted 11 September 2020; published 1 October 2020)

We study the g-state active Potts model (APM) on a two-dimensional lattice in which self-propelled particles

have ¢ internal states corresponding to the g directions of motion. A local alignment rule inspired by the
ferromagnetic g-state Potts model and self-propulsion via biased diffusion according to the internal particle
states elicits collective motion at high densities and low noise. We formulate a coarse-grained hydrodynamic
theory with which we compute the phase diagrams of the APM for g = 4 and g = 6 and analyze the flocking
dynamics in the coexistence region, where the high-density (polar liquid) phase forms a fluctuating stripe of
coherently moving particles on the background of the low-density (gas) phase. A reorientation transition of the
phase-separated profiles from transversal band motion to longitudinal lane formation is found, which is absent
in the Vicsek model and the active Ising model. The origin of this reorientation transition is revealed by a
stability analysis: for large velocities the transverse diffusivity approaches zero and stabilizes lanes. Computer
simulations corroborate the analytical predictions of the flocking and reorientation transitions and validate the

phase diagrams of the APM.

DOLI: 10.1103/PhysRevE.102.042601

I. INTRODUCTION

Active matter is a class of natural or synthetic nonequi-
librium systems composed of a large number of agents that
consume energy in order to move or to exert mechanical
forces. An assembly of active particles behaves in very com-
plex ways and displays collective effects like the emergence
of ordered motion of large clusters, called flocks, with a
typical size larger than one individual [1-4]. Flocking plays
a significant role in a wide range of systems across disci-
plines including physics, biology, ecology, social sciences,
and neurosciences [5] and is an out-of-equilibrium phe-
nomenon abundantly observed in nature [6]: from human
crowds [7,8], mammalian herds [9], bird flocks [10], and fish
schools [11,12] to unicellular organisms such as amoebae,
bacteria [13,14], collective cell migration in dense tissues
[15], and sub-cellular structures including cytoskeletal fila-
ments and molecular motors [16—18]. Collective dynamics
is also prevalent in nonliving systems such as rods on a
horizontal surface agitated vertically [19,20], self-propelled
liquid droplets [21], and rolling colloids [22]. Despite the huge
differences in the scales of aggregations for different active
matter systems, the similarities in the patterns suggested that
there might be a general principle of flocking.

A widely studied computational model for flocking is due
to Vicsek and coworkers [23]. In this model, an individual
particle tends to align with the average direction of the motion
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of its neighbors. At low noise and high density, the particles
cluster and move collectively in a common direction, which is
the characteristics of flocking. Toner and Tu [24] developed
a continuum theory describing a large universality class of
active systems including the Vicsek model (VM). They have
convincingly shown that the coherent motion of the flock is a
phase with spontaneously broken symmetry with no preferred
direction, each flock spontaneously selects an arbitrary direc-
tion to move.

Due to the rich physics of the VM [25], numerous ana-
lytical and computational studies were carried out by several
research groups contributing significantly to the understand-
ing of the principles of the flocking transition. Two ingredients
are important for such a kind of transition: the interactions
between the particles (alignment and/or repulsion) and the
shape of the particles. For the Vicsek-like models, pointlike
polar particles align with ferromagnetic interactions without
any repulsion [26-34]. The VM shows a region in the noise-
density phase diagram in which the disordered phase and the
ordered (flocked) phase coexist and in this coexistence region
the ordered phase forms stripes moving perpendicularly to the
average motion direction of the particles, known as bands.
These bands have a maximum width, implying the forma-
tion of several bands in a large system, which is denoted
as microphase separation [31]. The transverse orientation of
the stripes emerging in the VM has been understood within
a hydrodynamic theory [28], which predicts that the long-
wavelength instability is stronger in the longitudinal direction.
In the presence of repulsive interactions, in addition to the lo-
cal alignment rule [35-37], more patterns of collective motion
emerge such as asters (immobile clusters), bands (transverse
stripes), and lanes (longitudinal stripes). Moreover, some pre-
vious studies have shown laning and clustering transitions for
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active matter systems subjected to an external drive, rather
than a flocking interaction [38,39].

In addition to ferromagnetic (Vicsek-like) alignment inter-
actions, nematic alignment between particles has also received
attention [40,41]. Examples are self-propelled elongated parti-
cles with excluded volume interactions, such as self-propelled
rods (polar particles) [42,43] or active nematics (apolar parti-
cles) [44-46]. In these systems with nematic alignment, due to
the stronger long-wavelength instability in the perpendicular
direction with respect to the collective motion, stripe forma-
tion in the form of lanes are observed.

Further insights into the flocking transitions are due to
the recent studies on the active Ising model (AIM) [47—49].
Here it was argued that the flocking transition can be seen
as a liquid-gas phase separation rather than an order-disorder
transition. Upon increasing the density at low noise the system
undergoes a transition from a disordered gaseous phase to an
ordered liquid phase with an intermediate liquid-gas coexis-
tence phase. The continuous symmetry of the Vicsek model
has been replaced by discrete symmetry in the AIM, never-
theless, the model contained the rich physics of the flocking
transition in a much simpler and tractable manner. The main
difference with the VM lies in the full phase separation of the
bands.

In this paper, we study the generalization of the AIM: the
g-state Active Potts Model (APM), which involves ¢ internal
spin states: ¢ = 2 corresponds to the AIM and ¢ =4 was
previously studied in Ref. [50]. Here we consider the APM
on two-dimensional (2D) lattices with coordination number g,
for instance, a square lattice for ¢ = 4 and a triangular lattice
for ¢ = 6. The two main ingredients for flocking are local fer-
romagnetic alignment between the on-site particles inspired
by the standard g-state Potts model and self-propulsion via
biased hopping to the nearest-neighbor lattice sites without
any repulsive interactions. We determine the stationary state
of this model which exhibits collective motion in large re-
gions of the phase diagram, by constructing a coarse-grained
hydrodynamic theory and further analyzing via the micro-
scopic Monte Carlo simulations. The main findings of our
study are the following: (a) The flocking transition in the
APM is a liquid-gas phase transition as observed in the AIM
subject to temperature T = 8!, average particle density p,
and self-propulsion velocity €. (b) In the coexistence phase,
the liquid domains coalesce to form a stripe-like structure,
oriented transversely (denoted in the following as a band) or
longitudinally (denoted in the following as a lane) and moving
perpendicular or parallel to the internal spin state governing
the liquid phase of the stripes. This property leads to a reorien-
tation transition, depending upon the self-propulsion velocity
€, absent in the Vicsek model and AIM. (¢) The characteriza-
tion of the € = O critical point as a first-order phase transition
from high-density ordered phase to low-density disordered
phase for g-state APM (g > 4), different from the standard
g-state Potts model.

This paper is organized as follows. In Sec. II we have
defined the microscopic model and provided technical de-
tails of the simulation protocols. Next in Sec. III we first
construct a coarse-grained hydrodynamic theory from the mi-
croscopic rules of ferromagnetic alignment and hopping to
the neighboring lattice sites and then solve the hydrodynamic

equations for the spatiotemporal evolution of the particle den-
sities corresponding to the ¢ different directions of motion
numerically and determine the stationary states, construct
the corresponding phase diagrams, and analyze the flocking
transition and the reorientation transition. In Sec. IV the ho-
mogeneous solutions of these PDEs are derived analytically,
and a linear stability analysis is performed which reveals the
physical origin of the reorientation transition. In Sec. V we
present the results of extensive Monte Carlo simulations of
the microscopic model and compare the corresponding results
with those predicted by the hydrodynamic theory. Finally, we
conclude this paper with a summary and discussion of the
results in Sec. VL.

II. MODEL

We consider an ensemble of N particles defined on 2D
lattices (e.g., square or triangular) of linear size L with pe-
riodic boundary conditions. The average particle density is
po = N/L?. No restriction is applied on the number of par-
ticles on a given lattice site, and a particle on site i with a
given spin state o can either flip to a different spin state ¢’ or
jump to a nearest-neighbor site probabilistically. A schematic
diagram of this arrangement is shown in Fig. 1. The spin state
of the kth particle on lattice site i is denoted aik, with an
integer value in [1, ¢], while the number of particles in state
o on site i is ny . The local density on site i is then defined by
i = ) _,_; 1y, counting the total number of particles on the
site. The flip probabilities are derived from a ferromagnetic
Potts Hamiltonian Hapy = Zi H; decomposed as the sum of
local Hamiltonians H;:

Pi
H = —zip >0 (@80 — D (1)

Uk=1 1k

where J is the coupling between the particles on site i and the
Kronecker delta 8, i survives only for of = o]. Equation (1)
with ¢ = 2 is equivalent to the local Hamiltonian defined for
the AIM [48]. The local magnetization corresponding to state
o on site i is defined as

me = il =10 s )

Equation (2) with g = 2 retrieves the expression of local mag-
netization for the AIM [48].

The spin flip transition rates are derived form the Potts
Hamiltonian Hapym according to the energy difference be-
tween the new and the old state. We consider a spin flip
of a single particle on site i from state o to state ¢’. Since
only the on-site energy is changed we rewrite the on-site
Hamiltonian as

q
J
Hi= == 07>+ 5o+ q— D). 3)
to=1
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(a) Biased Diffusion for q=4

—» D(1+¢)
D(1—¢/3)

(b) Biased Diffusion for g=6

(c) Spin Flips

— 3 D1+
D(1—¢€/5)
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Wiip(3,2)

2 Wip(1,4)

FIG. 1. Schematic of APM showing biased hopping rates to a nearest-neighbor lattice site for (a) ¢ = 4 and (b) g = 6 states, with rates
D(1 + €) in the favored direction and D[1 — € /(g — 1)] in other directions [more than one particle is allowed on a site but not shown in (a) and
(b) due to clarity of representation]. (c) Spin flips (i.e., directional changes) are performed locally (i.e., without moving the particle) with a rate

Whip(o, o) for a particle changing direction from state o to state o'

Then the energy difference between the new and the old
state is

AH = Hinew _ Hiold — _%[(nf _ 1)2 + (n?, + 1)2]
#a b )= =)@

Then, in analogy to the AIM [48], the transition rate is chosen
in such a way that without hopping detailed balance with
respect to the Hamiltonian Hapy would be fulfilled, i.e., for
a flip of kth particle on site i from state o to state o”:

Wiip(o, 0') = y exp |: — q:i(nf —nd — 1):| 3)
1

Moreover, each particle performs a biased diffusion on the
lattice depending on the particle state o: a particle in state
o prefers to hop in the direction connected to its state o.
Evidently, on a lattice, the number of nearest neighbors should
be equal to the number of states that a particle can assume.
The hopping rate of a particle with state o in the direction p

is defined as

W%g04»==0[y+g%¥Lrle} (6)
€ parametrizes the strength of the self-propulsion [48], i.e.,
€ = 0 describes purely diffusive particles and € = g — 1 de-
scribes purely ballistic particles, implying 0 <€ < g — 1.
When ¢ = 2, the maximum value of € is 1, which defines
a fully self-propelled dynamics in the AIM [48]. According
to Eq. (6), the hopping rate is Wyop = D(1 +€), when o = p
and Wyop = D[1 — €/(q — 1)], otherwise. Note that the total
hopping rate is gD and does not depend on €.

In the limit g — o0, the total hopping rate gD, the maximal
value of € and the total flipping rate must stay finite. Therefore
in this limit one has to rescale the microscopic parameters
such that D = gD, € = €/(q — 1) and ¥ = qy exp(qBJ/po)
are independent of g. Each particle has then a continuous spin
state pointing along direction ¢ € [0, 27r], and the density of

particles n;(¢) in the state ¢ replaces the number of particles
n? in the state o which approaches zero in the limit ¢ — oo
(see also Appendix A). The hopping rates, Eq. (6), are such
that a particle in state ¢ jumps in a random direction with rate
D(1 — €) or in the direction ¢ with rate De. The flipping rate,
Eq. (5), is replaced by a flipping rate density for a spin flip
from state ¢ to state ¢':

2nBJ

Whip(¢, ¢') = % exp { - [ni(¢) — n;(¢')]}- (7

i

Since the new direction of motion after the flip is not neces-
sarily close to ¢, the Vicsek model is not recovered in this
q — oo limit. In the disordered phase (at high temperatures)
the particles perform a run-and-tumble process [51,52] with a
bias depending on €, whereas in the ordered phase (at low
temperatures) the particles flock together and move in the
same direction.

The stochastic process defined with the transition rates of
Egs. (5) and (6) can be realized with Monte Carlo simulation
in discrete time steps Ar in which N single-particle spin
flips or hopping events are generated and accepted accord-
ing to the given rates [48]. In the microscopic time interval
At /N arandomly chosen particle either updates its spin state
o to the new state (direction) o', chosen among the pos-
sible ¢ — 1 states, with probability pgi, = Whip(o, ')At or
hops to one of the neighboring sites with probability phep =
> i Whop(0, p)At = gDAt. The probability that nothing
happens is represented by pyaic = 1 — (Pgiip + Phop)- The sum
of probabilities pgi, and ppop is

J !
PAip +phop = {CID+ Y eXp |: - %(n? - n:'y - 1)]}At
< [¢gD + y exp(gBJ)]At. (3)

Dwait Will be minimum when the sum of pgip and pyp is max-
imum. Now, to keep py.i positive, the quantity pgip + Phop
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must be smaller than 1 and implying the inequality Ar <
[gD + y exp(gBJ)]~'. We take the largest time interval
possible,

At =[gD + y exp(gBN] ", )

to reduce py, to a minimum and thus save computation time.

J

III. HYDRODYNAMIC EQUATIONS AND THEIR
NUMERICAL SOLUTIONS

A. Derivation of hydrodynamic equations

In this section, we will derive the hydrodynamic equation
for the g-state APM. From the flipping and hopping rules, we
can derive the master equation defining the dynamic equation
for the number of particles n{ (t) on site i in state o:

q q
(nf(t + dt)) = <n§’(t)|:1 —dt Z Whop(o, p) — dt Z Whip (0, o’):| >+<Z nf_p(t)Whop(o, p)dt + Z n;"(t)Wﬂip(o’, a)dt>,
p=1

p=I o'#o o'#o
(10)
where the subscript i 4+ p denotes the neighbor of site i in the p direction. In the limit d¢ — 0, this expression yields
q
An?) =" Waop(a, p)[(n7_,) = (n7)] + D (17 Waip(0”, o) — nf Waip(o, o). (11)

p=1

With Eq. (6) for the hopping rates Wy, can be expressed as

Xq:Whop(O', pne,) — ()] = D<1 _

p=l1

€

q—1

o'#0

SOl ) ]+ 225 [}~ )] )

p=l1

where the first term corresponds to a jump in a random direction and the second term to a jump in the favored direction. With

this the master equation (11) is

(n7) = D<1 -

q=1) = q

: 1>Zq:[(”§’p)—(n;f)] n ql_)e1

O o) = )]+ D (0 Waip(o”, o) — nf Waip(o. 0)). (13)

o'#0o

Now we take the hydrodynamic limit for small lattice spacing a ~ 1/L, corresponding to large system size limit L — oo. We
define the average density of particles in the state o at the 2D position X as p, (X, t) = (n? (¢)) for which the coordinate x matches
the lattice site i at integer positions. In Appendices B and C, we show that in this hydrodynamic limit the master equation (13)

transforms into

3 po = Dy} ps + D137 po — v0)ps + Z loors 14)
o'#o
where
qBJ r (P —,00/)2
I(ra’z |:_(10(r —}—,0{,/)—1———0[—2 (p”_lo“’)’ (15)
P P p
D D D
p=L(1+—=-), b =T(1-—5) =I5 (16)
4 qg—1 4 qg—1 q—1

Dy and D, are the diffusion constants in the parallel direction
€| = (cos ¢, sin ¢, ) and in the perpendicular direction e; =
(sin ¢, — cos ¢, ), respectively, with ¢, = 27 (c — 1)/q the
favored direction angle for a particle in state o. v is the
self-propulsion velocity in the direction e. 3y = ¢ - V and
0, = e, -V are, respectively, the derivative in the parallel and
perpendicular directions.

In Appendix C we calculate the flipping term I, given
in Eq. (15) where a = (¢BJ)*(1 —2BJ/3)/2 and r = 6(q —
1)’a,,c /g depends only on the temperature T = B~!. We
take y = exp(—¢gpBJ/po), and we assume that the magnetiza-
tion m, in state o, defined in Eq. (2), is small compared to the
local density p. We keep only the O(m? ) terms in a m, < p
expansion. Moreover, we assume that all magnetization are
identically distributed Gaussian variables with variance o, 0

(

proportional to the local mean density. This assumption is
verified by MC simulations of the microscopic model shown
in Fig. 14 below. We see that r simply rescales the densities
ps for which reason we can take r = 1 without any loss
of generality. In passing we note that the value r =0 (i.e.,
a,, = 0) corresponds to the conventional mean-field expres-
sion (without taking fluctuations into account) in which the
magnetization are equal to their average values. The hydrody-
namic equation (14) can be rewritten as

qBJ
00s = Vx DsVxps —ve) - Vypo + E [—(po + 0s7)
o'#o p
r ()00' - pa’)2
—_] - = — =77

0 pz i|(po - pa’)v (17)
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with the diffusion tensor D, given by diag(Dy, D) in the
local frame of the state o':

__(cosp, —singgs\ (D 0 COS ¢ Sin ¢,
Do = (sinqb(, COS ¢ )( 0 DL) (— sin¢, cos qb(,)

gD qDe  rcos2¢p,  sin2¢,

T4 L+ 4(q — 1)(sm2¢>t7 —coqu)J)’ (18)

where ¢, = 2w (o0 — 1)/q and I, the identity matrix.
In passing, we note that the ¢ — oo limit of this equation
can be performed by rescaling the microscopic parameters

asD=¢gqD,e=¢/(qg— 1) and y = gy exp(gBJ/py) and in-
troducing the average density of particles p(x,t;¢) in the
continuous state ¢ € [0, 2z ], which corresponds to ¢, in the
limit ¢ — oo, at the 2D position x. In Appendix A we obtain

Up($) = Vs - D@)Vap(@) — vey(@) - Vap(®)
¥ 7/027[ T @+ -1~ -
_ @) =P O - pen. a9)
where @ = (mpIY(1 ~281/3)/2. v=De, e(9)=

(cos ¢, sin¢), and

cos 2¢

D(p) = 12+—(Sm2¢ sin2¢ ) (20)

—cos2¢

In the literature [24,48], the hydrodynamic equation is
usually formulated in terms of the total density p(x,t) and
the polarization vector P(x, ) defined as the average direction
of the motion. In Appendix D we show that the polarization
vector can be expressed as

I ekoyeta

— ea_ — —

o=1 p o=1 p
with e, = (cos ¢, sin ¢, ) corresponding to e for the state o.
The polarization vector used for active models is then linked
to the magnetization m, defined naturally for the Potts model.
Taking the sum over all states in Eq. (17), we obtain for the

density p

q q
o p = Z Vi D6 Vxps —v Zea - Vx0o, (22)
— o=1

where the flipping terms canceled due to the antisymmetry
of I,,. Using Eq. (21) and the expression of ®, given by
Eq. (18), we get

gD o
Bt,o—TV p—vVy

q
PP+ [(aj —2) > cos2¢n)po
o=1
q
+20,9, Zsinacba)pa}. (23)

o=1

The last term of this equation is not present in the Toner and
Tu equations [24] and cannot by expressed with the polar-
ization vector. Hence the APM appears not to fall into the
universality classes described by the Toner-Tu model.

B. Numerical solutions

We solve Eq. (17) numerically and set D = 1, J = 1, and
r = 1 (without any loss of generality) defining the scaling of
time, temperature, and density. We use FreeFEM++ [53], a
software package based on the finite element method [54].
The equations are integrated for a discrete time with time
increments At such that #, = nAt is the time at the nth step.
We define p{”(x) = p,(x,,) as the density at the discrete
time ,. As initial condition p{*) we take a high-density bubble
or stripe (horizontal or vertical) with nonstraight boundaries
in a low-density phase. The low-density phase is a gas phase
(m, = 0) and the high-density phase a polar liquid phase in
the state ¢ = 1 (m; > 0). Equation (17) can be rewritten as

p((;n-&-l) ¢(7n) = At [Vx Dy pr((,—n+1) —vey - prén-&-l)

£ YK (oD pf,"“))}, e
/7&7
with p(”)(x) the known particle density at time ?,, ,o((,"“)(x)

the unknown particle density at time #,,;, and K:;) (x) the
(symmetric) quantity defined by
2
Kaa’ = ﬂ(pa +pa)_1_£ _QM
P P P
evaluated at time #,. The final time is denoted #,,,. From
the Lax-Milgram theorem [55], these linear equations have
unique solutions p"™V(x) for the (n + 1)th step. The weak
formulation of these equations is the integral equation:

/ dx |:Z we pI + At Z VW, - Dy Vypl
Q o o

+ vAt Z wee - pr{(TiH-l)
o

(25)

— At Z(w” — Wy )K(")( (n+1) pl(77f+1))j|

o'>0

/ dx ng,o(") (26)

where w, (x) are test functions. This equation can be written
in the form b(w,, ps) = l(w, ), where b(w,, o, ) is a bilinear
function and /(w, ) is a linear function of the space of inte-
grable functions (L'!). To solve this integral equation, space is
discretized into a triangular mesh-grid with N vertices on the
boundaries. A representation of these grids used for ¢ = 4 and
g = 6 is shown in Fig. 2 for N' = 20 vertices. Note that the
precision of the numerical solution is increased for a narrow
grid (M > 1) and small time increments (A7 < 1).

The functions are then calculated at the nodes of the
mesh grid and interpolated linearly over the complete space.
The number of nodes is of order O(N?), which corresponds
to the number of unknowns in the numerical problem (for
each state o). The interpolation is made with the help of the
Lagrange polynomials e;(x) forming a base on the discretized
space and defined by its value on the nodes: 1 at the ith node
and O at other nodes. Then the density function is p,(x) =
Zi po.i €i(x) for a value p,; at the ith node. Using the lin-
earity of the integral equation and replacing the test functions
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FIG. 2. Triangular mesh grids taken to integrate the hydrodynamic equation [Eq. (17)] for ¢ = 4 (left) and g = 6 (right) are represented

here with AV = 20 vertices on each border.

by Lagrange polynomials we get ) j Pa,jblei, ej) = I(e;) for
all i. This can be rewritten using the matrix formulation as
MR =V where M is a matrix with elements M;; = b(e;, e;)
and R, V are vectors such that R; = p, ; and V; = I(e;). The
solution is then given by R = M~'V. The computational time
has a complexity proportional to the number of nodes (order
N?), and it takes approximately 20 hours for A" = 100 and
tmax/ At = 10* time steps, on a 4 GHz processor.

In Figs. 3(a)-3(b) and 3(e)-3(f) we show the examples
of the stationary phase-separated profiles obtained for the
four-state APM with 8 = 0.75, L = 50 and two values of e:
€ = 0.5 shows a transverse band and € = 2.5 a longitudinal
lane. Similarly, in Figs. 3(c)-3(d) and 3(g)-3(h), we show
the corresponding data for the six-state APM with 8 = 0.65,
L = 50 and two values of €: € = 0.5 shows a transverse band
and € = 4.5 a longitudinal lane. For all these solutions, the
numerical parameters are At = 0.2 and N = 100, and the sta-
tionary profiles are plotted at the time f,,,x = O(10%), chosen

sufficiently large to obtain the stationary profile depending
on the initial conditions and physical parameters. For small
values of € we observe in Figs. 3(a)-3(d) a band motion
p(x — ct) with a velocity ¢ larger than the self-propulsion
velocity v, presenting an asymmetric profile along x. For large
values of € we observe in Figs. 3(e)—3(h) a lane formation p(y)
moving with a velocity v, appearing as a symmetric immobile
profile. This behavior indicates the presence of a reorientation
transition which takes place at € = €,. For these parameters,
we note that €, >~ 2.0 for¢g =4 and €, ~ 3.8 for g = 6.

The reorientation transition can occur on the basis of the
characteristic times of each microscopic process: the ballis-
tic transport Thanisic ~ 1/v, the longitudinal diffusion r(lliff ~
1/Dy, the transverse diffusion rdliff ~1/D,, and the spin-
flip from an unfavored to a favored spin orientation g, ~
exp(—gpJ). In the temperature range T € [1, 5], the charac-
teristic flip time is around 1/29, which is smaller than the

longitudinal diffusion time Ta‘l‘iff- For small values of €, one

@19 po‘:%.gs p&:%.i_) ®) LT @L9 & 1.7
|7l =135 — po=145)
1.6
1.5
1.4
1.1 ) ) ) . . . 1.3
—25.0—12.5 0.0 12.5 25.0 .0 125 25.0 375 50.0 '
xT x
(e)2.8F— =1 P =161 ® =12 "= 1.6 () 20
94— p=13 — pp=19 | L— p=14 — py=18| ’
. 1.8
520 1.6
=y
1.6 14
L2 1.2
0.8 ; . ; -~ L ,
—25.0—12.5 0.0 125 25.0 5 10 1520 25 30 35 40

Y

Y

FIG. 3. Stationary profiles [(a),(c),(e),(g)] and snapshots of the bands [(b),(d)] and lanes [(f),(h)] (red and blue denote the liquid and gas
phases, respectively) of the APM. [(a),(b)] Band motion for g = 4, 8 = 0.75, and € = 0.5 where pg,s = 1.10 and p;;; = 1.69, and [(c),(d)] for
q =06, =0.65,and € = 0.5 where p,,s = 1.30 and pjiq = 1.75. [(e),(f)] Lane formation for g = 4, 8 = 0.75, and € = 2.5 where py,s = 0.815
and pjiq = 2.40, and [(g),(h)] forg = 6, B = 0.65, and € = 4.5 where pg,s = 1.04 and pjq = 2.11. The reorientation transition occurs for g = 4
at € = 2.0 between (b) and (f) plotted for py = 1.33, and for ¢ = 6 at ¢ = 3.8 between (d) and (h) plotted for py = 1.5. The linear system size

is L = 50, and the numerical parameters are At = 0.2 and N = 100.
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FIG. 4. Phase diagrams of the g-state APM: (a) Temperature-density phase diagram for ¢ = 4 and € = 2.5 and (c) for ¢ = 6 and € = 4.
(b) Velocity-density phase diagram for ¢ =4 and 8 = 0.75 and (d) for ¢ = 6 and 8 = 0.65. The linear system size is L = 100, and the
numerical parameters are At = 0.1 and A = 200. The stationary state is reached for the final time #,,,, = 1000. In all phases diagrams the
regions where transverse band motion and longitudinal lane formation are stable within the phase-separated domain (G+L) are shown.

has thi-ff ~ 'L'J'iff & Tpallisics implying that the timescales for
transverse and longitudinal diffusion are both of order one.
The situation is then similar to the AIM analyzed in Ref. [48]
in the limit € — 0, allowing only transverse bands. On the
other hand, for large values of € (i.e., close to ¢ — 1), one
has rdiiﬂ- > Thanistic, iMplying that the longitudinal ballistic
transport is faster than the transverse diffusion allowing lon-
gitudinal lanes. In other words, for large velocities, a weakly
perturbed longitudinal lane will be stable, in which case any
transverse perturbation will vanish due to the fast longitudinal
ballistic transport. In contrast, for small velocities, a weakly
perturbed transverse band will be stable, in which case the
longitudinal perturbation will vanish due to the faster diffusive
process. A rigorous quantitative explanation of this reorienta-
tion transition will be presented in Sec. IV, based on a linear
stability analysis of the homogeneous solutions.

In Figs. 4(a)-4(b) we present the temperature-density (for
€ = 2.5) and the velocity-density (for § = 0.75) diagrams for
the four-state APM. The binodals pg,s and piiq separate the gas
(G) and liquid (L) domains from the phase-separated domain
(G+L) while the line p, represents the ordered-disordered
transition at € = 0. In the (G) and (L) domains, the disor-
dered and ordered homogeneous solutions are stable while in
the (G+L) domain, inhomogeneous profiles can be observed.

The values of these binodals are obtained from the station-
ary phase-separated profiles, representing the lower and the
higher values of the density profile. Two different inhomoge-
neous profiles can be seen for the APM: a transverse band
of polar liquid at small € and large T values and a longitu-
dinal lane of polar liquid at large € and small 7" values. For
fixed € = 2.5 the reorientation transition occurs at 8 = 0.53
[independent of the density pp; cf. Fig. 4(a)] and for fixed
B =0.75 at ¢ = 2.0 [independent of py; cf. Fig. 4(b)]. Note
that the liquid phase does not appear for T > T, leading to
a liquid-gas phase diagram with a critical point located at
T. ~ 2.4 and pg = +o0 as already described in Ref. [48] for
the AIM. Figure 4(c)—4(d) shows the temperature density (for
€ = 4) and the velocity density (for § = 0.65) diagrams for
the six-state APM. We obtain similar liquid-gas phase dia-
grams as for ¢ = 4, with a critical temperature 7. >~ 2.8. The
reorientation transition takes place for 8 = 0.65 at € = 3.8;
cf. Fig. 4(d).

IV. HOMOGENEOUS SOLUTIONS AND LINEAR
STABILITY

The homogeneous solutions, p,(X) = p, = const, must
satisfy the relation p = py in order to fulfill [ dx p(x, 1)/L* =

042601-7



MANGEAT, CHATTERIJEE, PAUL, AND RIEGER

PHYSICAL REVIEW E 102, 042601 (2020)

po- A trivial homogeneous solution for Eq. (17) is given
by p, = p, for all pairs (o, c’) implying p, = po/q. The
magnetization corresponding to this solution are m, = 0, cor-
responding to the disordered homogeneous solution. Next
we examine if an ordered homogeneous solution exists. We
consider a broken symmetry phase favoring right-moving
particles (spin state ¢ = 1) corresponding to a positive mag-
netization m,—; = mp and a density p,—; larger than the
density of the other states. All other states have the same
magnetization: —myg/(g — 1) such that the total magnetization
is zero. Then we have p, = (pg — mo)/q + my and p, =
(po — myo)/q, implying that p, — p; = mp and ps + por =
2(po — mo)/q + mp. From the flipping term I, , given by
Eq. (15), the magnetization m, must satisfy the equation
2
|:2,3J - Ly g™ am—g]mo —0. (@27
o Po I

This equation has three different solutions: (1) my = 0 corre-
sponding to the trivial disordered solution and (2) two ordered
solutions with

sz—oz—(q_zj)ﬂj{lzt\/l+
0

4o
(g — 27(B])? } @

where o = 28J — 1 —r/po and o = (gBJ)*(1 —28J/3)/2.
These ordered homogeneous solutions exists only when
4o + (g — 2)*(BJ)* > 0, i.e., when
2¢*(1 —2BJ/3)r

(q —2)* +2¢*(2BJ — 1)(1 —2BJ/3)
which defines the density p, corresponding to the minimal
value of py for which an ordered homogeneous solution ex-
ists. Additionally, the temperature must satisfy the relations
(g —2)*+2¢°QBJ —1)(1 —2BJ/3) > 0 and 1 —28J/3 >
0 giving

Po > = Pk, (29)

V64> — 64> +5¢*/2
242

This inequality implies that the ordered liquid phase does
not exist for temperatures larger than 7.(g), correspond-
ing to the critical temperature of the liquid-gas transition.
T.(q) is a strictly increasing function of g with special
values: T,(2) = 2, T.(4) = (1 — ~/22/8) "' ~ 2417, T,(6) =
(1—/5712) ' ~2.820, and T.(+o00) = (1 — /5/8) =~
4.770.

The magnetization given by Eq. (28) can be rewritten by
using

T(q) '=1-

< BJ < % (30)

oo ar 00 — Px
1+ = . 3D
(q—22BI»*  (g—2)*(BI)* p«po
derived from Eq. (29) defining p,. Then, we obtain for the
magnetization

_G=2B7 [ [P0 p

M — =My M5, (32)
2a 0 Py £0
where My=(qg—2)8J/a and M| = /r/ap, are

temperature-dependent constants and § = /(00 — px)/P0
is a variable with values between O and 1. When py = o,

(i.e., § = 0), the magnetization is equal to M, and increases

(decreases) with py through the maximal (minimal) value
given by My + M, (Mo — M,). Depending on the temperature,
the maximal value can be larger than 1 (My + M; > 1) and
the minimal value is always negative (My — M; < 0).

In Fig. 5 we represent the normalized magnetization myg /oo
of homogeneous solutions for g =4 and ¢ = 6 as a func-
tion of the average density py which follows Eq. (28). The
transition between the disordered phase (my = 0) and the
ordered phases (mg # 0) is a transcritical-type bifurcation
instead of a pitchfork bifurcation for the active Ising model
(g =2) and takes place at the density p,. We represent
also the stationary state obtained numerically starting from a
phase-separated profile at ¢ = 0, determining the most stable
homogeneous phase. We remark that the numerical ordered-
disordered transition happens for a density larger than p,., due
to the transcritical property of the transition.

Now we look at the stability of the three different ho-
mogeneous solutions. We add a small perturbation 60, (X, t)
to the homogeneous solution. We expand the hydrodynamic
equations to first order in this perturbation §p, and analyze
the time evolution of the perturbation of the disordered homo-
geneous solution in Sec. IV A and of the ordered solutions in
Sec. IV B. If the perturbation vanishes at large times, then the
homogeneous solution is stable.

A. Linear stability of disordered homogeneous solution

Adding a small perturbation to the disordered homoge-
neous solution, the particle density is given by p,(X,1) =
po/q + 8ps (X, t) for all states o. From Eq. (15), the flipping
term is up to first order in 6o, :

L = |:2,3J -1- é:|(8/00 - 6100’) = MO(‘SPG - 8/)0’)’

(33)
where wo =28J — 1 —r/py as defined previously. Taking
the 2D Fourier transform of § o, (X, t) such that

dk —
3pa(X,t)=/WCXP(ik-X)Spa(k,t), (34)

Eq. (17) gives the evolution of SE(k,t) following the
equation

0,80y = (=K - Dok — ivk - €)5p, + 10 ), (505 — o).
o'#o
_ . (35)
Denoting R = (8, Spq)T, this last equation rewrites
as 0R = MgR with the matrix Mg, defined by its
components

[Mgas]m,r = (_k : :Dak —ivk - € + q/LO)‘s(ra’ — Mo, (36)

with 6, the Kronecker delta. Since the matrix M, is sym-
metric, it is diagonalizable. We define 2, the eigenvalues

of this matrix. Then Mg, = P~'AP, where Ajj = x;as(s,-, is
a diagonal matrix and P is the matrix of the eigenvectors.
The evolution is then given by R(t) = exp(Mt)R(0) where the
exponential of the matrix is expressed in terms of the eigenval-
ues as R;(t) = P;' exp(kéast)ijRk(O). In the eigenspace the
evolution of the vector PR(¢) is exponential. Then the pertur-
bation vanishes only when the real part of all eigenvalues is

negative.
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FIG. 5. Normalized magnetization my/py of the homogeneous solutions for ¢ =4 and 8 = 0.751in (a) and g = 6 and 8 = 0.65in (b) as a
function of the average density p,. We show the analytical solutions given by Eq. (28) and the stability of these solutions analyzed in Secs. IV A
and IV B for the disordered and ordered solutions, respectively. The square symbols represent the stationary state of the numerical solution for
L = 100 and the numerical parameters At = 0.2 and N = 200, starting from a phase-separated profile at € = 0 for which the stationary state

is homogeneous for all density values.

In Appendices E1 and F 1, we show that the disordered
solution is stable when ug < 0, for ¢ = 4 and g = 6, respec-
tively. This inequality is equivalent to r/py > 28J — 1. For
BJ < 1/2, this relation is always verified and for gJ > 1/2,
this relation implies that

r

= 28] — 1 = Pgas; (37)

Lo

which defines the gas spinodal ¢y,s, the maximal density for
which the disordered homogeneous solution is stable. Note
that ¢, = 400 for BJ < 1/2. We can then write the relation
with p, (for g > 2):

Peas — Px

r

2 -1
2 opr— 17 - 2;81/3)}

-2y > 0.

(38)

=[2,31—1+

Then @g,; is larger that p, for all temperatures, then the disor-
dered solution stays stable when the ordered solution appears

J

for ¢ > 2. The ordered and disordered solutions may be both
stable at a given density. In Fig. 5 the stability of the disor-
dered solution is represented for ¢ =4 and g = 6, and the
transcriticality property of the bifurcation is compatible with
the relation ¢g,s > .. When g = 2, we recall that ¢g.5 = 0
[48].

B. Linear stability of ordered homogeneous solutions

Adding a small perturbation to the ordered homogeneous
solution, the density of particles in state o =1 is given
by pi1(X,t) = (po — mg)/q + my + §p1(X, ) while the den-
sity of particles in the other states o # 1 is p, (X,1) = (o9 —
mo)/q + 8ps(X,t). We denote in the following Sp(x, ) =

q

> 8ps (X, 1), the perturbation to the total density. The flipping
o=1

term defined by Eq. (15) has two different components: one
for the flip from spin state 1 to any other state o, denoted

by Il((lr), and another for the flip between two states o and

o' different from spin state 1, denoted by / ;%,) Only the first
term on the rhs of E% (15) gives a linear contribution of the
perturbation 6o, to [ ). Tt follows that

lo

—2m r m m2 m
1Y = |:q,81(5,01 4 8p,) — 2,61(1 _ q——0>5,0 +Lsp— 2050, — 8p0) + 2a—§8pi|—0. (39)
2 po £0 £0 Py Po
Denoting M = my/ py and using the relation o + (¢ — 2)BJM — aM?, we get
IV = M(gBJ — 2aM)8py + M(gBJ + 2aM)8p, + (@M? — 1)8p. (40)

The contribution to Iﬁ) linear in the perturbation 8, derives from the second term on the rhs of Eq. (15). Then using the

definition of M, it follows that

9 = [W -l zm@](apa — 8p51) = M(aM — gBJ)(8ps — 8p5). (41)
Lo Po

Taking the 2D Fourier transform of 8 o, (X, ¢) defined by Eq. (34) and using Egs. (40) and (41), the evolution of z{o; given by

Eq. (17) becomes for the o = 1 state

8,8p1 = [k - D1k — ivk - e + (g — Duldpr +v Y 5p,, (42)

o#l
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FIG. 6. [(a),(b)] Stability diagrams for ¢ =4 and g = 0.75 and [(d),(e)] for ¢ = 6 and B = 0.65. In (a) and (d), the domains where a
perturbation along x (A < 0) oralongy (A, < 0)is stable, are displayed. The two stability domains are separated, respectively, by the spinodals
gz)l'!q and (plﬁq. In (b) and (e), these analytical domains are compared to numerical solutions, starting with a small perturbation around the ordered
homogeneous solution. Disks: both perturbations vanish, up triangles: only perturbation along x grows, right triangles: only perturbation along
y grows, squares: both perturbations grow. (c) €, value as a function of the temperature 7 = B~! for ¢ = 4. The same quantity is shown in (f)
for ¢ = 6. Transverse and longitudinal stripes are stable, respectively, below and above this line. The plotted asymptotic expressions correspond
to Eqgs. (47)—(48) in (c) and Egs. (51)—(52) in (f).

and for the other states o # 1

_— _— — + _—
dpy = (—k - Dok — ivK - ) + k)8py — udpr — % > 500 43)
o o'#l,0
where u = M(gBJ — 1 — 2aM —i—oﬂ\\ﬁ), v=M[gBJ —(q—1)+2aM+(q— DaM?], and k = M[—(q — 1)gBJ + 1+ (g —
4aM — aM?]. The vector R = 6oy - (Spq)T follows the equation ;R = MjqR with the matrix Mjq defined by its

components
[Mygl,, = [-k- D1k —ivKk-ej + (g — Duldis + v(1 = 810),

K+v
[Mliq]a?gl’g/ = (_k . on —ivk - € + K)(SGO’ - /’L(Sla’ - qj(l - 51(7’ - 6UU’)~ (44)

To get the stability of the ordered homogeneous solutions, we need to calculate the eigenvalues of Mj;q. In Appendices E2 and
F2, we show for ¢ = 4 and g = 6, respectively, that the ordered solution is stable only when the magnetization is equal to
My 4+ M, § corresponding to the largest value of M in Eq. (32). For each of the two values of g, we can define two eigenvalues
Apand A :if A < O a perturbation in the x direction (the assumed direction of motion of the ordered homogeneous solution) is
stable, and if A < 0 a perturbation in the y direction (perpendicular to the assumed direction of motion) is stable. In Appendix
E 2, for ¢ = 4, the expression of these two eigenvalues are

w+v De  Au[=3u% +2uv + vk + v)] (4De)2

A= -—D —_— = 45
I T30 3 Gu — )Gk +v) 3 (43)
D 4 4De?
ho=-p- KEVDE a (=) (46)
3u—v 3 Bu—=v)Bxk+v)\ 3
(
In Fig. 6(a) we show the velocity-density stability dia- according to the signs of A; and A;. We can then extract

gram for a fixed value of the temperature (8 = 0.75) plotted  the liquid spinodals (pl‘lq(e) and (pﬁ;l(e) as the boundaries
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of these domains, defined by the lines Ay =0 and A; =0,

respectively. Note that ¢q = max(<pl|}q, (plﬁ]) corresponds to
the generalization of the liquid spinodal defined in the AIM
[48]. In Fig. 6(b) we represent the numerical behavior of an
ordered homogeneous solution slowly perturbed along x or
y directions, such that Ap(t =0) = 1073, obtained by solv-
ing numerically Eqs. (17) with FreeFem++-. Four different
regions are then derived depending on the evolution of the
two kinds of perturbations. The analytical prediction of the
spinodals agrees well with these regions, up to numerical in-
accuracies in the region close to spinodals where the dynamics
is slowed down.

The ordered homogeneous solution is always stable for a
sufficiently large density (here py > 2), whatever the direction
of the perturbation. If the density py is decreased at fixed
value of € and B, the liquid phase becomes unstable first for
a perturbation along x when € < ¢, and for a perturbation
along y when € > ¢, (here €, = 2.0). The perturbation along
x and the perturbation along x create a density profile p(x, t)
invariant in the y direction and a density profile p(y,?) in-
variant in the x direction, respectively. Therefore we conclude
that a transverse band is forming for small values of € and a
longitudinal lane for large values of €. Note that the stability
of the phase-separated stripes is not changed whatever the
value of the density py between the two binodals pg,, and piiq,
which plays a role for the volume fraction of liquid and gas.
When the density py is decreased (staying above the value p,),
the liquid phase becomes unstable for the two perturbations.
The value of €,, where the reorientation transition takes place,
can be deduced from the equality of the spinodals (pﬂq = ‘Prﬁ
equivalent to the system Ay = A; = 0. In Appendix E2 we
get an approximative expression of €, for a temperature close
to 7T,:

3[1 N 16 + 23M,
€, =
: 40Mo( — 2 + Mo + M)

i+ o0 |, @)

which gives at the first order in the (7, — T') expansion:

T.—T
e ~3[1-0.981 +o . (48)
T
In Fig. 6(c) we compare these expressions with the exact
solution of €, solving numerically the system Ay =1, = 0.
Eq. (47) gives the best approximation and Eq. (48) is close
to the line €, = 3T /T also presented in Fig. 6(c). Below the
line at € = €,, the transverse bands are stable whereas the
longitudinal lanes are obtained above this line. Note that at
€ = 3 only longitudinal lanes are stable and the transverse
bands are always observed at € = 0.

In Appendix F 2, for g = 6, the expression of two eigenval-
ues Ay and A are

p+v 3De 3651 +2uv+kv) (@)2

Aj=—D+
5u—v 10 Gu—v)3(5kc +v) 5
(49)
+ v 3De 12 6De \ 2
S =
S5u—v 10 Gpu—v)SGk+v)\ 5
(50)

In Fig. 6(d), we represent the velocity-density stability dia-
gram for a fixed value of the temperature (8 = 0.65) plotted

according to the sign of A and A, . The different domains
obtained for ¢ = 4 are retrieved, and the spinodals are con-
structed at the same manner. In Fig. 6(e), we reproduce,
identically to the g = 4 problem, the numerical behavior of
an ordered homogeneous solution slowly perturbed along x or
y directions solving numerically Eqgs. (17) with FreeFem-++-,
showing the accuracy of the spinodals. In Appendix F2 we
also obtain an approximative expression of €., where the
reorientation transition takes place, for a temperature close
to 7T,:

T 12Mo(1 — M2)

which gives at the first order in the (7, — T') expansion:

M + O(Mf)}, (51)

T.—T
€ ::5[1—0.869 - +] (52)
In Fig. 6(f) we represent the exact solution of €, solving
numerically the system A; =i, =0 and these two ap-
proximative results. As for ¢ =4, Eq. (51) gives the best
approximation, and transverse (resp. longitudinal) stripes are
stable below (resp. above) this line.

In Fig. 7 we show the dynamics of the g = 4-state APM
for 8 = 0.75, pp = 1.33 and two values of €: € = 0.5and € =
2.5, below and above the reorientation transition at € = 2.0,
for which the stationary state is a transverse band and a longi-
tudinal lane, respectively [56]. In Fig. 7(a) a longitudinal lane
is taken as an initial state, and we observe the reorientation to
a stable transverse band. In Fig. 7(b) the opposite situation
is observed with a transverse band as the initial state, for
which two stable longitudinal lanes are created. The number
of stripes in one periodic square generally depends on the
initial condition, but does not impact the values of the binodals
Pgas and o and the orientation of the stripes.

V. MONTE CARLO SIMULATIONS ON
DISCRETE LATTICES

In this section, we further investigate the numerical sim-
ulation results of ¢ =4 and g = 6-state APM. The models
are respectively simulated on a square lattice and a triangular
lattice of linear size L = 200 with periodic boundary con-
ditions applied on all sides. Simulations are performed for
various control parameters: y = 1 and D = 1 are kept con-
stant throughout the simulations, 8 = 1/T regulates the noise
in the system, py = N/L? defines the average particle density,
and self-propulsion parameter € dictates the effective veloc-
ity the particles: € = g — 1 signifies complete self-propulsion
whereas € = 0 means pure diffusion. Starting from either a
homogeneous or a semiordered initial condition, the Monte
Carlo algorithm (Sec. II) evolves the system under various
control parameters until the stationary distribution is reached.
Following this, measurements are carried out and thermally
averaged data are recorded. Note that, due to symmetries in
APM, the phase separation occurs along the self-propulsion
directions.

A standard procedure that Monte Carlo simulation adopts
for systems undergoing phase ordering kinetics is a random
initial configuration. Nevertheless, in the current simula-
tion, we have taken the initial configurations as semiordered
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FIG. 7. Dynamics of the g = 4-state APM for 8 = 0.75, py = 1.33 and L = 50, and the numerical parameters Az = 0.2 and N = 100.
(a) The reorientation transition starting from an unstable longitudinal lane at € = 0.5 < €, transforming into a stable transverse band in the
stationary state. (b) Opposite situation starting from an unstable transverse band at € = 2.5 > ¢, transforming into a stable longitudinal lane in

the stationary state.

(stripes of high and low densities) and verified that the final
results are independent of the initial choice within the pa-
rameter regime. The advantage of a semiordered initial
configuration over random initial configuration is that the
former accelerates reaching the equilibrium.

A. Simulation results for g = 4-state APM

In order to identify the different phases of the stationary
state, the density pg, the temperature B, and the self-
propulsion parameter € are varied systematically, as control
parameters, for a fixed diffusion constant D = 1. Figures 8(a)—
8(d) show three different phases of APM for € = 0.9: (a)
disordered gaseous phase at a relatively high temperature 8 =
0.5 and low density pp = 2 where the system is homogeneous
with average magnetization (m?=") ~ 0, (b) liquid-gas coex-
istence phase at intermediate density py = 3 and temperature
B = 0.8, where a stripe of polar liquid propagate transversely
on a disordered gaseous background, and (c) an ordered liquid
phase at low temperature 8 = 0.95 and high density py = 6
where average magnetization (m?=') # 0 and can be signifi-
cantly large depending on the average particle density py. The
stationary snapshot in Fig. 8(d), corresponding to the data in
Fig. 8(b), shows a polar liquid stripe moving transversely (de-
noted by arrow) and is predominantly constituted by particles
with internal state o = 3.

In Figs. 8(e)-8(h) segregated density profiles of the liquid-
gas coexistence phase are shown for 8 = 0.5. Figure 8(e)
and Fig. 8(g), obtained for € = 2.1 and € = 2.7, respec-
tively, suggest the broadening of the width of the polar liquid
stripe with po while keeping the densities of the liquid (pjiq)
and the gaseous (pg,s) phases constant. The corresponding
magnetization profiles (not shown here) show similar stripe
with 0 < myq < piiq and mg,s = 0. The snapshots presented
in Fig. 8(f) and Fig. 8(h), respectively, correspond to Fig. 8(e)
and Fig. 8(g) but for pg = 8. The interesting feature emerges
from these snapshots is the directional switching of stripe
propagation at higher €. We observe that the transverse ori-
entation of the stripe with respect to the predominant drift of

particles (represented by arrow) at € = 2.1 becomes longitu-
dinal at ¢ = 2.7. This is a significant feature of the APM.

Figure 9(a) represents the phase diagram in the (7, pg)
plane for fixed € = 2.1 where the binodals pgs and pig
lines delimit the gaseous (G), gas-liquid coexistence (G +
L), and liquid (L) phases. For a fixed B, pgs and pjiq are
computed from the time averaged phase-separated density
profiles. The dashed line represents the density p, where the
ordered-disordered transition occurs at € = 0 which manifests
a direct gas-liquid phase transition without going through a
coexistence regime. € versus pp phase diagram for a fixed
temperature 8 = 0.9 is shown in Fig. 9(b). Once again, pgas
and pjq lines separate the three phases and merges at a single
point for € = 0, which is the transition density point p,(8 =
0.9,e =0) >~ 2.27. One of the most distinguished features
of the APM, the reorientation transition of the coexistence
phase liquid stripe, is depicted in both Fig. 9(a) and Fig. 9(b)
through two different color shades. In the (T, py) phase di-
agram we find that the transverse band at higher 7' (lower
B) switches to a longitudinal lane at lower 7' (higher 8) and
this reorientation transition happens at T ~ 1.43 (8 =~ 0.7)
(represented by black dotted line) for € = 2.1. In the (e, pg)
phase diagram this reorientation approximately happens at
€ ~ 1.8 (represented by black dotted line) for g = 0.9 where
€ < 1.8 is characterized by transverse band motion whereas
€ > 1.8 is characterized by longitudinal lane formation.

In a purely diffusive APM, where particles hop with-
out any bias (¢ = 0), phase transition occur sharply from a
low-density homogeneous phase to a high-density ordered
phase with no intermediate gas-liquid coexistence. Data pre-
sented in Fig. 10(a) show the magnetization profile against
density pp for 8 = 0.6 and € =0, where a jump in the
magnetization occurs around the transition p,. Among the
four different magnetizations corresponding to four internal
states, we consider the maximal one (mp,y) plotted against
po. The discontinuity in Fig. 10(a) becomes sharper with
increasing system sizes. This discontinuous change of a large
Mmax at a high-density (py9 > p.) ordered phase to a small
Mmmax = 0 at a relatively lower density (o9 < p) indicates the
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FIG. 8. [(a)-(d)] The three different phases of the four-state APM for € = 0.9. In (a), a disordered gaseous state evolves at 8 = 0.5, pp = 2
while, in (c) an ordered liquid phase found at 8 = 0.95, py = 6. (b) At intermediate 8 = 0.8, py = 3, a stable liquid-gas coexistence phase
is observed. (d) Stationary snapshot at t = 10*, corresponding to the data in (b), showing a transversely moving band with ¢ = 3. [(e)—(h)]
Phase-separated density profiles of liquid (piiq) and gaseous (o4,) phases for four-state APM at a fixed 8 with increasing initial average p.
(e) Density profiles for 8 = 0.5 and € = 2.1, with phase-separated snapshot in (f) for py = 8. (g) Density profiles for 8 = 0.5 and € = 2.7,
and corresponding snapshot for py = 8 is shown in (h). Arrows and color bars in (d), (f), and (h), respectively, represent direction of particles
within the liquid stripes and on-site particle density.

possibility of a first-order transition. Ideally, a fully ordered ~ may not belong to the same internal state and one realizes this
state acquires magnetization mpy,x =~ 1, however the ordered from Eq. (2) that my,x < 1. In Fig. 10(b) we show the fourth-
liquid phase suggests that all the particles on a lattice site order cumulant of the magnetization (Binder cumulant) Uy =
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FIG. 9. [(a),(b)] Phase diagrams of the g = 4-state APM. (a) Temperature (7') versus density (po) phase diagram for fixed € = 2.1, where
Peas and pyq separate the three phases, gas (G), gas-liquid coexistence (G+L), and liquid (L). The dotted line in the G+L region indicates
€ = 0 transition density (p,) line as a function of the temperature. (b) € versus p, phase diagram for § = 0.9. The black dotted lines in (a) and
(b) represent the reorientation transitions.
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FIG. 10. Characterization of phase transition in the four-state APM for € = 0 and 8 = 0.6. (a) Maximal magnetization m,,x versus py for
lattice size L = 32, 64, 96, and 128 are shown. The sudden jump in the magnetization signals a possible first-order phase transition. The phase
transition is further corroborated by U, in (b), where the critical density p, = 4.19 £ 0.01 is estimated from the intersection of the data for
various L. In (a) and (b), the point of transition is marked by the dotted lines. (c) Susceptibility (x) versus p, shows a discontinuous peak

around p,.

1 — (m? )/3(m2,)* [57] versus py across the transition and
from the intersection of the Uy curves for different L, we quan-
tified the critical density p.(8 = 0.6, = 0) =4.19 = 0.01.
Just below the transition density p,, Us(L) becomes negative
and falls further (approaches —oo) with the increasing system
size. A similar feature is again reflected in the susceptibility
X = B(m2..) — (mmax)?) versus po plot in Fig. 10(c) where
peaks are observed around the p, regardless of the system
sizes.

An important observation made here is that € = O critical
point of APM does not fall in the same universality class as
the standard g = 4-state Potts model with nearest-neighbor
interactions. Solon et al. [48], however, in their study of the
AIM recover the € = 0 critical point in the Ising universality
class. For the g-state Potts model, it has been reported that
the temperature-driven transitions are continuous for small
q < gq. and first-order for large g > ¢g., with g. = 4 for the
square lattice with nearest-neighbor interactions and g, ~ 2.8
for the simple-cubic lattice [58—60]. The reported critical ex-
ponents for the standard four-state Potts model are 8’ = 1/12,
y’ =17/6, and v/ = 2/3 [59], where B, ¥/, and v’ are the
critical exponents for magnetization, susceptibility, and corre-
lation length, respectively. Finite-size scaling analysis, carried
out with the data presented in Fig. 10 using these critical
exponents does not yield any good data collapse and shows
that the passive Potts model considered here with on-site
interactions is different from the standard Potts model with
nearest-neighbor interactions.

B. Simulation results for g = 6-state APM

The three different stationary phases of six-state APM
are shown in Figs. 11(a)-11(d) for € =2.5. A homoge-
neous gaseous phase for 8 = 0.5 and py = 1 with average
magnetization (m?=>) ~ 0 is shown in Fig. 11(a), liquid-
gas coexistence phase for § = 0.6 and py = 3 is shown in
Fig. 11(b), and Fig. 11(c) shows the ordered liquid phase for
B = 0.9 and py = 6. Please note that in Fig. 11(c), although

m(x) < p(x), the magnetization profile is not distinctly visible

as majority of particles on each site belong to o = 1, and
therefore the difference of magnitude between p(x) and m(x)
is very small. The snapshot corresponding to Fig. 11(b) is
shown in Fig. 11(d) on a triangular lattice of linear size L =
200. The transverse band displayed is primarily constructed
by particles with o = 2.

Figures 11(e)-11(h) demonstrate the phase-separated den-
sity profiles for six-state APM. In Fig. 11(e) the density
profiles are shown for g = 0.7, € = 2.5, while varying the
initial average density po. The nature of the segregated den-
sity profiles in this case are analogous to the density profiles
for four-state APM shown in Fig. 8(e) where the width of
the liquid fraction increases with increasing py keeping the
binodals pjiq and pg,s constant. Figure 11(f) corresponds to
Fig. 11(e) but for pg = 2.5 and shows transverse band motion
along the predominant direction of the particles with o = 2.
In Fig. 11(g) the density profiles are shown for g = 0.7,
€ = 4.5, with varying initial average density pp. Figure 11(h)
displays the corresponding snapshot for py = 2.5 and shows
longitudinal lane formation along the predominant direction
of the particles witho = 1.

The (T, pg) and (e, pp) phase diagrams of the six-state
APM are presented in Fig. 12(a) and Fig. 12(b), respectively.
Fig. 12(a) is obtained for € = 3 and analogous to Fig. 9(a),
the two coexistence lines pjq and pg,s delimit the three dif-
ferent phases, G, G 4 L, and L. Notice that the critical point
occurs at the temperature 7, = 3 for six-state APM as shown
in Fig. 12(a). The dashed line in the G + L region indicates
transition densities at € = 0 through which a homogeneous
gaseous phase can directly transform to a polar liquid phase
with increasing po. The reorientation transition can also be
observed in the six-state APM. In Fig. 12(a) a transition from
low B transverse motion to high 8 longitudinal motion hap-
pens around 7 =~ 1.18 (8 = 0.85) and is indicated by black
dotted lines. A similar reorientation transition from low €
transverse motion to longitudinal motion at high € happens
at around € ~ 3.5 in the (€, pg) phase diagram [Fig. 12(b)]
which has been constructed for 8 = 0.6. Similar to Fig. 9(b),
here also the two binodals nicely separates the three phases,
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FIG. 11. [(a)~(d)] The three phases of six-state APM for € = 2.5. (a) Gas phase (8 = 0.5, pp = 1), (b) gas-liquid coexistence phase
(B = 0.6, py = 3), and (c) liquid phase (8 = 0.9, py = 6). The corresponding snapshot to (b) is shown in (d) where on site particle density is
depicted in the color bar shown. [(e)—(h)] Phase separated density profiles for six-state APM with § = 0.7 and increasing initial average py.
(e) Density profiles for € = 2.5, and phase-separated snapshot in (f) for py = 2.5. (g) Density profiles for € = 4.5, and corresponding snapshot
for pp = 2.5 is shown in (h). Color bar represents on-site particle density.

G, G+ L, and L and merges at the transition density point  around the transition density and therefore identify the tran-

p+(B=0.6,e =0)>2.6. sition as a first-order phase transition [58—60]. The plot of

Figure 13 shows the € = 0 scenario for six-state APM. Binder cumulant U against pg shown in Fig. 13(b) quan-
The simulations are done on a triangular lattice with linear  tify the transition density at p,(8 = 0.6,¢ =0) =2.60 +
system sizes L = 32, 64, and 96 and data presented are av- 0.02. The discontinuous peaks near around p, in the plot

eraged over time and ensemble. mp,x versus pg is presented of x versus pg further support the fact that the transition is
in Fig. 13(a) and is characterized by the discontinuous jump first-order.
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FIG. 12. Phase diagrams of the g = 6-state APM, (a) T versus p, for € = 3 and (b) € versus po for 8 = 0.6. pg.s and py;q are the coexistence
lines which respectively identify the densities of gas and liquid of the phase-separated profiles. Analogous to Fig. 9(a), p, in the G+L region
of (a) indicates € = 0 transition densities. The reorientation transitions from transverse to longitudinal motion of the liquid stripes as a function
of T and € are indicated by black dotted lines in (a) and (b), respectively.
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(b) are further validated in (c) where susceptibility () against py shows a discontinuous peak around p,.

VI. SUMMARY AND DISCUSSION

In this paper we have characterized the flocking transition
of the two-dimensional g-state APM and focused on the cases
g =4 and g = 6. We explored the flocking transitions in the
APM using three control parameters: the temperature 7 =
B!, the average particle density py, and the hopping velocity
€. Our study reveals that this phenomenon could be best de-
scribed as a liquid-gas phase transition via a coexistence phase
where a dynamic stripe of polar liquid evolves on a gaseous
background, similar to what happens in the active Ising model
(AIM) [47-49]. We showed that, akin to the AIM [47-49],
the APM also has a phase transition from a high-temperature
low-density gaseous phase with average magnetization (m) =
0, to a low-temperature high-density polar liquid phase with
average magnetization 0 < (m) < pg via a liquid-gas coexis-
tence phase at intermediate densities and temperatures, where
a liquid fraction is observed moving through the disordered
gaseous background. We further quantify the densities of the
gas and liquid phases in the liquid-gas coexistence region
and calculate the phase diagrams for ¢ = 4 and g = 6. The
homogeneous solution of the hydrodynamic equation can be
derived analytically which gives rise to an expression for the
average magnetization in terms of the average density py and
for the critical temperature 7.

A reorientation transition of the phase-separated profiles
from transversal band motion at low velocities and high tem-
peratures to longitudinal lane formation at high velocities and
low temperatures is the most notable feature of this study. The
physical origin of this reorientation transition is the vanish-
ing of the transverse diffusion constant for large velocities,
stabilizing the longitudinal lane formation. A linear stability
analysis of the homogeneous solutions, leading to an explicit
equation for the spinodal lines, allows us to determine the
velocity at the reorientation transition €, and to derive an
analytical expression close to the critical temperature 7. All
predictions of the hydrodynamic theory were then confirmed
by Monte Carlo simulations of the microscopic model.

We further investigated the € = O critical point, where the
system undergoes a phase transition from a high-density or-
dered phase to a low-density disordered phase at a critical
value of the density p,. The discontinuous jump of the average

magnetization, obtained for both numerical simulations and
coarse-grained hydrodynamic theory, indicates a first-order
transition [61]. This notion is further supported by the fourth-
order Binder cumulant exhibiting a minimum around p,. The
minimum value tends to fall further (approaching —oo) with
increasing system sizes, a signature of the first-order transition
[62,63]. The characteristics of the susceptibility (x) also sug-
gest a first-order-like phase transition. Nevertheless, unlike the
AIM, € = 0 critical point does not recover the standard g-state
Potts model universality in our passive (¢ = 0) Potts model.

The main motivation to study lattice models of flocking is
to obtain a fundamental understanding of the emerging col-
lective behavior and the mechanisms leading to the formation
of different macroscopic patterns like clusters, stripes, bands,
lanes, etc. In analogy to the active Ising model [47,48], which
was devised as a minimal model to understand the flocking
transition as a liquid-gas transition, the active Potts model
analyzed here can serve as a theoretical basis to understand
mechanisms that could elicit reorientation transitions from
band to lane formation. Experimental realizations of various
flocking models are manifold [6], and it should be mentioned
that even a variant of the six-state Potts model analyzed in this
paper has been used to understand pattern formation observed
in experiments with motility assays that consist of highly con-
centrated actin filaments propelled by immobilized molecular
motors in a planar geometry [16].

A future perspective of this study would be to investigate
the ¢ — oo limit of the APM. It should be noted that one does
not expect to recover the Vicsek model in the ¢ — oo limit
of the APM since the transition rules we introduced allows
spin flips to an arbitrary new direction of motion, whereas
the Vicsek model allows only small velocity changes in small
time intervals. A better candidate of a lattice model with
discrete velocity directions reproducing the Vicsek model in
the ¢ — oo limit would be the g-state active clock model
(ACM) in which larger direction changes are penalized by
smaller transition probabilities (due to larger energy dif-
ferences in the ferromagnetic alignment Hamiltonian). The
ACM and its ¢ — oo limit will be studied in a forthcoming
publication.

Another extension of our study would be to introduce
a restriction on the maximum number of particles allowed

042601-16



FLOCKING WITH A Q-FOLD DISCRETE SYMMETRY: ...

PHYSICAL REVIEW E 102, 042601 (2020)

on a single lattice site or to consider soft-core on-site
interactions penalizing an increasing number of particles on
a single site (akin to the well known soft-core Bose-Hubbard
model). Preliminary studies of such “restricted” APMs in-
dicate substantial differences in the stripe formation [64].
Furthermore, one could study the APM in confinement or
with a quenched disorder to observe the influence of the
Potts alignment on the active matter in complex or crowded
environments [65].
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APPENDIX A: THE LIMIT g — +o00

In Sec. II the flipping and hopping rates are given by
Egs. (5) and (6). Since the total hopping rate gD and the max-
imal value of € must stay finite, we rescale these microscopic
parameters such that D = gD and € = € /(q — 1). In the ¢ —
oo limit, each particle has a continuous spin state ¢ € [0, 27].
The density of particles n;(¢) in the state ¢ = 2w (c — 1)/q is
then related to the number of particle n{ in the state o by

li q
im —nf
g—-+oo 27

ni(¢) = (AL)

The number of particle n{ decays as 1/g since the number of
particle on site i scales as py (the average density), which is
independent of g. This definition gives the equivalence for the
total density of particles

2 q
pi=/0 dg ni(¢) =) nf
o=1

for the Riemann integral defined for all continuous function
f(x)in [0, 2] such that

o ! 27
dx f() = i ).
| axre i 3

(A2)

(A3)

According to Eq. (6) a particle in state ¢ jumps during
the time interval Az in a random direction in [¢', ¢" + d¢’]
with probability gD[1 — €/(q — 1)]d¢’ At /27 or rate D(1 —
€) and in the direction ¢ with probability gDe At/(g — 1) or
rate De. From Eq. (5), a particle in state ¢ performs a flip
during the time interval At to a state in [¢’, ¢’ + d¢'] with
probability

% xp (qﬂ ) exp {—Znéj [ni(¢) — ni(¢/)]]d¢/At,
" § (A4)

which is equivalent to the flipping rate density for a spin flip
from state ¢ to state ¢’

2 2r BJ
Wiip(9. ¢') = 5 exp |~ ’;’3

(@) = m(@)l}.  (A3)
where ¥y = gy exp(qBJ/po) is chosen from the mean-field
value of the prefactor.

In the hydrodynamic limit and the limit ¢ — 400, we
define the density of particles in the state (direction) ¢ and
at the 2D position x as

cay— Tim L
p(x,t;¢) = qEToo o Po (X, 1). (A6)
After simplifications, Eqgs. (17) become
]
L @) ¥, DGIVep@) - ver @) Vap(@)
2 do’ J
+7/ 2¢ { Ll [o(#) + p(¢)]
0 T
_ 2
S M}[ @)= P,
P 0?

(A7)
where @ = 27BJ)*(1 —2BJ/3)/2, v=De, e|(p)=
(cos ¢, sin¢) and

D De (cos2¢  sin2¢
D)= 47 T(sinzrb —cos 2¢>' (A%)
Note that the magnetization is given by m(¢) = p(¢) —

2w

p/2m, which fulfills the identity f do m(¢p) =

0

The disordered homogeneous solution is given by a
constant density p(¢) = po/2m. The ordered homogeneous
solutions are deduced from the discrete ordered homogeneous
solutions written as p, = (po — mo)/q + 6s1mp for a polar
ordered liquid in the o = 1 state. The density function of these
ordered homogeneous solutions is then

p(P) = S~ o 8(¢p)mo,

where §(¢) is zero everywhere except at ¢ = 0 with a value
1. my is the magnetization of state ¢ = 0 defined by

my wpBJ ol
— = —1% [14+ ——7,
P { T wpiy }

with the previously defined quantity o =28J — 1 —r/pp.
This expression is equivalent to Eq. (28) in the ¢ — oo limit.

(A9)

(A10)

APPENDIX B: HYDRODYNAMIC LIMIT OF
THE MASTER EQUATION

We define a to be the lattice space between two sites which
is small in the hydrodynamic limit (L > 1): a ~ 1/L < 1.
We define the continuous density of particles in the state
o as ps(y,t) =nj(t) at the coordinate y = (iy, i,)a, where
(ix, i) are the Cartesian coordinates of the former site i. The
linear system size is then / = (L — 1)a. Let e, be the unitary
vector in the direction p with Cartesian coordinates e, =
(cos ¢, sin¢,) where ¢, =27 (p — 1)/q is the angle of the
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direction p € [1, g]. The Taylor expansion of o, (y + aey, t) gives

= po(y +aey, t) = ps(y, 1) +a

for the derivative %

difference on neighboring sites:

282

t J—
(y,)+282

(y, 1)+ O(a) (BI)

= e, - Vy. We can then expand the two terms in the master equation (13) involving the particle number

o o 8,0(7 (12 82;00 3
g~ N = A (y.0)+ = 502 (y,1) +0(a) (B2)
and
! ‘ azivzpa(y, H+0@)  g>2
o . 3 0g 9% 4
[, —nil=2" e (y,t)+2 82( y.1) , (B3)
=1 p=1 b P a Evng(y,r>+0(a ) <2
where we have used the following relations for an arbitrary function F (x, y) in two dimensions:
1 9F Z IF
Z—(x y) = Zep ek (x,y)+Zep-ey5(x,y) =0 (B4)
p=1 p=1
and
q 32F q
DN =2 (e ex> (x »+ 2Z<ep ex)(ep - ey) (x N+ Z(ep ey> (x, »)
p=1 P p=1 p=1 p=1
q 0°F q 0°F )
——2( )+——2(x y) = —V Fx,y) q>2
2 ox 2 dy
= (BS)
’F
G575y 4s2
For g = 2, the master equation (13) is equivalent to Eq. (15) of Ref. [48], and it can be simplified as
8,(n§7) = D((nf-’_,) + <n§’+]) — 2(n:’)) + oDe((nf-’_] — <nf’+])) + (ni_“Wﬂip(—cr, o) — n Wip (0, —U)), (B6)
where 0 = %1 are the one-dimensional values of spins. Equation (B6) in the hydrodynamic limit takes the following form:
0 {0s) = Daf(:oa) — oV {0s) + <:070Wﬂip(_od’ o) — poWﬂip(Os —0)). (B7)
Note that the diffusivity does not dependent on €, and this equation is equivalent to Egs. (18)—(19) of Ref. [48].
For g > 2, the master equation (13) becomes
qD € 202 De ., De
0 {ps)=—(1— Vilpos) + ——=a"9;{ps) — 0y Iyo, B8
;{00 4( q_l)“ y$or) + S Ty @ e lee) = e (o) + Y 1y (B8)

where I, = (05 Whip(c”/, 0)
l/a=L

D
3 (po) = q—(l

€\ )+ 53—
4 1) VX

q—

where 0 = e| - V is the derivative in the parallel direction
e = (cos @, sin ¢, ), with ¢, = 2 (c — 1)/g the angle in
the direction o. Using the rotational invariance of the Lapla-
cian V2 = 8”2 + 02 with 9, = e, - Vy, the derivative in the
perpendicular direction e; = (sin ¢, — cos ¢, ), Eq. (B9) can
be rewritten as

3 (po) = Dy} (ps) + D197 (ps) = 00y (06) + D loors
o'#o
(B10)
where Dy = ¢gD[1+¢€/(q —1)]/4 and D, = gD[l —€/(q —
1)]/4 are the diffusion constants in the parallel direction
e, and perpendicular direction e, respectively, and v =
gDe/(q — 1) is the self-propulsion velocity in the parallel

direction e;.

qDe

o'#o

— poWhip(c, 0')) is the flipping term. Defining the new variable x = y/a, the linear system size is
— 1 >~ L in the large system size limit L > 1, and the hydrodynamic equation (B8) rewrites as

[ (po) — aH o)+ Y Lo, (BY)

9
1) sl

APPENDIX C: EXPANSION OF THE FLIPPING TERM:
REFINED MEAN-FIELD EQUATIONS

We consider the flipping term defined before as
pGWﬂip(os OJ))! (Cl)

where p, is the continuous version of n{ . From the definition
of Whip(o, 0'), given by Eq. (5), this flipping term writes

Lo = (Pa’Wﬂip(U/, o) —

BJ
I = J/<,Og’ exXp I:_qT(pa’ — Po — 1):|

— po exp [—‘”%(pa — o — 1)]>. (C2)
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will be set to 1 in the following simplification. Note that

30 T T T T T T T T T
B=04,8=27 ) + this multiplicative constant does not change the value of the
25 | t ’ . hf homogeneous solutions. Equation (C2) then becomes
&
~ ¥
© 3 20r L] t | P~ ’ —q‘i r —_
Lo Do’ €XP (P’ — Po)
g z 0
s i .
A & J
ch . — s XP [—%(pg - pa/)]>. (€3)
§ 10 . = o=1 |
o=2
5 L . = =3 a | The mean-field (MF) expression of Eq. (C3) never shows
" c=4 stable phase-separated profiles and always predicts the triv-
l&® ial homogeneous solution. As for the AIM [48], the simple

0

mean-field approximation fails to predict the results for the
microscopic model. Following Ref. [48] we derive a refined
Po MF hydrodynamic equation for the particle density p, includ-

ing the first order of fluctuations in the magnetization, defined

FIG. 14. Evolution of the variance (mj’z) - (m,‘v’)2 of the mag- by Eq. (2) such that m, = (gps — p)/(q — 1) is assumed

netization m, with the mean population (p;) = po in the disordered small compared to the particle density p. Then the quantity
phase (¢ = 4 and B = 0.4). The relation is linear and identical for all

0 2 4 6 8 10 12 14 16 18 20

states 0.
q—1
. .. Po' — Po = (mgr — my) (C4)
We can then factorize the flipping term by y (exp(gBJ/p)) =~ q
y exp(gBJ/po) using the mean-field approximation, which
|
is small compared to the particle density o and Eq. (C3) can be expanded as
apJ (gBJ) (qBJ)
Ly = ((por = Po) = ——(Po' = Po)(Po" + Po) + (por = Po)’ = ——5— (05’ = o) (por + po) + -+ ). (C5)
P 2p? 6p
Using (C4) and the relation
2 _
Po' + 0 =7p+qT<ma +my), (C6)

we get the rhs of (C5) up to the order (m, — my)>:

.
Ly _< apJ 3(mg — mor)” +> (CT)

=~ (ZﬁJ—l)S(ma—ma)+—E( o = Mg) (Mg +mgr) — a§ pe

where &€ = (¢ — 1)/q and a = (gBJ)*(1 — 28J/3)/2. We assume that all magnetization m, are identically distributed Gaussian
variables with the variance «,,(p) proportional to the local mean population, with mean values linked by the relation (m,) +
(mp) + (m,) + (my) = 0. In Fig. 14 we verify this approximation by MC simulations of the microscopic model in the disordered
state (¢ = 4, B = 0.4). Expanding the average value in Eq. (C7) and assuming that m, and p are uncorrelated, we obtain

qﬁ <(mo - ma’)3)
lj = QpJ = DEmg —mor) + =285 m 2m2 —m2) — a53T

Using the Gaussian distribution properties, we can show that the second moment is (m?,) = (my)* + o,y (p) and the third moment
is (Mg — My )?) = (Mg — mg')> + 60, (my — mg){p). The expression of I, then becomes

(C8)

6 m 2 J o — g’ 3
oo = [zﬂf -1 2 }&mg — )+ L 2, — gy + my) — agd Lo =) (9)
{p) (p) (p)
Using the average value of Egs. (C4) and (C6), the flipping term then rewrites
qapJ r {po —paf)z}
loor = (po+po) 1= ——a——— (0o = Po'), (C10)
[ (p) (p) (0)?

where r = 6(q — 1)%a,,a/q* is a new positive parameter depending only on the temperature, since ,, is a unknown function

of 8.
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APPENDIX D: EXPRESSION OF THE
POLARIZATION VECTOR

The polarization vector P;(z) is defined on site i as the
average direction of the self-propulsion:

1 Pi
— Y e,
PiT

where e}‘(t) is the direction of the kth particle on site i at
the time 7. This expression can be rewritten as P; = v;/v
where the average velocity on site i is the ratio of the average
displacement AX; occurring in At by the corresponding time
interval At. This average displacement can be calculated as

Pi(1) = (D1)

q
AX; =) e, Pi(0),

o=1

(D2)

where e, is the unitary vector in the direction ¢ with the angle

=2n(0c —1)/q and Pi(o) is the probability to move in
the direction o on site i. From the hopping rate, Eq. (6), this
probability is equal to

P.(o)= "1+ eyar + P D(l € )At (D3)
i P g—1

by decomposing the motion for the two classes of particles:
the first one when the direction o is favored (for particles with
spin state o) and the second one when the direction ¢ is not
favored (for particles with spin state different from o). Using
the expression of the magnetization given by Eq. (2), we get
the expression

[eg

q
Since ) e, = 0, the average velocity writes
p=1

(D5)

and using the expression v = gDe/(q — 1) we obtain the ex-
pression of the polarization vector

(D6)

This expression is compatible with the intuitive value of P; in
the gas phase (P; = 0) and when all particles are in the same
state 0: P; = e,.

In the hydrodynamic limit, the polarization vector writes
P(x,t) = (P;)(¢) at the 2D position x. Using the mean-field
approximation, Eq. (D6) becomes

o q
P(x,t):qT_IZ o (X ) Z P20 (o)

p(x,1) p(x,1)
which corresponds to Eq. (21).
APPENDIX E: LINEAR STABILITY ANALYSIS FOR
q = 4-STATE APM

1. Linear stability of disordered homogeneous solution

For g = 4, the symmetries of the problem between x and
y direction implies that the perturbations along x and y axis
on the disordered homogeneous solution are identical. So,
without any loss of generality, we can consider here k, = 0.

Pi(o) = [1 + € m—’] At. (D4) From Eq. (36), the matrix M, writes then
Pi
J
—Dyk? — ikev + 3o —Ho ) —Ho
—Ho —D k2 + 3ug ) —Ho
My = ) (E1)
—o —Ho —Dyk; + ikv + 30 —Ho
—Mo — Mo —Mo —D k> +3uo
Up to order O(kz) Mathematica [66] gives the expressions of the four eigenvalues Agas'
hgas = 4tto — D17, (E2)
Dy + Dl U
2= (== K4 E3
( e ) (E3)
2vk 3Dy + Dy v?
A4 —ap 4 W2k (3D K E4
gas = THO 2 ( T TN L ED

Note that if A is an eigenvalue then its complex conjugate A is also an eigenvalue. Since D > 0 and Dy > 0, the real part of all
eigenvalues are negative when 1y < 0, defining the condition for a stable disordered homogeneous solution.

2. Linear stability of ordered homogeneous solution

For an ordered homogeneous solution, the (x, y) symmetry is broken, implying that a perturbation along the x axis has
a different behavior that a perturbation along the y axis. The expression of the matrix Mj is derived from Eq. (44) with u =
M4BT —1 —2aM +aM?),v = M(4BJ — 3 +2aM + 3aM?)and k = M(—128J + 1 — aM?) for g = 4. Let us consider first
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a perturbation in the x direction (k, = 0). The matrix then writes

—Dyk? — ikv + 31 v v v
MO — —H —D k} +« —(k +v)/2 —(k +v)/2 (E5)
. —u —(k+1)/2 DR+ ik Kk —(k +v)/2
—H —(k+v)/2 —(k +v)/2 —D k> +«

where D = D(1 +€/3)and D = D(1 — €/3). Up to the order O(kf), Mathematica gives the expression of the four eigenvalues
A

iq,x*

3k +v
Mg = = — — Dik, (E6)
2 _ 3k +v n 2ivk, _ 2D+ D, 403k — 61 + V)V 5 E7)
lig.x 2 3 3 273k +v)(k =2 +v) | *
(9 ky 9Dyu — (D) + 2D 4v(-36 81y’ —42 2)?
B =Gy ORIk [OD = Dy 42Dy Av(30cu+ 8L 2w ],
9 Ou — 3v 33u —v) 278 — v)3(k — 2u +v)

T i(n+v)ke (D) +2D ) = Dyv N Ap[—3u® + 2y + v(dk + v)v? e (E9)

% 3u—v 3u—v GBu —v)3Bk +v)

Now we look at a perturbation in the y direction (k, = 0). The matrix Mjq now writes
—le}z, +3u v v v
> — —u —Dykj — ikyv + Kk —(kc +v)/2 —(k +v)/2 (E10)
liq - —(k +v)/2 —D kK + —(k +v)/2 ’
- —(k +v)/2 —(k +v)/2 =Dk} + ikyv + K
where D = D(1 +¢€/3)and D, = D(1 — €/3). Up to the order O(kyz), the eigenvalues are
12 _ kv vk [2D+Dy 23k — 6 + v)v? 2y ELD
liq.y 2 3 3 93k +v)(k — 2 +v) | ’
9D, u— 2Dy + D, )v 4yv?
Mgy =GB —v) = | — —— ; T (E12)
33u —v) 9B8u —v)’(k —2u +v)
—-(2Dy+D D 4pv?
Mo @Dy + D)+ Dyv 1y 2 E13)
1) 3u—v Gu—-—v)CBx+v) |~

The ordered homogeneous solution is then stable if 3k + v < 0 and 3u — v < O for the two different perturbations. Since
3u —v =8M(BJ — aM), the only stable ordered homogeneous solution satisfies M > BJ/«. From Eq. (32), the magnetization

of the stable solution is then equal to
J —
=Pl [Pl s, (E14)
o o P Lo

where p, has been defined in Eq. (29); My = BJ/a and M, = \/r/ap, are temperature dependent constants; and § =
V(po — ps«)/ po is a variable with values between 0 and 1. Moreover, 3k + v = 2M(—168J + aM) implying that M < 168J/«
to have a stable solution, which is always satisfied from the maximal value of M: M < 38J/« from Eq. (E14).

However, the stability of the two different perturbations differs from A and Al . The perturbation along x is stable only if

lig,x lig,y*
_Re Mg __pL +v De  Au[-3u* +2uv + v(dk +v)] (4De)2 EL5)
I K2 3u—v 3 G —vPGk +v) 3
is negative and the perturbation along y is stable only if
Re A D 4 4De >
b= ey __p AV T . (_6) (E16)
k}z, 3u—v 3 Bu—=—v)Bx+v)\ 3
is negative. These two eigenvalues can be rewritten as
De 4De? De 4De?
M=-D+Q = +0(5) . r=-D-0i5+0:(5) (E17)
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for the quantities Q; independent of € defined by

wA+v 0, — i 0 _Ap=307 4 20w + vk + )]
2T Bu -Gty Gu—vyPGr+v)

From this stability analysis, we can remark that transverse bands will be formed when A | < 0 < A whereas longitudinal lanes
will be created in the opposite case Aj < 0 < A . Then, the reorientation transition happens when Aj = 0 and A | = 0, and from
Eq. (E17) the value of the drift €, at the reorientation transition is given by

4De, 2D -0
= | - , (E19)
3 O+ 03 2(03—02)

where the second equality defines the value of py where the reorientation transition takes place, which can be rewritten as
 2V2D(Q3 — O»)
V02 + 03

With Eq. (E14) we can now rewrite the quantities Q;, O, and Q3 as a function of § with coefficients depending only on M
and M. With Mathematica we obtain after the following simplifications:

0 (E18)

=3,u—v’

-0 (E20)

M, 1+ 82
01(8) = —M, — 5 ) (E21)
)
M? +2My — M? M 14+8% 1—M,

8) = 0 ! —— , E22
Q) (—15M0+8M1)(M0+8M1)|: 2 s T2 } (E22)

M 1+68% 15My 2+ 13My SMy(3My+1)
8)=—0,(8)| — — - - ) E23
05(8) 0 ( )[8 5 252 2 250, (E23)

Equation (E20) is then satisfied for § = §,. Since the inversion of this equation to get the exact expression of §, is too complicated,
we look at the solution close to the critical point: T — T,. For this limiting case, the ordered-disordered transition takes place
for p, > 1, implying that M| <« 1. We can then look at a solution J, as an asymptotic expansion in My, such that §, = §; M +
82M12 + 53M13 + .- -. Taking D = 1, we get with Eq. (E20)

1 1+ 2M,

8y = M, — M; +0(M3), E24
ST VR e Ty VA STy v S (¥17) E24)
and the quantities Q;, O, and Q3 evaluated at § = §, are equal to
3m?
8:)=—1+ : +0o(My}), E25
01(84) 8(— 2+ Mo+ M2) (M7) (E25)
M} 4
8y) = ————  + O(M7), E26
0>(8) 80M0(1—M0)+ (M) (E26)
1 3(4 + TMy)M?
0:(8,) = - — Ol o(my). (E27)
8  160Mo( — 2+ Mo+ M?)
Thus, with Eq. (E19), we obtain the expression of €, where the reorientation transition happens:
16 4+ 23M,
€, = 3[1 + + M M+ 0(M;‘)]. (E28)
40Mo( — 2 + Mo + M?)
In Sec. IV, we have shown that 7,”' = 1 — +/22/8. Then we get that
8 T.—T 2
M}~ —(—143 + 324/22) , My=—(=5+2+22), (E29)
63 T. 21
leading to the expression of €, as
3520 — 99322 T, — T T.— T 3T T.—T
e*=3|:1+ o —+ ~-]:3[1—0.981 +---]:T+0.057 T (E30)

So we can approximate at the leading order that the reorientation transition happens at €, = 37 /T...
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APPENDIX F: LINEAR STABILITY ANALYSIS FOR g = 6-STATE APM
1. Linear stability of disordered homogeneous solution

For ¢ = 6, the (x, y) symmetry is not present, implying that the perturbations along x and y axis on the disordered
homogeneous solution are not identical. For a perturbation along x (k, = 0), from Eq. (36), the matrix Mg, writes

—Dﬁkf — ikyv + Suo —Mo —Mo —Ho —Ho —Ho
—Ho Dy k2 — B 4 50 —Ho —Ho —Ho —Ho
MO — —Io —Io D3k + B2 4500 —Ho —Io Mo
& —o —Ho —Io —Dijk; + ikyv + 510 —Io —Ho
—Mo —Ho —Mo — Mo Dk + 'k L+ 5u0 — o

— Mo — Mo — Mo — Mo — Mo Dy k2 — %2 450

(F1)
where D) = 3D/2(1 +¢€/5) and D’} =3D/2(1 — €/10). Up to the order O(kf.), Mathematica gives the expression of the six

elgenvalues A

gas,x*
ivk,
Ayt =60 £ =5 = DU+ (F2)
l\/_vk Dy + 2D} v?
Mgt = 6110 ( + 5 0)§+~--, (F3)
2
oo (_ +2D" ) B )
gas,x
2o =6 + 8D1 v k? + F5
gas,x Ho — ( 9 + 18M0> ( )

Since Dy and D' are positive the real part of all eigenvalues is negative when o < 0. For a perturbation along y (k, = 0), the
matrix My,s becomes

—Dﬂkvz + Spo — o —Ho —Ho — [0 —Ho
fk
— o —D k2 = 552+ 500 — o — o — o — o
fk
Mo — — o ) —D k-t ™t Spo — o — Mo — o
g —Ho —1o *Mo —Dyky + Spo —Ko —Ho
fk

—Ho —Ho —Ho —Ho DI+ S5 + 50 —Ho
fk

—Ho —Ho —Ho —Ho —Ho —D K2 4+ DR sy,

(F6)

where Dy = 3D/2(l —¢€/5) and D, =3D/2(1 + €/10). Up to the order O(k}z,), Mathematica gives the expression of the six
elgenvalues A

gas.y*
2~ 6 i%—(DV22D1+2:;0>k3+”" (F8)

o = <_D?[ +32D“i N 1;;0>k§+~-~ , (F9)

Masy = 6110 — Dk (F10)

Since Dﬁ and D’| are positive we see that the real part of all eigenvalues is negative when 1y < 0.

2. Linear stability of ordered homogeneous solution

For an ordered homogeneous solution the (x, y) symmetry is broken, implying that a perturbation along x axis has
a different behavior that a perturbation along y axis. The expression of the matrix My, is derived from Eq. (44) with
w=M(®6BJ —1—2aM +aM?),v =M(6BJ — 5+ 2aM + 5SaM?] and xk = M[—308J + 1 + 2aM — aM?] for g = 6. Let us
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consider first a perturbation in the x direction (k, = 0). The matrix then writes

—Dﬁkﬁ —ikyv+5u v v v v v
- —D' k2 — ’kT” + K —(k +v)/4 —(k +v)/4 —(k +v)/4 —(k +v)/4
e —u —(k +v)/4 —DSKE+ R 4k —(k +v)/4 —(k +v)/4 —(k +v)/4
fiq = - —(k +v)/4 —(k +v)/4 —Dik2 + ikev + & —(k +)/4 —k+v)y4 |
—u —(k +v)/4 —(k +v)/4 —(k +v)/4 —-DX kX + ’]‘T“ +« —(k +v)/4
—u —(k +v)/4 —(k +v)/4 —(k +v)/4 —(k +v)/4 ~D% k2 — ’kT” +«

(F11)
where D) = 3D(1 +¢€/5)/2 and D] =3D(1 —€/10)/2. Up to the order O(k?), Mathematica gives the expression of the six

eigenvalues are Ajj, :

Sk +v vk, .
R b ST R (F12)
jaa Sy ik s 8D} +D1)+ V212D} +3D)) | 843VAT 665k — 200 +v* 5
flax 4 10 521 125121 5k +v)(k —4u+v) | * ’
(F13)
i(250 + v)vk, 4DY +Dy)v —25Dy 36v[—25(k — 5 —35uv + v2]v?
Ko = (g — vy [ Ve LT I SOV i = DIV A VIV s g
’ 5051 —v) 505m —v) 1255 — v)’(k —4p 4+ v)
o i(u + v)vk, —(Dy +4D D+ Dy 36p(—5u* +2uv + kv)v? ] , (E15)
igx = 5, —y S5u—v Bu—v)3Bk +v) *
Now we look at a perturbation in the y direction (k; = 0). The matrix Mj;q writes then
—Djk; + 51 v v v v v
—u —Die = Bk —(k +v)/4 —(k +v)/4 —(k +v)/4 —(k +v)/4
o —u —(k +v)/4 DR =N e e u)/4 —(k +v)/4 —(k +v)/4
e —1 —(k +v)/4 —(k +v)/4 —Dk2 4+« —(k +v)/4 —(k +v)/4 ’
— —(c + v)/4 —(c +v)/4 —(c+ V)4 DR+ N —(c + v)/4
—u —(c +v)/4 —(k+v)/4 —(k+v)/4 —(k+v)/4 —DR2 4 R
(F16)

where Dﬁ =3D(1 —€/5)/2 and Dyl =3D(1 + €/10)/2. Up to the order O(kyz), Mathematica gives the expression of the six

eigenvalues are Ajj, :

5K + i/3vk,

LU A e
sa _ Sy i3Sk 203 3D 6k —20pu+vn? T, (F18)
lig.y 2 2 5 25(5k + v)(k — 4 +v)) | ’

(4D’ + D))v — 25D i 12v0?

A =06 — — kK24, F19
gy = Ou —v) + [ 56— 1) 255 — v)(k — 4 + v)] v+ 19
v Y
o _ [Pyt AD e+ Dy 1207 2y (F20)
tiay Su—v G — G+ )]

The ordered homogeneous solution is then stable if 5« +v <0 and 5u —v < 0O for the two different perturbations.
Since Su —v = 12M(28J — aM), the only stable ordered homogeneous solution satisfies M > 28J/«a. From Eq. (32), the
magnetization of the stable solution is then equal to

28] -
m=2PL [T [P e, (F21)
a ap N po

where p, has been defined in Eq. (29); My =28J/a and M, = /r/ap, are temperature-dependent constants; and & =
(po — ps)/ po is a variable with values between 0 and 1. Moreover, 5k + v = 12M(—128J + oM ) implying that M < 128J/«
to have a stable solution, which is always satisfied from the maximal value of M: M < 38J/« from Eq. (F21).
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However, the stability of the two different perturbations differs from A% _and A$

lig,x liq,y- The perturbation along x is stable only if

ReAf, __pi P +v 3De 36u(—5u% 4+ 2uv +KU)(6D6)2

A= =— (F22)
k2 Su—v 10 S — vk +v) 5
is negative and the y perturbation is stable if
Re 18 3D 12 6De \*
A=Y p_ py 2o - <_6) (F23)
ky2 Su—v 10 Bu—=v)Sk+v)\ 5
is negative. These two eigenvalues can be rewritten as
M =-D+0 3De ) (6D6>2 A =-D—0 3De 40 <6D6)2 (F24)
= Y0 TS T 10 TS
for the quantities Q; independent of € defined by
uw—+v 121 36 (=5u> 4+ 2uv + kv)
0= 0 03 =— (F25)

T G — )5k +v) G — )5k + )

From this stability analysis we can infer that transverse bands will be formed when A; < O < A whereas longitudinal lanes
will be created in the opposite case Aj < 0 < A . Then, the reorientation transition happens when Ay = 0 and A | = 0, and from
Eq. (F24) the value of the drift €, at the reorientation transition is given by

6De¢, 3D -0
= | = , (F26)
5 O+ 035 2(03—02)

where the second equality defines the value of py where the reorientation transition takes place, which can be rewritten as

24/3D(Q5 — 02)
VO, +0;

With Eq. (F21) we can now rewrite the quantities Q;, 0>, and Q3 as a function of § with coefficients depending only on M
and M,. With Mathematica, we obtain after the following simplifications:

T 5u—v’

0= (F27)

M1+ 8§
01(8) = —M, — 5 s (F28)
04(6) = M3 + My — M? _%1+82 1—M, 29
2T (C5My + M) (M + sMy) | 12 8 6 |
Mi1+68> 5My 2+3My My(5My+1)
§)=—0r()| ——— =0 _ - F30
03(8) = —0x( )|: 1 5 152 1 M, (F30)

Equation (F27) is then satisfied for § = §,. Since the inversion of this equation to get the exact expression of §, is too complicated,
we look at the solution close to the critical point: T — T, similarly to the ¢ = 4 case. For this limiting case, the ordered-
disordered transition takes place for p, > 1, implying that M; < 1. We can then look at a solution 4, as an asymptotic expansion
in My, such that §, = § ;M + 82M12 + 63M13 + ... Taking D = 1, we get with Eq. (F27)

1 2 —3M,
1

M} + oM7), (F31)

*T21-My) | 24(Mo — D3(1 + Mo)
and the quantities Q;, @», and Q3 evaluated at § = §, are equal to
S5M?

)=—1+—"221 1+ oM}, F32
Q:(6.) 1) oM (F32)

M} 4
) = ———— + O(M7), F33
0:8.) = Z5p s + 0(M1) (F33)

1 A3 +8M0)M12 4

§y) = — — ———— + O(M7). F34
Q06 =13 72Mo(1 — MZ) (1) E34)

Thus, with Eq. (F26), we obtain the expression of €, where the reorientation transition occurs:

4+ 9M
° M} + O(M?)] (F35)

c=51-—"2
€ [ 12Mo(1 —M2) !
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In Sec. IV we have shown that 7! = 1 — /5/12. Then we get

2 T.—T 1
M} ~ 3(—10+ 34/15) — My = 5(—1 +4/15), (F36)
leading to the expression of €, as
150 —67/15T. — T T.—T 5T T.—T
e*:5|:1+ o — -~]:5[1—0.869 +---]:T+0.655 fee. (B3

So, to leading order in 7, — T, the reorientation transition occurs for €, = 5T /T..
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