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Abstract  In mammalian cells, the rough endoplasmic reticulum or ER plays a cen-
tral role in the biogenesis of most extracellular plus many organellar proteins and in 
cellular calcium homeostasis. Therefore, this organelle comprises molecular chaper-
ones that are involved in import, folding/assembly, export, and degradation of poly-
peptides in millimolar concentrations. In addition, there are calcium channels/pumps 
and signal transduction components present in the ER membrane that affect and are 
affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy 
chain binding protein or BiP, is the central player in all these activities and involves 
up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-
lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.

Keywords  Human endoplasmic reticulum · Cellular calcium hoemostasis · Protein 
transport · Protein folding · Protein degradation

Introduction

In all nucleated human cells the endoplasmic reticulum or ER forms a vast and dy-
namic membrane network (Palade 1975; English and Voeltz 2013). The rough ER 
is studded with 80S ribosomes. These ribosomes are engaged in the biosynthesis of 
most secretory and many organellar proteins by cotranslationally inserting nascent 
polypeptides into the membrane and lumen of the ER, thus defining one major func-
tion of the rough ER. The peripheral ER contacts the plasma membrane, the tubular 
ER contacts mitochondria (Kornmann et al. 2009; Hayashi et al. 2009; Bakowski 
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et al. 2012). These contacts play important roles in cellular calcium homeostasis, 
thus defining another major function of the mammalian ER. In addition, the ER 
membrane forms a continuum with the outer nuclear envelope membrane.

Protein translocation into the ER is the first step in the biogenesis of many 
proteins of eukaryotic cells (such as proteins of the ER, ERGIC, Golgi apparatus, 
endosome, lysosome, nucleus, peroxisome, plasma membrane) as well as of most 
extracellular proteins (Fig.  9.1, “transport”) (Blobel and Dobberstein 1975a, b). 
Typically, protein translocation into the ER involves amino-terminal signal peptides 
in the precursor polypeptides and a complex machinery of transport components, 
most notably the heterotrimeric Sec61 complex in the ER-membrane and the ER-
lumenal Hsp70-type molecular chaperone BiP and its co-chaperones plus nucleo-
tide exchange factors or NEFs.

Protein transport into the ER is followed by folding and assembly of the newly 
imported polypeptides (Fig. 9.1, “folding”). Typically, this folding and assembly of 
proteins involve some of the above-mentioned components, such as the calcium-
dependent chaperone BiP and its co-chaperones plus NEFs (Haas and Wabl 1983; 
Bole et al. 1986; Weitzmann et al. 2007; Zahedi et al. 2009; Bulleid 2012). Except for 
resident proteins of the ER, the native proteins are delivered to their functional loca-
tion by vesicular transport (Schekman 2004, 2005; Sambrook 1990; Pelham 1990).

In cases of mis-folding or mis-assembly of polypeptides in the ER membrane or 
lumen, the polypeptides are exported to the cytosol and degraded by the proteasome 
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Fig. 9.1   Cross section through the ER, highlighting the central role of Sec61 complex and BiP 
in protein biogenesis and calcium homeostasis in human cells. ERAD ER-associated protein deg-
radation, SERCA sarcoplasmic endoplasmic reticulum calcium ATPases, UPR unfolded protein 
response
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(Fig. 9.1, “ERAD”) (Smith et al. 2011; Bagola et al. 2011; Thibault and Ng 2012; 
Olzmann et al. 2012). Export of mis-folded polypeptides from the ER lumen to the 
cytosol can also involve some of the above-mentioned components, such as the 
Sec61 complex and BiP and its co-chaperones (Pilon et  al. 1997; Plemper et  al. 
1997; Schäfer and Wolf 2009).

When protein mis-folding or mis-assembly prevail, a complex signal transduc-
tion pathway is activated and leads to an increase of the folding and degradation 
capacity of the ER and to a decrease of global protein synthesis (Fig. 9.1, “UPR”) 
(Gardner et al. 2013; Ron and Harding 2012; Ma and Hendershot 2001; Schröder 
and Kaufman 2005). In mammals, UPR involves the three ER membrane proteins 
PERK, ATF6 and IRE1, respectively. These proteins comprise lumenal domains, 
which are not structurally related to J-domains, that interact with BiP and cytosolic 
domains that attenuate global translation (PERK) or induce selective transcription 
(ATF6, IRE1) in the absence of BiP.

When the protein mis-folding problem persists, however, the programmed cell 
death pathway or apoptosis is activated in the respective cell to protect the organ-
ism (Fig. 9.1, “apoptosis) (Madeo and Kroemer 2009; Tabas and Ron 2011). This 
switch involves efflux of calcium ions (Ca2 +) from the ER. Indirect evidence from 
various laboratories has first suggested that the Sec61 complex may transiently con-
tribute to the ER Ca2 +leak after completion of protein translocation (Lomax et al. 
2002; van Coppenolle et al. 2004; Flourakis et al. 2006; Giunti et al. 2007; Ong 
et al. 2007; Lang et al. 2011). Recently, this concept was confirmed by the obser-
vations that the open Sec61 complex is indeed Ca2 +permeable and that silencing 
the SEC61A1 gene in HeLa cells prevents the Ca2 +leakage linked to completion of 
protein translocation (Lang et al. 2011; Erdmann et al. 2011; Schäuble et al. 2012). 
Under physiological conditions, BiP and its co-chaperones are involved in limiting 
Sec61 complex-mediated Ca2 +leakage or passive Ca2 +efflux. Therefore, it is tempt-
ing to speculate that the intrinsic Ca2 +permeability of the Sec61 complex and its 
regulation by BiP play an important role at the interface between protein biogenesis 
and Ca2 +homeostasis in mammalian cells (summarized in Fig. 9.1). Since the more 
than thousand-fold Ca2 +gradient between ER lumen and cytosol allows Ca2 +to play 
its central role as a second messenger in cellular signaling (Berridge 2002; Rizzuto 
and Pozzan 2006), it is the function of the sarcoplasmic endoplasmic reticulum 
calcium ATPase (SERCA) to counteract both the receptor-mediated Ca2 +release and 
the Ca2 +leakage from the ER in order to maintain the Ca2 +gradient of the resting 
cell (Wuytack et al. 2002).

The Chaperone Network of the ER

Both the yeast and the mammalian ER contain molecular chaperones and folding 
catalysts in millimolar concentrations (Van et al. 1989; Bies et al. 1999; Weitzmann 
et al. 2007). Many of these molecular chaperones belong to the classical Hsp40, 
Hsp70, and Hsp90 protein families (Table  9.1, Fig.  9.2). However, the ER also 
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Function Protein (synonym) Related human 
disease

OMIM Animal 
model

First 
reference

Hsp70-type 
chaperone

BiP (Grp78, 
HspA5)

Haemolytic 
uraemic 
syndrome

235400 Embryonic 
lethality or 
surfactant 
deficiency

Haas and 
Wabl (1983)

Hsp40-type 
co-chaper-
ones

ERj1 (Htj1, 
DNAJC1)

Brightman 
et al. (1995)

ERj2 (Sec63, 
ERdj2)

Polycystic liver 
disease colorec-
tal cancer

174050 Embryonic 
lethality

Skowronek 
et al. (1999)

ERj3 (ERdj3, 
DnaJB11, HEDJ, 
Dj9)

Bies et al. 
(1999)

ERj4 (ERdj4, 
DnaJB9, MDG1)

Postnatal 
lethality 
(surfactant 
deficiency)

Shen et al. 
(2002)

ERj5 (ERdj5, 
DnaJC10, JPDI)

No 
phenotype

Hosoda 
et al. (2003); 
Cunnea et al. 
(2003)

ERj6 (p58IPK, 
DnaJC3, ERdj6)

Diabetic 
mouse

Rutkowski 
et al. (2007)

ERj7 (Gng10, 
DnaJC25, ERdj7)

Zahedi et al. 
(2009)

Nucleotide
exchange 
factors

Grp170 (ORP150, 
HYOU1)

Embryonic 
lethality

Lin et al. 
(1993)

Sil1 (BAP) Marinesco-
Sjögren 
syndrome

248800 Woozy 
mouse

Chung et al. 
(2002)

Additional
co-chaper-
ones

Sig-1R (sigma-1 
receptor)

Hayashi and 
Su 2007

HspA5BP1 (GBP) Oh-hashi 
et al. (2003)

Additional
chaperones

Grp94 (CaBP4, 
ERp99, gp96, 
endoplasmin)

Embryonic 
lethality

Shiu et al. 
(1977)

Calnexin (IP90, 
p88)

Postnatal 
lethality

Degen and 
Williams 
(1991)

Calreticulin 
(CaBP3, ERp60)

Embryonic 
lethality

Burns et al. 
(1992)

Table 9.1   BiP and its interaction partners in the mammalian ER
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Fig. 9.2   Interaction partners of BiP that are involved in protein biogenesis and calcium homeo-
stasis. The proteins that are involved in protein transport, folding, ERAD, and UPR are indicated, 
all other proteins are involved in protein folding or calcium homeostasis ( red asterisk). Membrane 
proteins are depicted in green; ER-lumenal Hsp40s are represented as squares, all other proteins 
as circles

 

Function Protein (synonym) Related human 
disease

OMIM Animal 
model

First 
reference

UPR signal 
transducers

IRE1α/β (ERN1/2) Tirasophon 
et al. (1998)

IRE2 Wang et al. 
(1998)

ATF6α/β Yoshida et al. 
(1998)

PERK (EIF2AK3, 
PEK)

Wolcott-Ralli-
son syndrome
breast cancer

226980 Diabetic 
mouse

Shi et al. 
(1998); 
Harding et al. 
(1999)

Sec proteins Sec61α1 Diabetic 
mouse

Görlich et al. 
(1992)

Sec61β Hartmann 
et al. (1994)

Sec61γ Glioblastoma
Sec62 (TLOC1) Prostate/lung/

thyroid cancer
Mayer et al. 
(2000); Tyed-
mers et al. 
(2000)

Table 9.1  (continued) 
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comprises a special class of molecular chaperones or lectins that are dedicated to 
the folding of glycoproteins. The mammalian ER, contains a soluble (calreticulin 
or CRT) as well as a membrane integrated (calnexin or CNX) lectin (Degen and 
Williams 1991; Burns et al. 1992). The folding catalysts of the ER deal with either 
the formation of disulfide bonds (protein disulfide isomerases or PDI) or the isom-
erization of proline-containing peptide bonds (peptidyprolyl-cis/trans-isomerases 
or PPIase). The PPIases belong to either the cyclosporin A- or the FK506-sensitive 
protein family (cylophilin or FK506-binding protein). All these chaperones and 
folding catalysts have been observed to be present in larger complexes in various 
combinations (Tatu and Helenius 1997; Meunier et al. 2002).

The Hsp70/Hsp40 Network of the ER

Just like the bacterial cytosol or the mitochondrial matrix, the ER contains the typi-
cal Hsp70 triad, comprising the Hsp70 itself (BiP in mammals) as well as a Hsp40-
type co-chaperone, which stimulates the ATPase activity of BiP, and a NEF, which 
catalyzes the exchange of ADP for ATP (Tables 9.1 and 9.2, Fig. 9.3). These pro-
teins have also been shown to be able to perform the classical Hsp70 reaction cycle, 
thereby mediating the folding and assembly of newly-synthesized and –imported 
polypeptides. Similarly to the two above-mentioned cellular compartments, there 
are two Hsp70-type chaperones in both the yeast as well as the mammalian ER 
(Haas and Wabl 1983; Bole et al. 1986; Munro and Pelham 1986; Weitzmann et al. 
2007; Mimura et al. 2007; Luo et al. 2006). One of these, however, may also be 
referred to as a Hsp110 protein family member (Grp170 in mammals) and serves 
as a NEF for BiP (Lin et al. 1993; Kitao et al. 2004; Weitzmann et al. 2006). There 
also seems to be a bona fide functional homolog to bacterial GrpE in the ER lumen 
(BAP or Sil1 in mammals) (Chung et al. 2002; Zhao et al. 2005, 2010), i.e. there is 
redundancy at the level of the NEFs, which may explain the non-lethal phenotype 
of loss of Sil1 function that is associated with the neurodegenerative disease, Mari-
nesco-Sjögren syndrome (Table 9.1, see below). The structures of the two cytosolic 
paralogs of the two NEFs were recently solved and revealed distinct interacting 
surfaces with the top of the nucleotide-binding domain (NBD) of BiP (Shomura 
et al. 2005; Polier et al. 2008); thus, the NEF binding sites on Hsp70 are different 
from the J-domain binding site, which resides at the NBD bottom. Based on these 
structural data, the two NEFs may even be able to bind simultaneously to BiP.

There may be up to nine different Hsp40 type molecular chaperones present in 
the human ER, although not necessarily simultaneously in the same cell (Tables 9.1 
and 9.2, Fig. 9.3). To date, seven of these have been characterized in some detail 
and were termed ERj1 through ERj7 (or ERdj). The two additional candidates for 
ERj proteins are DnaJC14 or HDJ3 and DnaJC16, the latter also containing two 
thioredoxin domains. The Hsp40-type co-chaperones in the ER can be divided into 
membrane proteins with a lumenal J-domain and into lumenal proteins (Fig. 9.3). 
Furthermore, they can be classified according to the domains they have in common 
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with the bacterial DnaJ protein (i.e. besides the actual J-domain) (Hennessy et al. 
2005). Type I Hsp40s contain four domains: an amino-terminal J-domain, a glycine-
phenylalanine (G/F) rich domain, a Zn-finger- or cysteine repeat-domain, and a 
carboxy-terminal substrate binding domain. Type II Hsp40s contain three domains: 
an amino-terminal J-domain, a glycine-phenylalanine (G/F) rich domain, and a 
carboxy-terminal substrate binding domain. Type III Hsp40s contain only the J-
domain and, in general, have more specialized functions compared to type I and II 
Hsp40s. Thus, only the type I and II ER-lumenal Hsp40s, ERj3 (Bies et al. 1999, 
2004; Yu et al. 2000; Shen and Hendershot 2005; Jin et al. 2008, 2009) and ERj4 
(Shen et al. 2002 Kurisu et al. 2003; Dong et al. 2008; Lai et al. 2012; Fritz et al. 
2014), have the ability to bind substrate polypeptides and deliver them to BiP, that 
is, to facilitate polypeptide folding, analogous to the paradigm of Hsp40, the DnaJ 
in E. coli. However, the four thioredoxin domains within ERj5 (Cunnea et al. 2003; 
Hosoda et  al. 2003; Dong et  al. 2008; Ushioda et  al. 2008; Ladiges et  al. 2005; 
Hagiwara et al. 2011; Oka et al. 2013) and the tetratricopeptide repeat (TPR) do-
mains in ERj6 (p58IPK) (Kang et al. 2006; Rutkowski et al. 2007; Petrova et al. 2008; 

Fig. 9.3   Topology and domain organisation of BiP and its co-chaperones and nucleotide exchange 
factors. C, carboxy-terminal substrate binding domain, Cys cysteine-repeat domain, GF glycine-
phenylalanine rich domain, NBD nucleotide binding domain, SBD substrate binding domain, 
TPR tetratricopeptide repeat, TRX thioredoxin domain. We note that ERj1 and Sec63 both com-
prise large cytosolic domains that are structurally un-related. In the case of ERj1, this domain is 
involved in ribosome binding; (Blau et al. 2005; Dudek et al. 2005) (Fig. 9.6), the cytoslic domain 
of Sec63 is structurally related to certain helicases (Pena et al. 2009) and is involved in interaction 
with Sec62 (Müller et al. 2010) (Fig. 9.5)
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Dong et al. 2008; Svard et al. 2011) may also play a role in substrate binding. Thus, 
ERj3 through ERj6 are involved in protein folding under physiological as well as 
stress conditions and in ERAD (Table 9.2, Fig. 9.2). This is consistent with the fact 
that these four BiP co-chaperones are over-produced together with BiP under stress 
conditions, i.e. when there is an increased demand for chaperone and degradation 
activity towards mis-folded polypeptides (Table 9.2). Therfore, it is not surprising 
that these members of the resident ER Hsp70-cycle have been found in large com-
plexes with each other, with other chaperones and folding catalysts, and with other 
resident ER proteins that are involved in N- or O-glycosylation (UDP-glucose-gly-
coprotein-glycosyltransferase or UGGT, SDF2L1) and calcium homeostasis (calu-
menin, reticulocalbin), respectively (Fig. 9.2).

Table 9.2   Properties of BiP and its co-chaperones and NEFs. We note that the given concentra-
tions refer to a suspension of rough microsomes, which was isolated from canine pancreas and 
adjusted to a concentration of 1 equivalent/µl. In the ER lumen, the concentrations are approxi-
mately thousand-fold higher. The data were taken from Weitzmann et al. 2007; Zahedi et al. 2009). 
GST glutathione-S-transferase
Protein UPR 

controlled
Cellular 
function(s)

Concentration 
in suspension 
of RM (µM)

Recombi-
nant pro-
tein (amino 
acid 
residues)

Rate constants for inter-
action with BiP in the 
presence of ATP
ka (M

−1s−1) kd (s
−1)

BiP + ERAD, 
folding, 
Sec61-gating, 
transport, 
UPR

5.00 BiP-
Hexahis 
(20-655)

 –  –

ERj1 − Unknown 0.36 GST-J-
domain 
(44-140)

6.00 × 103 2.60 × 10−3

ERj2 − Transport 1.98 GST-J-
domain 
(91-189)

0.81 × 103 2.60 ×  10−3

ERj3 + ERAD, 
folding

0.29 GST-ERj3 
(18-336)

1.25 × 103 3.60 × 10−3

ERj4 +++ ERAD, 
folding

Not detectable GST-ERj4 
(23-222)

ERj5 + ERAD, 
folding

2.00 GST-ERj5 
(26-793)

6.20 × 103 2.80 × 10−3

ERj6 + ERAD, 
folding

Not 
determined

GST-ERj6 
(32-504)

64.4 3.97 × 10−3

ERj7 + Unknown 2.30 GST-J-
domain 
(39-149)

5.07 × 103 5.70 × 10−3

Grp170 + Folding, NEF 0.60  – Not 
determined

Sil1 − NEF 0.005 GST-39-461 Not 
detectable
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In Fig.  9.4, we have modelled the equlibrium concentrations of free BiP and 
complexes of BiP with its co-chaperones for canine pancreatic microsomes, based 
on the determined concentrations of the various proteins and the rate constants for 
their interacttion with BiP (Table 9.2). The complexes are formed transiently in or-
der to stimulate the ATPase activity of BiP, thus creating the form of BiP with high 
substrate affinity. Typically, the ER lumenal concentrations of BiP are in the mil-
limolar range and similar to the total concentration of ERjs (Weitzmann et al. 2007). 
The model illustrates that under normal conditions there is enough BiP available for 
interaction with all ERjs and that under conditions of UPR induction, where BiP and 
ERj3 through ERj6 are over-produced, BiP becomes limiting for ERj2, thus, selec-
tively preventing import of additional precursor polypeptides. This can be deduced 

Fig. 9.4   Equilibrium concentrations for (free) BiP and reaction products BiP-ERjX (X = 1,2,3,5,7) 
as a function of the initial concentration of BiP as calculated numerically with the reaction equa-
tions, shown below, and using the experimentally determined rate constants ka and kd and initial 
concentrations [ERjX] in rough microsomes from canine pancreas (Table 9.2). The time evolution 
of the concentrations is then given by a coupled set of ordinary differential equations: 

d
dt

BiP k BiP ERjX k BiP ERjX

d
dt

ER

d
X

a
X

X
[ ] = −[ ]− [ ] [ ]{ }

=
∑ ( ) ( ) · ,

1

7

and

jjX k BiP ERjX k BiP ERjX

d
dt

BiP ERjX k

d
X

a
X

d

[ ] = −[ ]− [ ] [ ]

−[ ] = −

( ) ( )

(

· ,

XX
a
XBiP ERjX k BiP ERjX) ( ) · ,−[ ]+ [ ] [ ]

  

where [BiP], [ERjX], and [BiP–ERjX] denote the concentrations of BiP, ERjX (X = 1,2,…,7), and 
[BiP–ERjX], respectively. Due to the lack of data we set [ERj6] and [BiP-ERj6] constant to zero. 
Using the measured values for the initial concentrations [ERjX](t = 0) and the rate constants ka and 
kd from Table 9.1 we solved the above differential equations numerically for various initial con-
centrations [BiP](t = 0) and zero initial concentrations of the reaction products [BiP-ERjX](t = 0). 
In Fig. 9.1 we show the results of the stationary (equilibrium) concentrations of BiP and the reac-
tion products, [BiP]eq and [BiP-ERjX]eq, respectively, as a function of the initial BiP concentration 
[BiP](t = 0)—which is equal to the total BiP concentration [BiP]total, since [BiP–ERjX](t = 0) is zero 
for X = 1,…7
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from the observation that complex formation between BiP and ERj2 requires much 
higher concentrations of BiP as compared to complex formation between BiP and 
e.g. ERj5 or ERj7.

The Putative Role of BiP and its Co-chaperones in Protein 
Transport into the ER as an Example of Chaperone/
Co-chaperone Action in the Mammalian ER

The structure of the Sec61 complex suggests a potential mechanism for BiP-me-
diated gating, i.e. opening and closing, of the Sec61 channel (Figs. 9.1 and 9.5) 
(Pfeffer et al. 2012, 2014; Zimmermann et al. 2011). We suggest that the ribosome 

Fig. 9.5   Protein-protein interactions that are involved in gating of the Sec61-complex in the 
human ER membrane. The shown interactions of BiP with Sec61α (Schäuble et al. 2012), Sec62 
with Sec61α (Linxweiler et al. 2013) and Sec62 with Sec63 (Müller et al. 2010) as well as their 
sensitivities to mutations were previously described. The BiP-Sec63 interaction was described 
by Tyedmers et al. (2000) and the effect of the R197E mutation by Awad et al. (2008). So far, the 
latter interaction as well as the Sec62-Sec63 interaction were found to be relevant only for protein 
transport into the ER, i.e. gating of the Sec61 complex from the closed to the open conformation; 
in contrast, the BiP co-chaperone for gating to the closed state is still elusive. Interactions are indi-
cated by arrows, the transmembrane helices that form the lateral gate are shown in light blue, the 
cytosolic and ER luminal loops, which form the binding sites for ribosomes and BiP, respectively, 
are indicated. NBD nucleotide binding domain, SBD substrate binding domain
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in cotranslational transport and the Sec62/Sec63 complex in posttranslational 
transport can prime the closed Sec61 complex for opening (Lang et al. 2012). The 
current view on opening of the Sec61 complex in protein translocation, i.e. channel 
gating from the closed to the open conformation, is that signal peptides of nascent 
presecretory polypeptides intercalate between the Sec61α transmembrane (tm) heli-
ces 2 and 7, opening the lateral gate of the Sec61 complex that these two tm helices 
form (van den Berg et al. 2004; Gumbart and Schulten 2007). It has been proposed 
that the minihelix within loop 7 plays a role in gating of the Sec61 complex from 
closed to open and that BiP binding to this minihelix may be required for gating 
from the closed state to the open state in the case of some precursor polypeptides, 
while others may be able to trigger gating on their own (Schäuble et al. 2012). Here, 
BiP binds the native Sec61α as a substrate and facilitates its conformational change. 
At this point of translocation, the nascent precursor polypeptide chain can be fully 
inserted into the Sec61 complex and initiate translocation. Next, BiP binds to the 
precursor polypeptide in transit and acts as a molecular ratchet, thus mediating com-
pletion of translocation (Nicchitta and Blobel 1993; Tyedmers et al. 2003; Shaffer 
et al. 2005). Here, BiP binds the non-native precursor polypeptide as a substrate and 
prevents it from sliding back into the cytosol. Subsequently, i.e. in the absence of 
a precursor polypeptide in transit, binding of BiP to loop 7 can facilitate closing of 
the Sec61 channel to limit ion efflux from the ER (Schäuble et al. 2012). We find 
this view attractive, because loop 7 connects tm helices 7 and 8, and is thus close 
enough to the lateral gate to influence gate movements. Interestingly, mutation of 
tyrosine 344 to histidine within the minihelix of loop 7 leads to diabetes in mice 
(Lloyd et al. 2010).

There is no doubt that the physical and mechanistic link between the Sec61- 
and the BiP-reaction cycles is most efficiently provided by a membrane integrated 
Hsp40 with a lumenal J-domain. Indeed in yeast, Sec63p has been shown to provide 
the lumenal J-domain that allows Kar2p (BiP in yeast) to play its roles in insertion of 
precursors into the Sec61 complex as well as in completion of translocation (Lyman 
and Schekman 1995, 1997). Since in pancreatic microsomes Sec63 or ERj2 was 
found in association with the Sec61 complex and to be present in approximately 
stoichiometric amounts as compared to heterotrimeric Sec61 complexes, we expect 
mammalian Sec63 to play a similar role, i.e. recruit BiP to the Sec61 complex and 
stimulate ATPase activity of BiP for conversion to the high substrate affinity (Mayer 
et al. 2000; Tyedmers et al. 2000; Pena et al. 2009; Lang et al. 2012). However, it 
remains open, whether or not a single BiP molecule can first bind loop 7 of Sec61α 
and, subsequently, the incoming precursor polypeptide within one functional cycle 
(Schlecht et al. 2011). Interestingly, it has been shown that human ERj1 can com-
plement the otherwise lethal deletion of Sec63p in yeast (Kroczynska et al. 2004). 
Therefore, ERj1 may play a similar role as Sec63 in the mammalian ER, thereby 
providing at least partial redundancy for this essential function that may explain 
the non-lethal phenotype of loss of Sec63 function, associated with polycystic liver 
disease (Table  9.1, see below). ERj1 was observed in association with translat-
ing ribosomes (Fig. 9.6; Dudek et al. 2002, 2005; Blau et al. 2005; Benedix et al. 
2010). Therefore, we propose that in the mammalian ER two different membrane 
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proteins provide J-domains in the neighborhood of translating ribosomes and Sec61 
complexes and allow BiP to play its roles in protein import. In addition, ERj1 ap-
pears to have regulatory roles that are related to transcription as well as to transla-
tion. The cytosolic domain of ERj1 has the ability to allosterically inhibit translation 
at the stage of initiation when it is not bound to BiP (Fig. 9.6). Thus, ERj1 would be 
ideally suited to allow initiation of synthesis of precursor polypeptides on ER bound 
ribosomes only when BiP is available on the other side of the membrane. Further-
more, ERj1 has all the features of a membrane-tethered transcription factor that can 
be activated by regulated intra-membrane proteolysis (Zupicich et al. 2001). The 
cytosolic domain has actually been shown to be able to enter the nucleus (Zupicich 
et al. 2001, Dudek et al. 2005). Last but not least, it was observed that a resident ER 
protein with a lumenal J-domain is also involved in sealing of the Sec61 complex 
in the mammalian system (Schäuble et al. 2012). At present, we only can exclude 
ERj1 as the co-chaperone for this BiP activity (Lang et al. 2011).

Regulatory Mechanisms

It has been known for some time that the genes of many of the protein transport 
components of the mammalian ER are under control of the unfolded protein re-
sponse (see Table 9.2 for examples). In addition, various miRNAs apparently target 

Fig. 9.6   ERj1’s ribosomal contacts, overall position and conformational changes. Cryo-EM map 
of the dog pancreas 80S ribosome at a resolution of 23 Å. Left side: Yellow indicates the small 
(40S) ribosomal subunit, blue indicates the large (60S) subunit (Blau et al. 2005; Dudek et al. 
2005). Top, side view; bottom, rotated 90° backwards, exposing the membrane attachment side 
of the ribosome. Right side: Cryo-EM map of the 80S ribosome- ERj1C complex at a resolution 
of 20 Å. ERj1C refers to the cytoslic domain of ERj1. Orange and green indicate the densities for 
ERj1C and the expansion segment 27 or ES27, respectively
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some of these same genes and there may be splice variants for some of these genes 
according to the respective data bases. But there apparently also is regulation on the 
protein level. In the case of mammalian BiP, ADP ribosylation was shown to be a 
mechanism for reversible inactivation of BiP when the concentration of unfolded 
polypeptides is low (Chambers et al. 2012). Various modifications have been ob-
served for mammalian as well as yeast protein transport components, most notably 
phosphorylation. Phosphorylation of mammalian proteins ERj1 and Sec63 by CK2 
was reported, but the functional consequences of these phosphorylations was not 
addressed (Götz et al. 2009; Ampofo et al. 2013). A first hint for the importance of 
CK2-dependent phosphorylation of components of the transport machinery may 
come from studies in yeast (Wang and Johnsson 2005). The essential Sec63p is 
phosphorylated by the protein kinase CK2 and non-phosphorylatable Sec63p causes 
a protein translocation defect. Taken together, these findings suggest a general role 
of phosphorylation for a network of transport factors in regulation of protein trans-
location across the ER-membrane.

Medical Aspects

Shiga toxigenic Escherichia coli (STEC) strains cause morbidity and mortality in 
developing countries (Paton et  al. 2006). Some of these pathogens produce AB5 
toxin or subtilase AB and are responsible for gastrointestinal diseases, including the 
life-threatening haemolytic uraemic syndrome (HUS) (OMIM 235400). During an 
infection, the bacterial cytotoxin enters human cells by endocytosis and retrograde 
transport to the ER. In the ER, BiP is the major target of the catalytic subunit, which 
inactivates BiP by limited proteolysis. Eventually, all BiP functions are lost, and the 
affected cells die.

Autosomal dominant polycystic liver disease (PLD) (OMIM 174050) is a rare 
human inherited disease that is characterized by the progressive development of 
multiple biliary epithelial liver cysts (Davila et al. 2004). It usually remains asymp-
tomatic at young ages and manifests between the ages of 40 and 60 years. Liver 
function is usually preserved. A loss of Sec63 function has been postulated in sever-
al genetic mutations. Although no mechanism has been firmly established for PLD, 
the disease can be explained by a two-hit mechanism: patients with one inherited 
mutant allele and one wild-type allele may lose the wild-type allele in some liver 
cells through somatic mutation. A plausible scenario is that Sec63 is essential for 
the ER import of a subset of non-essential secretory or plasma membrane proteins 
that are involved in the control of biliary cell growth or cell polarity. Thus, without 
functional Sec63, these proteins do not reach the correct location at the cell surface. 
This view was confirmed by recent results and it was concluded that the secondary 
lack of polycystins 1 and 2 results in disrupted cell adhesion and, therefore, cyst 
formation (Fedeles et al. 2011; Lang et al. 2012).

Marinesco-Sjögren syndrome (MSS) (OMIM 248800) is a rare autosomal reces-
sively inherited neurodegenerative disease (Anttonen et al. 2005; Senderek et al. 
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2005). The hallmarks of MSS are cerebellar ataxia, cataracts, developmental and 
mental retardation, and progressive myopathy (Roos et al. 2014). The cause of the 
disease in the majority of MSS patients has been characterized as a mutation in the 
SIL1 gene that results in mutated or truncated Sil1. Sil1 is a nucleotide exchange 
factor for BiP, and its role is to provide BiP with ATP (Weitzmann et al. 2006). Thus, 
the loss of Sil1 function results in a reduction of functional BiP. Several possible 
consequences are: (i) some precursor proteins may not be transported into the ER, 
causing precursor polypeptides to accumulate in the cytosol; (ii) some proteins that 
are successfully transported into the ER may not be folded correctly, leading to 
accumulation of mis-folded polypeptides in the ER; (iii) some essential secretory 
or plasma membrane proteins may not reach their functional location, leading to 
secondary loss of functions; or (iv) Sec61 channel gating to the closed state may be 
compromised, thus, leading to apoptosis.

Wolcott-Rallison syndrome (WRS) (OMIM 226980) is a rare autosomal re-
cessive disorder characterized by permanent neonatal and early infant insulin de-
pendent diabetes associated with various multisystemic clinical manifestations 
(Brickwood et al. 2003). The cause of the disease has been characterized as a muta-
tion in the PERK gene that results in a mutated or truncated PERK protein. Based 
on the analysis of some of the mutant proteins, a loss of PERK function is expected 
in all of these cases. PERK seems to be essential in postnatal pancreatic β cells and 
may play a role in pancreatic development in utero. Because PERK is only one of 
four kinases that are known to phosphorylate eIF2A, it was argued that PERK may 
also have an important metabolic function and that the latter may be the essential 
function in β cells.

Due to poor vascularization and the resulting hypoxia and glucose starvation, 
tumor cells are prone to ER stress and UPR (Macario and Conway de Macario 
2007; Aridor 2007). In cultured cells, BiP is one of the proteins involved in protect-
ing cancer cells against ER stress-induced apoptosis (Fu et al. 2007). In addition to 
this general link between BiP and cancer, some of the above-mentioned BiP inter-
acting proteins have been connected to certain tumors. Sec63 is an ER-membrane 
resident Hsp40 that, together with BiP, plays a role in gating of the Sec61 complex 
(Lang et al. 2012; Schäuble et al. 2012). The SEC63 gene was found among the 
most frequently mutated genes in cancers that had deficient DNA mismatch repair, 
such as hereditary nonpolyposis colorectal cancer (HNPCC)-associated malignan-
cies and sporadic cancers with frequent microsatellite instability (Mori et al. 2002; 
Schulmann et al. 2005). These genetic alterations may be associated with a more or 
less pronounced loss of Sec63 function. This alone may contribute to tumorigenesis 
or it may result in a non-physiological Sec62-Sec63-ratio. This hypothesis is sup-
ported by a study on the gene expression signatures of sporadic colorectal cancers; 
they recognized the over-expression of SEC62 as part of a 43-gene cDNA panel 
that was used for predicting the long-term outcome of colorectal cancer patients 
(Eschrich et al. 2005). Sec62 forms a complex with Sec63 and Sec61 and is also 
involved in Sec61 channel gating (Linxweiler et al. 2013). Gene amplification at 
chromosome 3q25-q26 commonly occurs in prostate- as well as several other can-
cers. Mapping the 3q25-q26 amplification and identifying candidate genes with 
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quantitative real-time PCR revealed that the SEC62 gene had the highest known 
amplification frequency (50 %) in prostate cancer and was found to be up-regulated 
at the mRNA and protein level in all tumors analyzed (Jung et al. 2006). Recently, 
this was also observed for cancers of the lung and thyroid (Greiner et al. 2011a, 
2011b; Linxweiler et al. 2012, 2013) and SEC62 ( TLOC1) was characterized as a 
cancer driver gene (Hagenstrand et al. 2013). Thus, SEC62 over-expression appears 
to be associated with a proliferative advantage for various cancer cells, which ap-
pears to be due to the role of Sec62 in cellular calcium homeostasis. In summary, a 
Sec62-Sec63 imbalance is likely to contribute to the development of various human 
malignancies.

A common theme seems to emerge from some of the described patho-physio-
logical situations in mice and men (summarized in Table 9.1): Mammalian cells, 
which are highly active in protein secretion, may be particularly sensitive towards 
problems in Sec61 channel closure and, therefore, constantly on the verge to apop-
tosis, e.g. seen in the β-cells of the mouse with the Sec61αY344H mutation. On the 
other hand, the secretory active cells may be particularly sensitive to imbalances in 
the Sec62 to Sec63 ratio, which result in over-efficient Sec61 channel closure and, 
thus, a proliferative advantage that can lead to cancer, e.g. seen after over-epression 
of SEC62 in prostate or lung cancer. However, it remains to be seen to what extent 
the other diseases that are listed in Table 9.1 fit into this scheme.
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