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Narrow escape problem in two-shell spherical domains
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Intracellular transport in living cells is often spatially inhomogeneous with an accelerated effective diffusion
close to the cell membrane and a ballistic motion away from the centrosome due to active transport along actin
filaments and microtubules, respectively. Recently it was reported that the mean first passage time (MFPT) for
transport to a specific area on the cell membrane is minimal for an optimal actin cortex width. In this paper,
we ask whether this optimization in a two-compartment domain can also be achieved by passive Brownian
particles. We consider a Brownian motion with different diffusion constants in the two shells and a potential
barrier between the two, and we investigate the narrow escape problem by calculating the MFPT for Brownian
particles to reach a small window on the external boundary. In two and three dimensions, we derive asymptotic
expressions for the MFPT in the thin cortex and small escape region limits confirmed by numerical calculations
of the MFPT using the finite-element method and stochastic simulations. From this analytical and numeric
analysis, we finally extract the dependence of the MFPT on the ratio of diffusion constants, the potential barrier
height, and the width of the outer shell. The first two are monotonous, whereas the last one may have a minimum
for a sufficiently attractive cortex, for which we propose an analytical expression of the potential barrier height
matching very well the numerical predictions.
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I. INTRODUCTION

The intracellular transport of various cargo-particles (for
example proteins, vesicles, mitochondria, etc.) towards a spe-
cific area on the cell membrane, like the immunological
synapse in T cells and natural killer cells [1], is crucial for the
correct functioning of cells and organisms. The cytoskeleton
mediated cargo transport in many cells with a centrosome can
schematically be described by a two-shell geometry with an
inner sphere containing microtubules radiating from a micro-
tubule organizing center (MTOC, involving the centrosome),
and an outer shell containing the actin cortex, a thin dense
network of actin filaments underneath the cell membrane [2].
Molecular motor driven cargo transport along the cytoskeleton
filaments is achieved by dynein (from the centrosome to the
cortex) and kinesin (from the cortex to the centrosome) on the
microtubules, and myosin on the actin filaments. The stochas-
tic attachment and detachment of molecular motors to and
from the filaments combined with intermittent diffusion of the
detached motors can mathematically be described by an in-
termittent search process [3,4], alternating randomly between
a cytoplasmic diffusive transport and a ballistic transport on
filaments [5]. Recently, it was shown that the transport time to
reach a specific area, the escape area, on the cell membrane by
this intermittent search can be minimized with respect to the
cortex width [6–9] due to an accelerated effective diffusion
close to the cell membrane and the efficiency of the intermit-
tent search. For small typical size ε of the escape area, this

*mangeat@lusi.uni-sb.de
†h.rieger@mx.uni-saarland.de

intracellular transport constitutes the narrow escape problem
(NEP) in a spatially inhomogeneous environment.

NEPs are widely studied in various biological and chemical
contexts [5,10–13], and they consist in calculating the mean
first passage time (MFPT) of a Brownian motion to reach a
small escape window from a given starting point x, denoted
hereafter as t (x). This time is also called narrow escape time
(NET) in the limit of a small escape region (here ε � 1).
Mathematically, the NEP for noninteracting particles reduces
to solve the spatial differential equation written as L†t (x) =
−1, where L† is the conjugate of Fokker-Planck operator [14],
with mixed Neumann-Dirichlet boundary conditions (absorb-
ing on the escape region and reflecting elsewhere). Numerical
estimates of the MFPT can be obtained by either using the
finite-element method to solve the partial differential equa-
tion (PDE) [15,16] or by simulating the stochastic process
with kinetic Monte Carlo algorithms [17,18], for any studied
geometry.

Analytically, the NEP has been widely scrutinized over
the past decades for several types of geometry and stochastic
processes [19–22]. In two dimensions, the leading order of
the MFPT is proportional to ln ε, whereas in three dimensions
this leading order is proportional to ε−1. These leading orders
are derived from a Poisson equation with a singular source
term, presenting the same solution as the electric field for an
electron. The subleading corrections play an important role
to analyze the difference between the starting points having
the same leading order [23–27]. Those corrections depend
generally on the Green’s function of the closed domain [28].
In particular, we can mention that asymptotic expressions of
the NET have been developed for homogeneously diffusive
particles for the disk geometry [20,24] and for the sphere
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geometry [25–27] for many small escape regions (ε � 1). An
exact solution of the MFPT was recently derived from com-
plex analysis for the disk geometry [29] for one escape region.
Moreover, another exact solution of the equation ∇2t (x) =
−1/D(x) has been calculated for an arbitrary simply con-
nected planar domain using a conformal mapping onto the
unit disk [30]. The NEP has also been widely studied for
the surface-mediated diffusion problem [32–36] representing
a very thin cortex in the biological context mentioned above.
It was shown that the MFPT can be optimized with respect
to absorption and desorption rates of Brownian particles on
the surface. Additionally, the MFPT has been analyzed in the
presence of radially attractive potentials pushing the particles
to the surface [31] leading to a MFPT optimization due to
a competition between bulk and surface events. Finally, the
first exit time distribution has been investigated for several
two-dimensional geometries [37] or for the sphere geometry
[38], for which it was shown recently that the typical first pas-
sage time may be shorter than the MFPT by several decades.
This time distribution has also been studied in the presence of
logarithmic potentials [39].

In this article, we ask whether the MFPT shows a non-
monotonous, and hence optimizable, dependence on the width
of the outer shell (the actin cortex width in the biological
context mentioned above) when the ballistic transport on fila-
ments is neglected, i.e., for passive Brownian particles. Within
the two-shell geometry, we consider a Brownian motion in
each shell with different diffusion constants presenting a po-
tential barrier between the two shells. We recently studied the
impact of a heterogeneous diffusivity in Ref. [40] showing
that without a potential barrier no optimization of the MFPT
can be observed, which motivated the study presented in this
article. The mathematical model will be defined in Sec. II. In
Sec. III we will present the limit of the model for the thin
cortex. In Sec. IV we will present our numerical estimates of
the MFPT obtained by the numerical solutions of the PDE
and by stochastic simulations. We will also investigate the
dependence of the MFPT on all parameters by a qualitative
analysis. In Sec. V we will derive an asymptotic expression of
the NET and we will compare it with the numerical solutions.
From these expressions, we will then derive a condition for
the potential barrier height to observe a MFPT optimization.
Finally, Sec. VI will conclude with a discussion about the
results and an outlook.

II. THE MODEL

In this article, we study the NEP in the two-shell geometry
sketched in Fig. 1(a), which corresponds to a disk/sphere of
radius R constituted by two concentric regions in which the
particles diffuse with different diffusion constants and poten-
tials in each shell. The outer shell (or cortex) corresponds to
the actin cortex of the cytoskeleton mentioned in the Introduc-
tion with a width �, while the inner shell (or central region)
represents the area of microtubules with a radius R − �. The
diffusion constants and the potentials are denoted as D1 and
V1, respectively, in the cortex and D2 and V2 in the central
region. The particles experience a potential barrier of height
�V = V2 − V1 when transiting from the outer to the inner
shell. The external boundary at the radius |x| = R is denoted

FIG. 1. (a) Schematic of the two-shell geometry with piecewise
diffusivity and potential, respectively, equal to D1 and V1 in the outer
shell (cortex) and D2 and V2 in the inner shell (center). The width of
the outer shell is � for a domain radius R while the escape angle is ε.
(b) Schematic of the SMDP with surface and bulk diffusion constants
D1 and D2. The desorption and absorption rates on the surface are,
respectively, λ and k while the escape region angle is ε.

as ∂� and represents the cell membrane. The escape win-
dow, representing, e.g., the synapse (see the Introduction),
is a circular (spherical) arc on this external boundary with
an apparent angle ε and is denoted ∂�ε. In two and three
dimensions, with polar coordinates (r, θ ) or spherical coor-
dinates (r, θ, ϕ), respectively, the escape region is defined by
the radius r = R and the polar angle |θ | < ε/2.

A smooth diffusion constant with a sigmoidal shape will
lead to similar solutions, as long as the size of the transition
interval (from D1 to D2) is much smaller than the other length
scales in the problem, � and R. A different model has been
studied with diffusion constant switching between two dis-
tinct values according to a Markov jump process [41]. Here
we will focus on D1 > D2, motivated by molecular motor
driven propulsion along actin filaments in the cell cortex (see
the Introduction), which leads on long timescales to a faster
diffusion in the outer shell. The case D1 < D2 could model a
slower membrane diffusion [42], which is not the focus of this
present work. Moreover, we will focus on an attractive outer
shell (�V > 0). Due to the actin cortex underneath the cell
membrane, the probability to stay in the outer shell is higher
than to leave it if no attachment to microtubules is involved.
Hence a phenomenological description by a lower poten-
tial might be appropriate. A repulsive outer shell (�V < 0)
probably has no biological relevance, except perhaps for large
particles not equipped with molecular motors. Note that a re-
pulsive potential in the outer shell simply increases the MFPT.
Different studies of the NEP have also considered more gen-
eral drift terms and nonlocalized potential wells [43,44].

The probability density p(y, τ |x) to be at the position y
after a time τ starting at the position x without having reached
the escape region satisfies the forward Fokker-Planck equation
∂τ p(y, τ |x) = Ly p(y, τ |x), where Ly is the forward Fokker-
Planck operator, or

∂τ p(y, τ |x) = ∇y · {D(y) exp (−βV (y))∇y[ exp (βV (y))

× p(y, τ |x)]}
= −∇y · J(y, τ ), (1)

where D(y) and V (y) are radially piecewise constants within
the two-shell geometry, and J(y, τ ) defines the current of
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particles composed by the diffusive current −D(y)∇y p(y, τ )
and the convective current −βD(y)∇yV (y)p(y, τ ) in a ther-
mal bath with temperature β−1. The boundary conditions on
the surface are p(y, τ |x) = 0 on the absorbing boundary ∂�ε

and n · J(y, τ ) = 0 on the reflective boundary ∂�\∂�ε, where
n represents the normal vector to the surface. From Eq. (1),
the probability densities pi defined in each shell i satisfy the
diffusion equation ∂τ pi = Di∇2

y pi and the boundary condi-
tions between the two shells are p1 exp(βV1) = p2 exp(βV2)
and D1n · ∇y p1 = D2n · ∇y p2. The particles then perform a
Brownian motion in each shell and need to pass through a
potential barrier ±�V to go from one shell to the other.

The mean first passage time (MFPT) for a particle starting
at x to reach the escape region [14] is defined by

t (x) =
∫

�

dy
∫ ∞

0
dτ p(y, τ |x), (2)

and satisfies then the equation L†
xt (x) = −1 with L†

x the back-
ward Fokker-Planck operator:

L†
xt (x)=exp (βV (x))∇x · [D(x) exp (−βV (x))∇xt (x)]=−1.

(3)

The corresponding boundary conditions on the surface are

t (x) = 0, x ∈ ∂�ε and n · ∇xt (x) = 0, x ∈ ∂�\∂�ε,

(4)

where n represents the normal vector to the surface. The
system of equations satisfied by the MFPTs ti(x) defined in
each shell i is then

D1∇2
x t1(x) = −1, x ∈ �1, (5)

D2∇2
x t2(x) = −1, x ∈ �2, (6)

t1(x) = t2(x) and

D1 exp(−βV1)n · ∇xt1(x) = D2 exp(−βV2)n · ∇xt2(x),

x ∈ ∂�1/2, (7)

t1(x) = 0, x ∈ ∂�ε and n · ∇xt1(x) = 0,

x ∈ ∂�\∂�ε. (8)

In the following sections, we will focus mainly on two
quantities: (i) the average MFPT (denoted GMPFT hereafter
for global MFPT), which characterizes the MFPT of the parti-
cles starting according to the stationary probability density for
the closed domain, denoted Ps(x), satisfying the Boltzmann
weight for the potential V (x):

〈t〉 =
∫

�

dx Ps(x)t (x) =
∫
�

dx exp ( − βV (x))t (x)∫
�

dx exp ( − βV (x))
(9)

and in particular the dimensionless quantity: T = D1〈t〉/R2;
and (ii) the MFPT for particles starting at the center (de-
noted CMFPT hereafter for center MFPT): t (0) for which the
dimensionless quantity is T0 = D1t (0)/R2. These two quan-
tities are most important to characterize the average transport
efficiency towards the escape region and the transport between
the center and the escape region, respectively. We will analyze
their dependence on the four main parameters: the escape
angle ε, the dimensionless width of the outer shell �/R,

the ratio of diffusion constants D1/D2, and the dimensionless
potential difference β�V = β(V2 − V1).

III. THIN CORTEX LIMIT

In this section, we derive the expression of the MFPT in
the thin cortex limit (� → 0), and we relate it to the surface-
mediated diffusion problem (SMDP) defined in Refs. [35,36].
For this SMDP with a desorption rate λ and an absorption rate
k [see Fig. 1(b)], the MFPT equations for a particle starting
on the surface and in the bulk, denoted t� and tB, respectively,
are

D1

R2
�θ t� (θ ) − λ

k

∂tB
∂r

(R, θ ) = −1, (10)

D2∇2tB(r, θ ) = −1, (11)

where D1 and D2 are, respectively, the diffusion con-
stants on the surface and in the bulk, and �θ =
(sin θ )2−d∂θ (sin θ )d−2∂θ is the Laplace operator on the unit
hypersphere in d dimension, assuming the invariance over
the azimuthal angle ϕ in dimension d = 3. The boundary
conditions are

∂tB
∂r

(R, θ ) = k[t� (θ ) − tB(R, θ )] (12)

on the surface and t� = 0 on the escape region located at
|θ | < ε/2. This last condition will be omitted in the following
analysis since it is trivially satisfied by all NEPs. We may note
that the solution of this system of equations depends on k and
λ independently, whereas our two-shell geometry model de-
pends only on the potential difference �V = V2 − V1. Hence
the SMDP has one more parameter also in the � → 0 limit.
In Appendix A 1 we show that Eqs. (5)–(8) can be related to
Eqs. (10)–(12) only when the desorption and absorption rates
are infinite (k → ∞ and λ → ∞) for a constant ratio given
by

lim
k→∞
λ→∞

kD2

λ
= lim

�→0

� exp(−βV1)

exp(−βV2)
≡ κ. (13)

The potential difference must then depend logarithmically on
the width of the outer shell as β�V 
 ln(κ/�) to recover the
SMDP from the two-shell geometry NEP.

This relation can be derived by considering the stationary
state for the closed domain (ε = 0) and by using the conti-
nuity of the MFPT (which gives the limit k → ∞). In the
two-shell geometry, the stationary state satisfies the relation
pst

1 /pst
2 = exp[−β(V1 − V2)], while the stationary state of the

SMDP satisfies pst
�/pst

B = kD2/λ. In the limit � → 0, the re-
lations between the density probabilities of the two problems
are pst

B = pst
2 and pst

� = �p1 after integration over the radius
r ∈ [R − �,R]. By identification of both equilibrium states,
Eq. (13) is recovered.

In Appendix A 2 we derive the limit of Eqs. (5)–(8) when
� → 0. As long as �V < +∞ (excluding the annulus ge-
ometry), the MFPT equations become D2∇2tB(r, θ ) = 0 and
t� (θ ) = tB(R, θ ) with the boundary condition

∂tB
∂r

(R, |θ | > ε/2) = 0. (14)
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These equations correspond to the SMDP with k → ∞ and
kD2 � λ, consistent with Eq. (13) for κ = 0, which is strictly
the same as the disk geometry NEP with a diffusion constant
D2, implying the general relation

lim
�→0

t (x) = D1

D2
lim

�→R
t (x) (15)

for all starting position x. In passing we note that the limit
� → R is equivalent to the special case D1 = D2 and β�V =
0 for which the central region disappears, due to the continuity
of the MFPT. In this special case, the GMFPT is equal to
〈t〉 = 〈tB〉 since the average over t� does not contribute when
� = 0 and the CMFPT is t (0) = tB(0), leading to the fol-
lowing results for T = D1〈t〉/R2 and T0 = D1t (0)/R2 in the
narrow escape limit [20,24,25]:

T 

{

D1
D2

(− ln ε
4 + 1

8

)
(d = 2),

D1
D2

(
2π
3ε

− 1
3 ln ε − 1

10

)
(d = 3)

and

T0 

{D1

D2

(− ln ε
4 + 1

4

)
(d = 2),

D1
D2

(
2π
3ε

− 1
3 ln ε

)
(d = 3).

(16)

In Appendix A 2 we hypothesize that the thin cortex limit,
leading to Eq. (15), is valid for

�

R � min

(
1,

D2

D1
exp(−β�V )

)
. (17)

In the annulus geometry, i.e., �V = +∞ or
exp(−β�V ) = 0, the MFPT satisfies the same equations
with Eq. (14) replaced by

D1

R2
�θ t� (θ ) = −1. (18)

These equations correspond to the SMDP with k → ∞ and
λ � kD2, consistent with Eq. (13) for κ = ∞. The general
solutions of the surface MFPT t� (θ ) are [35]

D1

R2
t� (θ ) =

{
(θ−ε/2)(2π−ε/2−θ )

2 (d = 2),

ln
(

1−cos θ
1−cos(ε/2)

)
(d = 3).

(19)

The GMFPT is equal to 〈t〉 = 〈t�〉 since the average over
tB does not contribute when exp(−β�V ) = 0 (i.e., annulus
geometry) and the CMFPT is t (0) = tB(0). The results for T
and T0 are then [35]

T =
{

(2π−ε)3

24 (d = 2),

− 1+cos(ε/2)
2 − 2 ln sin(ε/4) (d = 3),

and

T0 = T + D1

2dD2
. (20)

Herewith the � → 0 limit of the two-shell geometry NEP
in 2D and 3D is well understood, and is generally related to
the SMDP for particular values of absorption and desorption
rates.

IV. NUMERICAL SOLUTIONS

This section elaborates how to obtain numerical estimates
of the MFPT with the finite-element method to solve Eqs. (5)–
(8) and, alternatively, with stochastic simulations. Then we

present numerical results and analyze qualitatively the param-
eter dependencies of the MFPT. We solve numerically the
system of Eqs. (5)–(8) with the finite-element method [15]
using the software package FREEFEM++ [16]. Since this soft-
ware allows us to define piecewise constant functions (as the
diffusion constant and the potential), Eq. (3) can be directly
solved in the two-shell geometry. Using the stationary proba-
bility density for the closed domain Ps(x) ∝ exp ( − βV (x)),
Eq. (3) becomes

∇x · [D(x)Ps(x)∇xt (x)] = −Ps(x). (21)

The weak formulation of this equation is the functional equa-
tion over the full space �:∫

�

dx v(x)∇x · [D(x)Ps(x)∇xt (x)] = −
∫

�

dx v(x)Ps(x),

(22)

where v(x) is an arbitrary smooth function. Integration by
parts of the left-hand side and the boundary conditions (4)
yields∫

�

dx ∇xv(x) · [D(x)Ps(x)∇xt (x)] =
∫

�

dx v(x)Ps(x) (23)

by imposing the condition v(x) = 0 on the absorbing bound-
ary ∂�ε. In 3D, cylindrical coordinates (ρ, ϕ, Z ) with x = Z ,
y = ρ cos ϕ, and z = ρ sin ϕ are used. Since the system is
invariant under rotations around the Z-axis by the azimuthal
angle ϕ, Eq. (23) becomes∫

�

dX ρ∇Xv(X) · [D(X)Ps(X)∇Xt (X)] =
∫

�

dX ρv(X)Ps(X),

(24)

where X = (Z, ρ). The projection on the plane ϕ = 0 (i.e.,
z = 0) yields X = (x, y). From Eqs. (23) and (24), the equa-
tion to solve in d dimensions is hence∫

�

dx yd−2∇xv(x) · [D(x)Ps(x)∇xt (x)]

=
∫

�

dx yd−2v(x)Ps(x), (25)

where x = (x, y) are the two-dimensional Cartesian coordi-
nates. This equation can be written as b(v, t ) = l (v), where
b(v, t ) and l (v) are bilinear and linear operators, respectively,
on the space of integrable functions L1.

To solve this functional equation, the space is discretized
into a triangular mesh-grid which is in general not regular.
We may note at this point that the width of the outer shell
studied in this paper is limited to � > 0.0003R to avoid
computationally inconvenient mesh sizes. The MFPT is then
calculated at the nodes of a mesh-grid as sketched in Fig. 2
(labeled α ∈ [1,N ]) and interpolated over the complete space
with second-order Lagrange polynomials eα (x), forming a
basis on the discretized space and defined by its value on
the nodes: 1 at node α and 0 at other nodes. The MFPT is
then t (x) = ∑

α ταeα (x) and the functional equation becomes∑
β τβb(eα, eβ ) = l (eα ) due to linearity and expanding the

function v(x) in eα (x). This expression can be rewritten in
matrix form Bτ = L, where B is a matrix with elements
Bαβ = b(eα, eβ ), and τ and L are vectors with components τα
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(a) (b)

FIG. 2. (a) Mesh-grid created initially by the software package
FREEFEM++ with 300 vertices on the boundary. (b) Mesh-grid after
four refinements made by FREEFEM++ according to the MFPT
solution.

and l (eα ), respectively. The solution is hence τ = B−1L. The
computational time is mainly determined by the inversion of
the N × N matrix, i.e., of order O(N 3) with classical inver-
sion methods. The results shown hereafter will be calculated
by starting from a not too narrow mesh-grid with N 
 103

nodes by fixing 300 vertices on the boundary [see Fig. 2(a)],
and refining the mesh-grid where the MFPT varies strongly
until reaching N 
 104 nodes [see Fig. 2(b) after four refine-
ments]. We can mention that the mesh-grid is mostly refined
close to the escape region where the MFPT is approximatively
proportional to ln D and D−1, where D is the distance to
the center of the escape region in two and three dimensions,
respectively, while the mesh-grid is not refined far from the
escape region. Following this method, the computation time to
obtain a numerical estimate for t (x) for all starting positions
x is less than 10 s on a 4 GHz CPU. In the supplemental
material [45], the numerical error of this method is evaluated
by comparison to an analytically solvable special case: the
fully absorbing limit when ε = 2π . We estimate therein that
the numerical error is of order 10−4.

This fast numerical method to have an estimate of the
MFPT can be compared with the conventional stochastic sim-
ulations of a Brownian particle to reach the escape region.
The Langevin equation written with the Itô convention for the
position xt at time t is

xt+dt = xt + [−D(xt )β∇xV (xt ) + ∇xD(xt )]dt

+
√

2D(xt )dBt , (26)

where dBt is distributed according to a zero mean Gaussian
distribution of variance dt . The convective term is not well
defined when the Brownian particle crosses the inner bound-
ary at |x| = R − � for the two-shell geometry. To obtain an
accurate algorithm, we consider that the particles perform
a Brownian motion in each shell with different diffusion
constants, with an impermeability condition at the external
boundary and with a special rule at the interface between
the two shells. To obtain a faster solution than simulating the
Brownian motion step by step, we consider the kinetic Monte
Carlo (KMC) method [17,18] as long as the particle stays in
the same shell and return to a small hop simulation close to
the boundaries (with a distance smaller than η). The KMC
method consists of generating a random time at which the
particle hits the boundary for the first time, according to the

FPT distribution known for a homogeneous diffusion constant
in simple geometries (e.g., disk, sphere) with a fully absorbing
boundary.

To satisfy the boundary condition between the two shells,
the algorithm shown in Ref. [46] (without a potential barrier)
is used to have the correct repartition of particles in the inner
and outer shells. The probability Pk to be in the shell k is
proportional to

√
Dk (from Ref. [46]) and exp(−βVk ) (from

the stationary probability density), implying that

P1 =
√

D1 exp(−βV1)√
D1 exp(−βV1) + √

D2 exp(−βV2)
and

P2 =
√

D2 exp(−βV2)√
D1 exp(−βV1) + √

D2 exp(−βV2)
. (27)

When the particle crosses this interface, the particle is stopped
on the interface, the crossing time is calculated, and the next
time position is strictly taken in the shell k with probability
Pk . The time step is taken as dt = η2/(2Dk ) for having only
a few steps without using the KMC method, and η = 10−4R.

The computation time is proportional to the number of
stochastic realizations and increases for a narrow escape re-
gion exactly like the MFPT value. For 106 different stochastic
trajectories and an escape angle ε = 0.2, the computation
time is about six and fourteen hours for the two- and three-
dimensional problems, respectively. We can remark that we
have access to only one estimate of the MFPT for a given
starting point (GMFPT or CMFPT) due to the initialization
of stochastic trajectories. The codes of the numerical methods
discussed in this section are available in Ref. [47].

In Fig. 3, the dependence of the dimensionless GMFPT
and CMFPT on the escape angle ε is shown for 2D and
3D NEPs. There all other parameters are fixed: � = 0.25R,
D1/D2 = 5, and β�V = 2. Figure 3 presents also a compar-
ison between the numerical solutions for T and T0 obtained
with the finite-element method using the software package
FREEFEM++ (lines) and the stochastic simulations for 106

different stochastic trajectories (symbols). Analyzing the val-
ues of the GMFPT and the CMFPT after several refinings
of the mesh-grid, the relative error on these quantities is of
order 10−4 (see the supplemental material [45]) while the
stochastic error is of order 10−3 for that number of realiza-
tions. Regarding the computation time elaborated above, the
finite-element method is much more efficient than stochastic
simulations. Moreover, the numerical values are consistent
with the analytical approximations (dotted lines), which will
be derived in Sec. V. The difference between CMFPT and
GMFPT is of order O(ε0) while the leading order is of order
O(ln ε) in 2D [Fig. 3(a)] and of order O(ε−1) in 3D [Fig. 3(b)].
In the following, we will exclusively use the finite-element
method to compute numerical estimates of the MFPTs.

Figure 4 displays the MFPT for the escape angle ε = 0.2 in
2D (left panel) and ε = 0.5 in 3D (right panel). The 3D case
is restricted to the (x, y) plane by considering the rotational
symmetry around the x-axis. In each line only one param-
eter is varied: �/R, D1/D2, or β�V . The MFPT behaves
similarly in 2D and 3D, but quantitative differences can be
observed. In the first line of Fig. 4, the dependence of the
MFPT on the width of the outer shell, �, is displayed for fixed
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FIG. 3. Dependence of the dimensionless GMFPT and CMFPT, denoted, respectively, as T = D1〈t〉/R2 (GMFPT) and T0 = D1t (0)/R2

(CMFPT), on the escape angle ε for fixed parameters � = 0.25R, D1/D2 = 5, and β�V = 2 for (a) the two-dimensional and (b) the three-
dimensional NEPs. The lines (FEM) correspond to numerical solutions obtained with the finite-element method using FREEFEM++ assumed
to be the most accurate with a relative error smaller than 10−4. The circle and square symbols (simulations) represent the stochastic average of
these MFPTs obtained with numerical simulations for 106 different samples of escape trajectories. The dashed lines (NE) display the narrow
escape limit ε � 1 for these two MFPTs.

parameters D1/D2 = 5 and β�V = 2. When � decreases
[from (a1) to (a3)], the MFPT decreases for particles starting
in a region (x > x∗) close to the escape window while it
increases for other starting positions. This behavior may lead
to the presence of a minimum for the GMFPT by averaging
over all starting positions, but also for the CMFPT, since
x∗ > 0. From Fig. 4(a) we estimate x∗ 
 0.3R for d = 2 and
x∗ 
 0.5R for d = 3. Without showing data we note that the
�-dependence of the MFPT is different for a repulsive cortex
(β� < 0) and/or a slow cortex (D1 < D2). For the majority
of starting points, a decreasing MFPT is observed for D1 >

D2 and �V < 0 and an increasing MFPT for D1 < D2 and
�V > 0, which follows the behavior between the two extreme
limits given by Eq. (15). For D1 < D2 and �V < 0, the �-
dependency of the MFPT is nonmonotonous: it is increasing
for small width and decreasing for large width, leading to
a maximum for the GMFPT and the CMFPT as a function
of �.

In the second line of Fig. 4, the dependence of the MFPT
on the potential difference, β�V , is presented for fixed pa-
rameters � = 0.25R and D1/D2 = 5. When �V increases
[from (b1) to (b3)], the MFPT decreases due to a stronger
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FIG. 4. Numerical solution of the MFPT obtained with the finite-element method using FREEFEM++ for the 2D NEP (left panel) and the
3D NEP (right panel) which is axis-symmetric around the abscissa x (dashed-dotted line) for fixed escape angles ε = 0.2 and 0.5, respectively.
The first line displays the solution for fixed parameters D1/D2 = 5 and β�V = 2, and decreasing values of �/R: (a1) �/R = 0.7, (a2)
�/R = 0.4, and (a3) �/R = 0.1. The second line shows the solution for fixed parameters �/R = 0.25 and D1/D2 = 5, and increasing
potential difference β�V : (b1) β�V = 0.1, (b2) β�V = 1, and (b3) β�V = 10. The third line displays the solution for fixed parameters
�/R = 0.25 and β�V = 2, and increasing ratio of diffusion constants D1/D2: (c1) D1/D2 = 5, (c2) D1/D2 = 20, and (c3) D1/D2 = 100.
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attraction of the outer shell where the escape region is located,
with slightly larger decrease for starting positions close to the
absorbing window. Therefore, the GMFPT and the CMFPT
are strictly decreasing functions of β�V .

In the third and last line of Fig. 4, the dependence of
the MFPT on the ratio of the diffusion constants, D1/D2,
is shown for fixed parameters � = 0.25R and β�V = 2.
When this ratio increases [from (c1) to (c3)], the particles
starting in the central region are slowed down implying that
the MFPT increases. Hence the GMFPT and the CMFPT are
strictly increasing functions of D1/D2. Moreover, the starting
position of the maximal MFPT (MMFPT) is located at the
center when D1 � D2 due to this slowing down. Hence the
distance rmax to the center of the MMFPT starting position de-
creases discontinuously with the ratio D1/D2 from rmax = R
to rmax = 0. For a ratio of diffusion constants D1/D2 < κc,
the MMFPT starting position is located in the cortex at the
maximum distance to the escape region, i.e., rmax = R. When
D1/D2 becomes larger than κc, the MMPFT starting position
jumps to the inner shell with rmax � R − �, and it is located
at the maximum distance to the escape region at the transi-
tion (D1/D2 = κc). Finally for D1/D2 > κc, rmax decreases
continuously from R − � to 0. Note that κc depends on the
outer shell width �, and the potential difference β�V . κc

increases with � and decreases with β�V . This behavior
has been studied in Ref. [40] without a potential difference
(β�V = 0), and the main conclusions stay qualitatively the
same for both an attractive and a repulsive cortex (see the
supplemental material [45]).

With these qualitative observations in mind, we will fo-
cus in the following on the dependence of the GMFPT and
CMFPT on the width of the outer shell �/R for which the
behavior is clearly nonmonotonous for small escape angles.

V. NARROW ESCAPE LIMIT AND MFPT OPTIMIZATION

In this section, we derive the GMFPT and the CMFPT in
the narrow escape limit (ε � 1). We also derive a condition
for β�V and D1/D2 for which the MFPT displays a minimum
as a function of the outer shell width �. In Appendix B, we
show how the MFPT can be calculated in the narrow escape
limit for general diffusivity D(x) and potential V (x) [22–26].

We denote the coordinate of the center of the escape region by
x0 and assume that the limit of the diffusivity and the potential
are sufficiently smooth close to this point, which is clearly the
case for the two-shell geometry. The MFPT depends only on
the solution of the pseudo Green’s function G(x|x0) [28] for
the closed domain (ε = 0):

t (x) = 〈t〉 − G(x|x0)

Ps(x0)
, (28)

where 〈t〉 is the average MFPT and Ps(x0) is the station-
ary probability density for the closed domain. The Green’s
function can be written in terms of the probability density
p(y, τ |x) as

G(x|x0) = Ps(x0)
∫

�

dy
∫ ∞

0
dτ [Ps(y) − p(y, τ |x)], (29)

and is therefore the solution of the system

exp (βV (x))∇x · [D(x) exp (−βV (x))∇xG(x|x0)]

= Ps(x0) − δ(x − x0), x ∈ �, (30)

n · ∇G(x|x0) = 0, x ∈ ∂�, (31)∫
�

dx G(x|x0)Ps(x) = 0, (32)

but diverges close to the escape region differently in 2D and
3D. Therefore, we treat both cases d = 2 and 3 separately in
the following.

A. Narrow escape limit in two dimensions

In Appendix B, we show that close to the escape region the
2D Green’s function behaves as

G(x → x0|x0) = − 1

πD(x0)
ln

|x − x0|
R + R0, (33)

where R0 is the regular part of the pseudo Green’s function at
the center of the escape region, and the average MFPT satisfies
the expression

〈t〉 = 1

Ps(x0)

[
− 1

πD(x0)
ln

ε

4
+ R0

]
. (34)

In Appendix C, we derive the pseudo Green’s function and
identify R0. The dimensionless GMFPT is

T (χ ) = D1〈t〉
R2

= [1 − χ2(1 − ξ )]

{
− ln

ε

4
− 2

∞∑
k=1

[
D1 − D2ξ

D1 + D2ξ

]k

ln(1 − χ2k )

}
+ 1

8

+ (D1 − D2)χ2ξ + 3D2(ξ − 1)(1 − χ2)

8D2[1 − χ2(1 − ξ )]
χ2 − (1 − ξ )2χ4 ln χ

2[1 − χ2(1 − ξ )]
, (35)

with χ = 1 − �/R and ξ = exp(−β�V ), and the dimensionless CMFPT is

T0(χ ) = D1t (0)

R2
= [1 − χ2(1 − ξ )]

{
− ln

ε

4
− 2

∞∑
k=1

[
D1 − D2ξ

D1 + D2ξ

]k

ln(1 − χ2k )

}
+ 1

4
+ D1 − D2

4D2
χ2 − ξ − 1

2
χ2 ln χ. (36)

Therefore, the GMFPT and the CMFPT can be written
as the sum of two terms: (i) the first line of each expres-

sion is common and contains the leading term −[1 − χ2(1 −
ξ )] ln(ε/4), and (ii) the second line is the corresponding
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FIG. 5. Dependence of the dimensionless GMFPT (a) and CMFPT (b) on the escape angle ε in 2D for several widths �/R and fixed
parameters D1/D2 = 5 and β�V = 2. The symbols show the numerical solution obtained with the finite-element method using FREEFEM++,
and the lines display the analytical expressions given by Eqs. (35) and (36) in the narrow escape limit. (c) Correction to the leading term D1R0

as a function of �/R for fixed parameters D1/D2 = 5 and β�V = 2. The circles represent the fitted value, extracted from numerical solutions
with Eq. (34), while the line shows the analytical solution from Eq. (35). The squares display the relative difference between the numerical fit
and the analytical expression.

MFPT for a fully absorbing external boundary (ε = 2π ); see
the derivation in the supplemental material [45]. Note that the
series in the common term is zero when β�V = ln(D2/D1)
corresponding to a zero convection in the Itô formulation
given by Eq. (26) and discussed in more detail in Sec. VI.
Moreover, from Eqs. (35) and (36) we recover the expressions
for some special cases which were reported earlier: (i) the
narrow escape limit for the disk geometry [20] when D1 = D2

and �V = 0:

T = − ln
ε

4
+ 1

8
, T0 = − ln

ε

4
+ 1

4
; (37)

(ii) the narrow escape limit for the annulus geometry [37,40]
when �V → +∞:

T (χ ) = (1 − χ2)

[
− ln

ε

4
− 2

∞∑
k=1

ln(1 − χ2k )

]

+ 1

8
− 3χ2

8
− χ4 ln χ

2(1 − χ2)
, (38)

T0(χ ) = (1 − χ2)

[
− ln

ε

4
− 2

∞∑
k=1

ln(1 − χ2k )

]

+ 1

4
+ D1 − D2

4D2
χ2 + 1

2
χ2 ln χ ; (39)

and (iii) the narrow escape limit for the two-shell geometry
with heterogeneous diffusivity [40] when �V = 0:

T (χ ) = − ln
ε

4
− 2

∞∑
k=1

[
D1 − D2

D1 + D2

]k

ln(1 − χ2k )

+ 1

8
+ D1 − D2

8D2
χ4, (40)

T0(χ ) = − ln
ε

4
− 2

∞∑
k=1

[
D1 − D2

D1 + D2

]k

ln(1 − χ2k )

+ 1

4
+ D1 − D2

4D2
χ2. (41)

Figures 5(a) and 5(b) display the dependence of the
GMFPT and the CMFPT, respectively, on the escape angle for
several widths of the outer shell � and the fixed parameters

D1/D2 = 5 and β�V = 2. The analytical expressions (lines)
given by Eqs. (35) and (36) match the numerical solutions
(symbols) in the narrow escape limit. The two MFPTs show
the same logarithmic decrease with ε and an absolute slope
increasing with �, already observed in Fig. 3(a). The ac-
curacy of the narrow escape expressions increases with �.
Figure 5(c) shows the correction to the leading order D1R0

defined as the regular part of the Green’s function at the
center of the escape region and extracted numerically (circles)
from a linear regression analysis of numerical solutions of
GMFPT as a function of ln ε by using Eq. (34). Comparing
it with the analytical expression derived in Appendix C (line),
the maximal relative error is smaller than 1% (squares) for
D1/D2 = 5 and β�V = 2, except for � ∼ 0.45R when R0

crosses 0. Note that the subleading corrections are compared
and the accumulated numerical error is less than 10−4.

Figure 6 shows the dependence of the GMFPT and the
CMFPT on the width of the outer shell � for a fixed escape
angle ε = 0.1. The numerical solutions (symbols) agree well
with the narrow escape expressions (lines) given by Eqs. (35)
and (36) for � close to R, and they approach the thin cortex
expressions (dash-dotted lines) given by Eq. (16) in the � →
0 limit. In Figs. 6(a) and 6(b) for a larger diffusion constant
in the cortex (D1/D2 = 5), the GMFPT has a minimum for
β�V > 0.48 and the CMFPT for β�V > 0.85 compatible
with the inset. The minima are perfectly described by the
narrow escape expressions. However, in Figs. 6(c) and 6(d)
for a smaller diffusion constant in the cortex (D1/D2 = 0.2),
the value of the GMFPT and the CMFPT for � = 0 is always
smaller than for � = R due to the fast motion in the central
region, consistent with the relation (15) derived in Sec. III.
This implies that the MFPT is always minimal for � = 0
when D1 < D2.

We focus now on D1 > D2 for which the MFPT can be
optimized for a width 0 < � < R. For the GMFPT, the Taylor
expansion of Eq. (35) at χ = 0 gives

T (χ ) = − ln
ε

4
+ 1

8
+ χ2

{
(ξ − 1)

[
− ln

ε

4
+ 3

8

]
+ 2

D1 − D2ξ

D1 + D2ξ

}
+ O(χ4). (42)
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FIG. 6. Dependence of the dimensionless GMFPT [(a),(c)] and CMFPT [(b),(d)] on the width �/R in 2D for several potential differences
β�V , the escape angle ε = 0.1, and the ratio of diffusion constants D1/D2 = 5 [(a),(b)] and D1/D2 = 0.2 [(c),(d)]. The symbols display
the numerical solutions obtained with the finite-element method using FREEFEM++, and the lines show the analytical expressions given by
Eqs. (35) and (36) for the GMFPT and the CMFPT, respectively, in the narrow escape limit (here for � close to R). The dash-dotted lines
display the � → 0 limit given by Eq. (16). In the insets, the same curves are shown in a linear scale for a better observation of the minima
exhibited by the GMFPT and the CMFPT.

The optimization is then possible if and only if T (χ ) − T (0) < 0 or

(ξ − 1)T∗ + 2
D1 − D2ξ

D1 + D2ξ
< 0, with T∗ = − ln

ε

4
+ 3

8
. (43)

This condition is satisfied for

ξ <
(D2 − D1)T∗ + 2D2 +

√
[(D2 − D1)T∗ + 2D2]2 − 4D1D2(2 − T∗)T∗

2D2T∗
. (44)

In the limit ε � 1, T∗ diverges and the last condition can be rewritten as

β�V >
2(D1 − D2)

(D1 + D2)T∗
+ O(T −2

∗ ). (45)

Figure 7(a) shows the difference between the minimal GMFPT T (χ∗) and the GMFPT for the disk geometry T (0) =
− ln(ε/4) + 1/8 as a function of D1/D2 > 1 and β�V > 0 for an escape angle ε = 0.1. In other quadrants, this minimal value
is zero for D1 > D2 and �V < 0, or T (1) − T (0) = (D1/D2 − 1)T (0) for D1 < D2, considering Eq. (15). The GMFPT can
be minimized for D1 = D2 and �V > 0 leading to a discontinuity of this minimal MFPT between the different quadrants.
Figure 7(b) displays the corresponding width �∗/R for which the minimum of the GMFPT is attained. Finally, Fig. 7(c) shows
the GMFPT optimization diagram derived from Eq. (44) and the numerical solutions (dots). For β�V > 0.68, the GMFPT is
always optimizable, a value that depends on ε as ln |T∗/(T∗ − 2)|.

For the CMFPT, the Taylor expansion of Eq. (36) at χ = 0 gives

T0(χ ) = − ln
ε

4
+ 1

4
+ χ2

{
(ξ − 1)

[
− ln

ε

4
− 1

2
ln χ

]
+ 2

D1 − D2ξ

D1 + D2ξ
+ D1 − D2

4D2

}
+ O(χ4). (46)
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FIG. 7. MFPT optimization in 2D for ε = 0.1. (a),(d) Difference between the minimal GMFPT/CMFPT and the GMFPT/CMFPT for
the disk geometry: T (χ∗) − T (0) [T0(χ∗) − T0(0)] as a function of D1/D2 and β�V , calculated with the narrow escape expression given
by Eqs. (35) and (36), respectively. (b),(e) Corresponding widths �∗/R = 1 − χ∗ for which the GMFPT/CMFPT is minimal, as a function
of D1/D2 and β�V . (c),(f) GMFPT/CMFPT optimization diagrams deduced from the numerical solutions obtained with the finite-element
method using FREEFEM++ (dots) and the analytical condition given by Eqs. (44) and (48), respectively.

The optimization is then possible if and only if T0(χ ) − T0(0) < 0 considering all the leading terms in the narrow escape limit
and corresponding terms in the Taylor expansion, i.e., assuming that ln ε and ln χ are of same order for a value χ = χ0 � 1. We
obtain then the condition

(ξ − 1)T∗ + 2
D1 − D2ξ

D1 + D2ξ
+ D1 − D2

4D2
< 0, T∗ = − ln

ε

4
− 1

2
ln χ0, (47)

where χ0 is to be determined. This condition is satisfied for

ξ <
(D2 − D1)T∗ + 2D2 + D2−D1

4 +
√[

(D2 − D1)T∗ + 2D2 + D2−D1
4

]2 − 4D1D2
(
2 − T∗ + D1−D2

4D2

)
T∗

2D2T∗
. (48)

In the limit ε � 1, T∗ diverges and the last condition can be rewritten as

β�V >
(D1 − D2)(D1 + 9D2)

4D2(D1 + D2)T∗
+ O(T −2

∗ ). (49)

Figure 7(d) shows the difference between the minimal CMFPT T0(χ∗) and the CMFPT for the disk geometry T0(0) =
− ln(ε/4) + 1/4 as a function of D1/D2 > 1 and β�V > 0 for an escape angle ε = 0.1. In other quadrants this minimal value
is (D1/D2 − 1)T0(0) (for D1 < D2) or zero. Figure 7(e) displays the corresponding width �∗/R for which the minimum of the
CMFPT is attained. Finally, Fig. 7(f) shows the CMFPT optimization diagram derived from Eq. (48) and the numerical solutions
(dots). The numerical solution yields χ0 
 exp(−2) 
 0.13 (independent of ε), which implies T∗ = − ln(ε/4) + 1. Additionally
for D1/D2 > 11.75 the CMFPT is never optimizable, a value that depends on ε as −7 + 4T∗. In fact, the right-hand side of
Eq. (48) becomes negative, implying that ξ needs to be negative to have a CMFPT optimization which cannot be satisfied.

B. Narrow escape limit in three dimensions

In Appendix B we show that close to the escape region, the 3D Green’s function behaves as

G(x → x0|x0) = 1

2πD(x0)

1

|x − x0| + γ ln
|x − x0|

2R + R0, (50)

where γ and R0 are, respectively, the logarithmic diverging and regular parts of the pseudo Green’s function at the center of the
escape region, and the average MFPT verifies the expression

〈t〉 = 1

Ps(x0)

[
1

2D(x0)Rε
+ γ ln ε + R0 − 3

2
γ

]
. (51)
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In Appendix D we derive the pseudo Green’s function and identify γ and R0. The dimensionless GMFPT is

T (χ ) = D1〈t〉
R2

= [1 − χ3(1 − ξ )]

{
2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
− 1

6

}

+ D2 + [(D1 − D2)ξ + 4D2(1 − ξ ) + 5D2(1 − ξ )2]χ5

15D2[1 − χ3(1 − ξ )]
− (1 − ξ )[1 + χ3(1 − ξ )]

3[1 − χ3(1 − ξ )]
χ3, (52)

with χ = 1 − �/R, ξ = exp(−β�V ) and the sequence

un = (n + 1)(D1 − D2ξ )

(n + 1)D1 + nD2ξ
, (53)

and the dimensionless CMFPT is

T0(χ ) = D1t (0)

R2
= [1 − χ3(1 − ξ )]

{
2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
− 1

6

}

+ 1

6
+ D1 − D2

6D2
χ2 − 1 − ξ

3
χ2(1 − χ ). (54)

Consequently, the GMFPT and the CMFPT can be written as the sum of two terms: (i) the first line of each expression is
common and contains the leading order [1 − χ3(1 − ξ )][2π/3ε − ln ε/3 − 1/6] and (ii) the second line is the corresponding
MFPT for a fully absorbing external boundary (ε = 2π ); see the derivation in the supplemental material [45]. Note that the series
in common term is zero when β�V = ln(D2/D1) as for 2D NEP. From Eqs. (52) and (54), we recover the expressions for the
sphere geometry [25] when D1 = D2 and �V = 0:

T = 2π

3ε
− 1

3
ln ε − 1

10
, T0 = 2π

3ε
− 1

3
ln ε; (55)

we mention two other interesting cases studied in 2D in Ref. [40]: (i) the narrow escape limit for the annulus geometry when
�V → +∞:

T (χ ) = (1 − χ3)

[
2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

χ2n+1

1 − χ2n+1

]
− 1 − 6χ5 + 5χ6

10(1 − χ3)
, (56)

T0(χ ) = (1 − χ3)

[
2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

χ2n+1

1 − χ2n+1

]
+ D1 − D2

6D2
χ2 − χ2

6
(2 − 3χ ); (57)

and (ii) the narrow escape limit for the two-shell geometry with heterogeneous diffusivity when �V = 0:

T (χ ) = 2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
− 1

6
+ D2 + (D1 − D2)χ5

15D2
, (58)

T0(χ ) = 2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
+ D1 − D2

6D2
χ2. (59)

Figures 8(a) and 8(b) display the dependence of the GMFPT and the CMFPT, respectively, on the escape angle for several
widths of the outer shell � and the fixed parameters D1/D2 = 5 and β�V = 2. The analytical expressions (lines) given by
Eqs. (52) and (54) match the numerical solutions (symbols) in the narrow escape limit. The two MFPTs show the same hyperbolic
decrease in ε, already observed in Fig. 3(b), and the accuracy of the narrow escape expressions increases with �. Figure 8(c)
shows the correction to the leading order D1R0 defined as the regular part of the Green’s function (for the unit sphere) at the
center of the escape region and extracted numerically (circles) from a regression analysis of numerical solutions of GMFPT as
a function of ε by using Eq. (51). Comparing it with analytical expressions derived in Appendix D (line), the maximal relative
error is smaller than 3% (squares), except for � ∼ 0.4R when R0 crosses 0. Note that the second-order subleading corrections
(instead of first-order in two dimensions) are compared and the accumulated numerical error is less than 10−4.

Figure 9 shows the dependence of the GMFPT and the CMFPT on the width of the outer shell � for a fixed escape angle
ε = 0.1. The numerical solutions (symbols) agree well with the narrow escape expressions (lines) given by Eqs. (52) and (54)
for � close to R and approach the thin cortex expressions (dash-dotted lines) given by Eq. (16) in the � → 0 limit. In Figs. 9(a)
and 9(b) for a larger diffusion constant in the cortex D1/D2 = 5, the GMFPT has a minimum for β�V > 0.05 and the CMFPT
for β�V > 0.14 compatible with the inset. The minima are perfectly described by the narrow escape expressions as for 2D
NEP. However, in Figs. 9(c) and 9(d) for a smaller diffusion constant in the cortex D1/D2 = 0.2 the value of the GMFPT and
the CMFPT for � = 0 is always smaller than for � = R due to the fast motion in the central region, consistent with the relation
(15) derived in Sec. III. This implies that the MFPT is always minimal for � = 0 when D1 < D2.
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FIG. 8. Dependence of the dimensionless GMFPT (a) and CMFPT (b) on the escape angle ε in 3D for several widths �/R and fixed
parameters D1/D2 = 5 and β�V = 2. The symbols show the numerical solution obtained with the finite-element method using FREEFEM++,
and the lines display the analytical expressions given by Eqs. (52) and (54) in the narrow escape limit. (c) Correction to the leading term D1R0

for the unit sphere R = 1 as a function of �/R for fixed parameters D1/D2 = 5 and β�V = 2. The circles represent the fitted value, extracted
from numerical solutions with Eq. (51), while the line shows the analytical solution from Eq. (52). The squares display the relative difference
between the numerical fit and the analytical expression.

As for the 2D case, we focus on D1 > D2 for which the MFPT can be optimized for a width 0 < � < R. For the GMFPT,
the Taylor expansion of Eq. (52) at χ = 0 gives

T (χ ) = 2π

3ε
− 1

3
ln ε − 1

10
+ χ3

{
(ξ − 1)

[
2π

3ε
− 1

3
ln ε + 1

10

]
+ 3

D1 − D2ξ

2D1 + D2ξ

}
+ O(χ5). (60)

10−3 10−2 10−1 100

Δ/R
0

20

40

60

80

100

T

(a)

βΔV = 0
βΔV = 0.5
βΔV = 1
βΔV = 2
βΔV = 5

0 0.5 1
5

10

15

20

25

10−3 10−2 10−1 100

Δ/R
0

20

40

60

80

100

T
0

(b)

βΔV = 0
βΔV = 0.5
βΔV = 1
βΔV = 2
βΔV = 5

0 0.5 1
5

10

15

20

25

10−3 10−2 10−1 100

Δ/R
0

10

20

30

40

T

(c)

βΔV = −1
βΔV = −0.5
βΔV = 0
βΔV = 0.5
βΔV = 1

0 0.5 1

10

20

30

40

10−3 10−2 10−1 100

Δ/R
0

10

20

30

40

T
0

(d)

βΔV = −1
βΔV = −0.5
βΔV = 0
βΔV = 0.5
βΔV = 1

0 0.5 1

10

20

30

40

FIG. 9. Dependence of the dimensionless GMFPT [(a) and (c)] and CMFPT [(b) and (d)] on the width �/R in 3D for several potential
differences β�V , the escape angle ε = 0.1, and the ratio of diffusion constants D1/D2 = 5 [(a) and (b)] and D1/D2 = 0.2 [(c) and (d)].
The symbols display the numerical solutions obtained with the finite-element method using FREEFEM++, and the lines show the analytical
expressions given by Eqs. (52) and (54) for the GMFPT and the CMFPT, respectively, in the narrow escape limit (here for � close to R). The
dash-dotted lines display the � → 0 limit given by Eq. (16). In the insets, the same curves are shown in a linear scale for a better observation
of the minima exhibited by the GMFPT and the CMFPT.
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FIG. 10. MFPT optimization in 3D for ε = 0.5. (a),(d) Difference between the minimal GMFPT/CMFPT and the GMFPT/CMFPT for
the disk geometry: T (χ∗) − T (0) [T0(χ∗) − T0(0)] as a function of D1/D2 and β�V , calculated from the narrow escape expression given
by Eqs. (52) and (54), respectively. (b),(e) Corresponding widths �∗/R = 1 − χ∗ for which the GMFPT/CMFPT is minimal, as a function
of D1/D2 and β�V . (c),(f) GMFPT/CMFPT optimization diagrams deduced from the numerical solutions obtained with the finite-element
method using FREEFEM++ (dots) and the analytical condition given by Eqs. (62) and (66), respectively.

The optimization is then possible if and only if T (χ ) − T (0) < 0 or

(ξ − 1)T∗ + 3
D1 − D2ξ

2D1 + D2ξ
< 0, T∗ = 2π

3ε
− 1

3
ln ε + 1

10
. (61)

This condition is satisfied for

ξ <
(D2 − 2D1)T∗ + 3D2 +

√
[(D2 − 2D1)T∗ + 3D2]2 − 4D1D2(3 − 2T∗)T∗

2D2T∗
. (62)

In the limit ε � 1, T∗ diverges and the last condition can be rewritten as

β�V >
3(D1 − D2)

(2D1 + D2)T∗
+ O(T −2

∗ ). (63)

Figure 10(a) displays the difference between the minimal GMFPT T (χ∗) and the GMFPT for the disk geometry T (0) =
2π/3ε − ln ε/3 − 1/10 as a function of D1/D2 > 1 and β�V > 0 for an escape angle ε = 0.5. In other quadrants, this minimal
value is (D1/D2 − 1)T (0) (for D1 < D2) or zero. Figure 10(b) shows the corresponding width �∗/R for which the minimum of
the GMFPT is attained. Finally, Fig. 10(c) displays the GMFPT optimization diagram derived from Eq. (62) and the numerical
solutions (dots). For β�V > 0.40 the GMFPT is always optimizable, a value that depends on ε as ln |2T∗/(2T∗ − 3)|.

For the CMFPT, the Taylor expansion of Eq. (54) at χ = 0 gives

T0(χ ) = 2π

3ε
− 1

3
ln ε + χ2

3

[
D1 − D2

2D2
− 1 + ξ

]
+ χ3

{
(ξ − 1)

[
2π

3ε
− 1

3
ln ε − 1

2

]
+ 3

D1 − D2ξ

2D1 + D2ξ

}
+ O(χ5). (64)

The optimization is then possible if and only if T0(χ ) − T0(0) < 0 considering all the leading terms in the narrow escape limit
and corresponding terms in the Taylor expansion, i.e., assuming that ε−1 and χ−1 are of the same order for a value χ = χ0 � 1.
We obtain then the condition

(ξ − 1)T∗ + D1 − D2

6D2χ0
+ 3

D1 − D2ξ

2D1 + D2ξ
< 0, T∗ = 2π

3ε
− 1

3
ln ε − 1

2
+ 1

3χ0
, (65)

where χ0 is to be determined. This condition is satisfied for

ξ <
(D2 − 2D1)T∗ + 3D2 − D1−D2

6χ0
+

√[
(D2 − 2D1)T∗ + 3D2 − D1−D2

6χ0

]2 − 4D1D2
(
3 − 2T∗ + D1−D2

3D2χ0

)
T∗

2D2T∗
. (66)
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In the limit ε � 1, T∗ diverges and the last condition can be
rewritten as

β�V >
3(D1 − D2)

(2D1 + D2)T∗
+ D1 − D2

6D2T∗χ0
+ O(T −2

∗ ). (67)

Numerically, we have identified the constant χ0 
 0.4.
Figure 10(d) shows the difference between the minimal

CMFPT T0(χ∗) and the CMFPT for the disk geometry T0(0) =
2π/3ε − ln ε/3 as a function of D1/D2 > 1 and β�V > 0
for an escape angle ε = 0.5. In other quadrants, this minimal
value is (D1/D2 − 1)T0(0) (for D1 < D2) or zero. Figure 10(e)
displays the corresponding width �∗/R for which the mini-
mum of the CMFPT is attained. Note that in contrast to the 2D
case, �∗ changes abruptly, apparently discontinuously, when
going from the left region (blue) to the right region (red),
where �∗ = R. Finally, Fig. 10(f) shows the CMFPT opti-
mization diagram from Eq. (66) and the numerical solutions
(dots). The numerical solution yields χ0 
 0.4 (independent
of ε). Additionally for D1/D2 > 0.81 the CMFPT is never
optimizable, a value that depends on ε as 1 + (−9 + 6T∗)χ0.
In fact, the right-hand side of Eq. (66) becomes negative,
implying that ξ needs to be negative to have a CMFPT op-
timization which cannot be satisfied.

VI. DISCUSSION

In Sec. III we have derived the thin cortex limit of the
MFPT given by Eqs. (16) and (20) for, respectively, �V <

+∞ and exp(−β�V ) = 0 (annulus geometry), which are
both particular solutions of the SMDP. In Secs. IV and V we
have analyzed the evolution of the GMFPT and the CMFPT
according to four parameters: the escape angle ε, the width of
the outer shell �/R, the ratio of diffusion constants D1/D2,
and the potential difference �V . The dimensionless MFPT
D1t (x)/R2 is a decreasing function of ε and �V and an in-
creasing function of D1/D2 from simple arguments. However,
the behavior of the MFPT (as well as GMFPT or CMFPT)
can be nonmonotonous with �/R. For diffusion constants
D1 < D2, the particles move faster to the escape region when
the central region is as large as possible, which implies a
minimum of GMFPT/CMFPT when � = 0 compatible with
the relation (15) in the thin cortex limit. For the opposite situ-
ation (D1 > D2), the presence of an optimization depends on
the potential difference. If the cortex is repulsive (�V <

0), the particle moves faster when it is not energetically
trapped in the central region, which implies a minimum of
GMFPT/CMFPT when � = R. Finally, in the last quadrant
(D1 > D2 and �V > 0) the GMFPT/CMPFT can be opti-
mized due to the competition between the attractiveness of
the cortex (energetic trap) and the slower diffusion in the
central region (diffusive trap). In Sec. V we have derived an
analytical expression for both the GMFPT and the CMFPT
in the narrow escape limit (ε � 1) in 2D and 3D. These
expressions yield a quantitative condition for the potential
difference for the MFPT optimization with a width 0 < �∗ <

R. Nevertheless, we did not derive an analytical expression
for �∗ = (1 − χ∗)R as well as T (χ∗) and T0(χ∗) due to the
complexity of the narrow escape expressions and the rapidity
to obtain them numerically (see Figs. 7 and 10).

Finally, we look more precisely at the special case
βV (x) = ln D(x). With this potential, the flux of Brownian
particles is equal to −∇x[D(x)p(x, t )], and the convective
term in the Itô convention, given by Eq. (26), is zero. The
MFPT then obeys Poisson’s equation ∇2

x t (x) = −1/D(x).
A recent study reported an exact solution for this equa-
tion in arbitrary two-dimensional connected domains [30].
In Appendix E we derive from this result an exact solution
of the MFPT in the two-shell geometry for which β�V =
ln(D2/D1). In particular, the GMFPT is

T = −
(

1 + D1 − D2

D2
χ2

)
ln sin(ε/4) + 1

8

+ D1 − D2

8D2

3D2 + (D1 − 3D2)χ2

D2 + (D1 − D2)χ2
χ2

− (D1 − D2)2

2D2

χ4 ln χ

D2 + (D1 − D2)χ2
, (68)

and the CMFPT is

T0 = −
(

1 + D1 − D2

D2
χ2

)
ln sin(ε/4) + 1

4

+ D1 − D2

4D2
χ2 + D2 − D1

2D2
χ2 ln χ. (69)

These two expressions are exact for all values of ε, χ =
1 − �/R and D1/D2, and they are compatible with Eqs. (35)
and (36) for β�V = ln(D2/D1) in the limit ε � 1 [where
sin(ε/4) 
 ε/4]. Note that the series in Eqs. (35) and (36) is
zero only for this potential difference. The thin cortex limits
(i.e., χ = 1) are consistent with Eqs. (15) and (16).

The GMFPT and CMPFT are decreasing functions of the
escape angle ε and of the ratio of diffusion constants D1/D2.
Figure 11 displays the dependence of the GMFPT and the
CMFPT on the width of the outer shell � for ε = 0.1 and
several ratios D1/D2. The analytical expressions given by
Eqs. (68) and (69) match perfectly the numerical solutions for
all values of �. For D1 > D2, the potential difference is neg-
ative and the GMFPT/CMFPT is a decreasing function of �

leading to a minimum MFPT located at � = R. For D1 < D2,
the potential difference is positive and the GMFPT/CMFPT
is an increasing function of � resulting in a minimal MFPT
for � = 0. Unfortunately, the interesting range of parameters
(D1 > D2 and �V > 0), which allows an optimization of the
MFPT with � > 0, is not attained for this particular potential
difference.

To conclude, we have characterized the MFPT for passive
Brownian particles to reach a small escape window within
the two-shell geometry in which the particles diffuse in each
shell with different diffusive constant, with a potential barrier
between the two shells. We have derived asymptotic expres-
sions of the MFPT in the thin cortex and the narrow escape
limits, and we have obtained an exact solution only for one
particular relation of the potential difference with the ratio of
diffusion constants. For the most interesting case, showing a
higher diffusion in the attractive cortex, we have derived from
the narrow escape expressions a condition on the potential
difference to have a MFPT optimization for particles starting
from a random position or from the center. The potential bar-
rier pushing the particles towards the surface needs to be large
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FIG. 11. Dependence of the dimensionless GMFPT (a) and CMFPT (b) on the width �/R in 2D for the escape angle ε = 0.1, different
ratios of diffusion constants D1/D2, and a difference potential β�V = ln(D2/D1). The symbols show the numerical solutions obtained with
the finite element method using FREEFEM++, and the lines display the exact analytical expressions given by Eqs. (68) and (69) for the GMFPT
and the CMFPT, respectively.

enough to balance the slowing down of the diffusion within
the central region. With this result we may better understand
the presence of a minimum for the intracellular transport time
since the effective diffusivity is higher in the actin cortex,
and the ballistic transport on filaments favors the transport
to the cell membrane. Since the cargo particles perform an
intermittent search, we may imagine that the MFPT is strongly
reduced compared to our passive Brownian motion and that a
condition on switching rates and ballistic velocity will replace
the condition on the potential difference to have a MFPT
optimization.

An interesting perspective would be to derive an exact ex-
pression for the GMFPT or the CMFPT, corresponding to the
one derived in Ref. [30], as well as for the optimized MFPT.
Moreover, it would be interesting to derive a condition for
an optimized intracellular transport time by reintroducing an
intermittent ballistic transport for which, to our knowledge, no
analytical expression has been reported so far. Finally, another
interesting perspective would be the study of the distribution
of first passage time, and to check whether the MFPT is
relevant and close to the typical first passage time.
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APPENDIX A: THE THIN CORTEX LIMIT

1. Link with the surface-mediated diffusion problem

From Eqs. (6) and (11), the bulk MFPT tB can be identified
with the MFPT t2 when � → 0 whereas the MFPT t1(r, θ )
can be expanded in the radial coordinate as

t1(r, θ ) = f0(θ ) + (r − R) f1(θ ) + (r − R)2

2
f2(θ ) + · · · .

(A1)

Using Eq. (8), the reflective boundary condition ∂rt1(R, θ ) =
0 gives f1(θ ) = 0 while the absorbing boundary condition

t1(R, θ ) = 0 yields f0(θ ) = 0 for |θ | < ε/2. In leading order
in the � � R expansion, we can then set f0(θ ) = t� (θ ).
Equation (5) can then be written as

D1

[
∂2t1
∂r2

(r, θ ) + d − 1

r

∂t1
∂r

(r, θ ) + 1

r2
�θ t1(r, θ )

]
= −1,

(A2)
which becomes in leading order

D1

R2
�θ t� (θ ) + D1 f2(θ ) = −1. (A3)

With Eq. (10), the function f2(θ ) can be identified:

D1 f2(θ ) = −λ

k

∂tB
∂r

(R, θ ). (A4)

Finally the boundary conditions (7) give

t� (θ ) = tB(R, θ ), (A5)

∂tB
∂r

(R, θ ) = −D1 exp(−βV1)

D2 exp(−βV2)
� f2(θ ), (A6)

considering the relation ∂rt1(R − �, θ ) = −� f2(θ ) from
Eq. (A1). Using the boundary condition (12) and the expres-
sion of f2(θ ) given by Eq. (A4), we obtain the conditions
k → ∞ and

kD2

λ
= lim

�→0

� exp(−βV1)

exp(−βV2)
, (A7)

implying that the potential difference must then depend loga-
rithmically on the width � to recover the SMDP.

2. Derivation of the MFPT solution in the thin cortex limit

First we derive the general solution of the MFPT in the
thin cortex limit for a potential difference �V < +∞ (i.e.,
excluding the annulus geometry). In the inner shell, the MFPT
can be expanded as

t2(r, θ ) = t (0)
B (r, θ ) + �

R t (1)
B (r, θ ) +

(
�

R

)2

t (2)
B (r, θ ) + · · · ,

(A8)
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where t (i)
B (r, θ ) are independent of � and defined for r ∈

[0,R]. From Eq. (6) these bulk functions satisfy the equations
D2∇2

x t (0)
B (x) = −1 and D2∇2

x t ( j)
B (x) = 0 for j � 1. In the cor-

tex the relevant variable is u = (R − r)/� and the MFPT can
be expanded as

t1(u, θ ) = t (0)
� (u, θ ) + �

R t (1)
� (u, θ ) +

(
�

R

)2

t (2)
� (u, θ ) + · · · ,

(A9)

where t (i)
� (u, θ ) are independent of � and defined for u ∈

[0, 1]. Equation (5) becomes

D1

R2

[
∂2t1
∂u2

− (d − 1)�

R

(
1 + �u

R

)
∂t1
∂u

+ �2

R2
�θ t1

]
= −�2

R2
+ O

(
�3

R3

)
. (A10)

with �θ = (sin θ )2−d∂θ (sin θ )d−2∂θ the Laplace operator on
the unit hypersphere in d dimension, assuming the invariance
over the azimuthal angle ϕ in dimension d = 3. The boundary
conditions (7) and (8) become

t1(u = 0, |θ | < ε/2) = 0, (A11)

∂t1
∂u

(u = 0, |θ | > ε/2) = 0, (A12)

t1(u = 1, θ ) = t2(R, θ ), (A13)

−D1 exp(−βV1)
∂t1
∂u

(u = 1, θ ) = D2 exp(−βV2)�
∂t2
∂r

(R, θ ).

(A14)

In leading order, Eq. (A10) writes ∂2
u t (0)

� (u, θ ) = 0 im-
plying the general solution t (0)

� (u, θ ) = A0(θ )u + B0(θ ). The
boundary conditions (A12) and (A14) impose the unique so-
lution A0(θ ) = 0. Then from Eq. (A13) we obtain t (0)

� (θ ) =
t (0)
B (R, θ ) with the condition t0

� (|θ | < ε/2) = 0.
In first order in �/R, Eq. (A10) reads ∂2

u t (1)
� (u, θ ) = 0, im-

plying the same general solution t (1)
� (u, θ ) = A1(θ )u + B1(θ ).

The boundary condition (A12) imposes A1(θ ) = 0 for |θ | >

ε/2, and Eq. (A12) gives

A1(θ ) = −D2 exp(−βV2)

D1 exp(−βV1)
R∂t (0)

B

∂r
(R, θ ). (A15)

The two boundary conditions imply then

∂t (0)
B

∂r
(R, |θ | > ε/2). (A16)

Finally Eqs. (A11) and (A13) determine the function B1(θ ) in
terms of ∂rt

(0)
B (R, θ ) and t (1)

B (R, θ ), which is not important for
the following steps.

In second order in �/R, Eq. (A10) reads

D1

R2

∂2t (2)
�

∂u2
(u, θ ) = D1

R2

(
(d − 1)A1(θ ) − �θ t (0)

� (θ )
) − 1.

(A17)

The general solution is then

D1

R2
t (2)
� (u, θ ) =

[
D1

R2

(
(d − 1)A1(θ ) − �θ t (0)

� (θ )
) − 1

]
u2

2

+ A2(θ )u + B2(θ ). (A18)

The boundary condition (A12) imposes A2(θ ) = 0 for
|θ | > ε/2, and Eq. (A12) yields

D1

R2
�θ t (0)

� (θ ) − D2 exp(−βV2)

D1 exp(−βV1)
R∂t (1)

B

∂r
(R, θ ) = −1 (A19)

for |θ | > ε/2. Finally, Eqs. (A11) and (A13) determine the
function B2(θ ) in terms of ∂rt

(1)
B (R, θ ) and t (2)

B (R, θ ).
Defining tB = t (0)

B and t� = t (0)
� , the leading order is then

given by the bulk equations D2∇2tB(r, θ ) = 0 and

∂tB
∂r

(R, |θ | > ε/2) = 0, (A20)

and the surface equations t� (θ ) = tB(R, θ ) and t� (|θ | <

ε/2) = 0 while �V < +∞. These equations are the same as
the disk geometry NEP with a diffusion constant D2.

We hypothesize that the thin cortex limit is valid when
the second boundary condition of Eq. (7) is equivalent to
Eq. (A16):∣∣∣∣D1 exp(−βV1)

∂t1
∂r

(R − �, θ )

∣∣∣∣
�

∣∣∣∣D2 exp(−βV2)
∂t2
∂r

(R − �, θ )

∣∣∣∣. (A21)

The derivative of t1 is equal to

∂t1
∂r

(r = R − �, θ )

= − 1

�

∂t1
∂u

(u = 1, θ ) 
 − �

R2

∂t (2)
�

∂u
(u = 1, θ ). (A22)

For |θ | > ε/2, Eq. (A18) yields

∂t (2)
�

∂u
(u = 1, θ ) = −�θ t (0)

� (θ ) − R2

D1
(A23)

with t (0)
� (θ ) = t (0)

B (R, θ ) which diverges when ε � 1. We ob-
tain then

∂t1
∂r

(r = R − �, θ ) 
 �

R2
�θ t2(R, θ ). (A24)

Assuming �θ t2 = O(T2) and ∂rt2 = O(T2/R), Eq. (A21)
gives the condition

�

R � D2

D1
exp(−β�V ), (A25)

in addition to � � R supposed initially.
For the annulus geometry [exp(−β�V ) = 0], Eq. (A16) is

no longer satisfied since the boundary condition (A15) is auto-
matically verified. Then the bulk equation is D2∇2tB(r, θ ) = 0
while the surface equation is

D1

R2
�θ t� (θ ) = −1, (A26)

with the surface equations t� (θ ) = tB(R, θ ) and t� (|θ | <

ε/2) = 0. These equations are the same as the SMDP with
an infinite absorption rate.
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APPENDIX B: DERIVATION OF THE NARROW
ESCAPE EXPRESSIONS

The MFPT is the solution of Eqs. (3) and (4). Denoting
Ps(x) = exp[−βV (x)]/Z the stationary probability density for
the closed domain (ε = 0), with Z = ∫

�
dx exp[−βV (x)], the

bulk equation (3) is

∇x · [D(x)Ps(x)∇xt (x)] = −Ps(x). (B1)

Integrating over the volume �, Eq. (B1) becomes∫
�

dx ∇x · [D(x)Ps(x)∇xt (x)] = −1, (B2)

since the stationary probability density is normalized. Using
the divergence theorem on the left-hand side and the bound-
ary condition (4), we finally obtain a condition involving the
escape region:∫

∂�ε

dS(x) D(x)Ps(x)n · ∇xt (x) = −1, (B3)

where n is the outward pointing unit vector normal to the sur-
face ∂�. Moreover, for the studied geometries, the diffusion
constant D(x) and the potential V (x) do not depend on ε and
may be considered as constant close to the escape region with
the values D(x0) and V (x0), respectively.

1. Two dimensions NEP

We first derive the general narrow escape solution in 2D,
following the derivation of Refs. [22–24]. The escape region
with an angle ε � 1 is considered as a perturbation on the
external boundary. Motivated by the results of the literature,
we make the ansatz

t (x) = τ0 ln
ε

4
+ τ1(x) + · · · , (B4)

where τ0 is constant while τ1(x) obeys Eqs. (3) and (4) far
from the escape region.

Close to the escape region, the (inner) solution can be
derived in terms of the inner variable x̃ = 2(x − x0)/εR, with
x0 = (R, 0) the center of the escape region. The escape region
is a segment defined by the coordinates x̃ = 0 and |̃y| � 1,
and the reflecting boundaries are to the half-lines defined by
the coordinates x̃ = 0 and |̃y| � 1, in the limit ε → 0. In these
coordinates, the MFPT is denoted v (̃x). The bulk Eq. (B1) is
then

D(x0)∇2
x̃v (̃x) = −(ε/2)2. (B5)

In leading order, the function v (̃x) is then a solution of
Laplace’s equation. The boundary conditions are v (̃x) = 0 on
the absorbing boundary and n · ∇x̃v (̃x) = 0 on the reflective
boundary. Finally, the condition involving the escape region
(B3) becomes

D(x0)Ps(x0)
∫ 1

−1
dỹ

∂v

∂ x̃
= 1. (B6)

These equations can be solved by choosing elliptic coordi-
nates (μ, ν) defined by x̃ = sinh μ sin ν and ỹ = cosh μ cos ν.
Laplace’s equation in this coordinate system reads ∂μμv +
∂ννv = 0, and the boundary conditions are v(μ = 0, ν) = 0

and ∂νv(μ, ν = 0) = 0 on the absorbing and reflecting bound-
aries, respectively. The ν-independent solution v(μ, ν) = Aμ

satisfies this Cauchy system. On the escape region we have
then ∂v/∂ x̃ = A/ sin ν and ỹ = cos ν, and the condition (B6)
gives

A = 1

πD(x0)Ps(x0)
. (B7)

The outer and the inner solutions are matched in an inter-
mediate region such that x → x0 and |x̃| → ∞ (i.e., μ → ∞
for elliptic coordinates). In this limit, the inner solution be-
haves like

v(x̃) 
 A ln(2|x̃|) = A ln
4|x − x0|

εR . (B8)

and comparing it with the outer solution given by Eq. (B4), we
obtain τ0 = −A, and the behavior of the function τ1(x) close
to the escape region is

τ1(x → x0) = 1

πD(x0)Ps(x0)
ln

|x − x0|
R . (B9)

Following Ref. [24], the pseudo Green’s function G(x|x0)
is introduced via the equations

exp (βV (x))∇x · [D(x) exp ( − βV (x))∇xG(x|x0)]

= Ps(x0) − δ(x − x0), x ∈ �, (B10)

n · ∇G(x|x0) = 0, x ∈ ∂�, (B11)∫
�

dx G(x|x0)Ps(x) = 0, (B12)

where δ(x) represents the Dirac distribution, which can be
omitted here since x0 belongs to the boundary of the domain,
and the limit

G(x → x0|x0) = − 1

πD(x0)
ln

|x − x0|
R + R0, (B13)

where R0 is the (unknown) regular part of the pseudo Green’s
function at the center of the escape region. The function τ1(x)
is then given by

τ1(x) = −G(x|x0)

Ps(x0)
+ R0

Ps(x0)
. (B14)

Hence the spatial average of the MFPT is

〈t〉 = 1

Ps(x0)

[
− 1

πD(x0)
ln

ε

4
+ R0

]
, (B15)

and the MFPT is

t (x) = 〈t〉 − G(x|x0)

Ps(x0)

= 1

Ps(x0)

{
1

πD(x0)
ln

4|x − x0|
εR + R0 − R(x|x0)

}
,

(B16)

where the regular part of the pseudo Green’s function is

R(x|x0) = G(x|x0) + 1

πD(x0)
ln

|x − x0|
R . (B17)
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2. Three dimensions NEP

We now derive the general narrow escape solution in 3D,
following the derivation of Refs. [23,25,26]. The calculation is
slightly different from 2D, since the MFPT has a divergence as
1/ε whereas the subleading order behaves like ln ε. One then
needs to go to the second order of corrections to obtain the
order ε0. Motivated by the results of the literature, we make
the ansatz

t (x) = 2τ0

ε
+ τ1(x) + ε ln

ε

4
τ2(x) + · · · , (B18)

where τ0 is constant while τ1(x) obeys Eqs. (3) and (4) far
from the escape region.

Close to the escape region, the (inner) solution can be
derived in terms of the inner variable x̃ = 2(x − x0)/εR with
x0 = (R, 0, 0) the center of the escape region. The escape
region is a unit disk defined by the coordinates x̃ = 0 and
ỹ2 + z̃2 � 1, and the reflecting boundary is the plane outside
the unit disk defined by x̃ = 0 and ỹ2 + z̃2 � 1, in the limit
ε → 0. In these coordinates, the MFPT is denoted v (̃x). The
bulk Eq. (B1) still verifies Eq. (B5) in three dimensions. The
boundary conditions are v (̃x) = 0 on the absorbing boundary
and n · ∇x̃v (̃x) = 0 on the reflective boundary. Finally, the
condition involving the escape region (B3) becomes

D(x0)Ps(x0)R
∫ 1

0
dρ(2πρ)

∂v

∂ x̃
= 1, (B19)

where ρ =
√

ỹ2 + z̃2 on the surface x̃ = 0. The inner solution
is decomposed as

v (̃x) = 2v0 (̃x)

ε
+ v1(̃x) ln

ε

4
+ v2 (̃x) + · · · . (B20)

From Eq. (B5), v0 (̃x) and v1(̃x) are a solution of Laplace’s
equation, whereas v2 (̃x) is a solution of a Poisson’s equa-
tion. These equations can be solved by choosing the oblate
spheroidal coordinates (μ, ν, ϕ) defined by x̃ = sinh μ sin ν,
ỹ = cosh μ cos ν cos ϕ, and z̃ = cosh μ cos ν sin ϕ. Consider-
ing the invariance of the problem over the azimuthal angle ϕ,
Laplace’s equation for v0 reads in this coordinate system

1

sinh2 μ + sin2 ν

×
[

1

cosh μ
∂μ(cosh μ∂μv0) + 1

cos ν
∂ν (cos ν∂νv0)

]
= 0

(B21)

and the boundary conditions are v0(μ = 0, ν) = 0 and
∂νv0(μ, ν = 0) = 0 on the absorbing and reflecting bound-
aries, respectively. The ν-independent solution

v0(μ) = A0

∫ μ

0

dμ′

cosh μ′ (B22)

satisfies this Cauchy system. On the escape region we have
then ∂v0/∂ x̃ = A0/

√
1 − ρ2 and the condition (B19) gives

A0 = 1

2πD(x0)Ps(x0)R . (B23)

Far from the escape region (i.e., μ → ∞), the inner solution
behaves like

v0(x̃) 
 A0

(
π

2
− 1

|x̃|
)

= A0

(
π

2
− εR

2|x − x0|
)

. (B24)

The outer and the inner solutions are matched in an interme-
diate region such that x → x0 and |x̃| → ∞:

2τ0(x)

ε
+ τ1(x) + ε ln

ε

4
τ2(x) + · · ·


 2v0 (̃x)

ε
+ v1(̃x) ln

ε

4
+ v2 (̃x) + · · · . (B25)

Comparing the first orders of both sides, we obtain τ0 =
A0π/2, and the behavior of the function τ1(x) close to the
escape region is

τ1(x → x0) = 1

2πD(x0)Ps(x0)

1

|x − x0| . (B26)

Following Ref. [25], the pseudo Green’s function G(x|x0)
is introduced via Eqs. (B10)–(B12) and the limit

G(x → x0|x0) = 1

2πD(x0)

1

|x − x0| + γ ln
|x − x0|

2R + R0,

(B27)
where γ and R0 are the logarithmic diverging and regular
parts, respectively, of the pseudo Green’s function at the center
of the escape region. Note that the logarithmic divergence
of the Green’s function comes from the ansatz (B18). The
function τ1(x) is then

τ1(x) = −G(x|x0)

Ps(x0)
+ χ. (B28)

The expression of the constant χ is determined by the inner
solutions v1 and v2. The form of the solution v1 is identical to
v0 given by Eq. (B22). Then v1 behaves for |x̃| → ∞ as

v1(x̃) 
 A1

(
π

2
− 1

|x̃|
)

= A1

(
π

2
− εR

2|x − x0|
)

. (B29)

Identifying the next order of Eq. (B25), the constant χ is de-
composed as χ0 ln(ε/4) + χ1 and the logarithmic divergence
of the Green’s function in Eq. (B27) is decomposed as

ln
|x − x0|

2R = ln
2|x − x0|

εR + ln
ε

4
. (B30)

We finally have

A1 = 2

π

(
− γ

Ps(x0)
+ χ0

)
. (B31)

Since τ2(x) is assumed to be smooth close to the escape
region, A1 = 0 to remove the 1/|x − x0| divergence, which
yields

χ0 = γ

Ps(x0)
. (B32)

The expression of χ1 is deduced from the next order of
corrections. In Ref. [25], the solution of Poisson’s equation
is derived, and the general solution of v2 far from the escape

044124-18



NARROW ESCAPE PROBLEM IN TWO-SHELL SPHERICAL … PHYSICAL REVIEW E 104, 044124 (2021)

region is

v2(x̃) 
 A2

(
π

2
− 1

|x̃|
)

+ B2

[
ln |x̃| − 2

π |x̃|
(

2 ln 2 − 3

2

)]
(B33)

= A2

(
π

2
− εR

2|x − x0|
)

+ B2

[
ln

2|x − x0|
εR − εR

π |x − x0|
(

2 ln 2 − 3

2

)]
.

(B34)

Identifying the next order of the matching condition (B25), we
obtain

A2 = 2

π

(
− R0

Ps(x0)
+ χ1

)
and B2 = − γ

Ps(x0)
. (B35)

The next orders are assumed to be smooth close to the escape
region, which gives

A2 + B2
2

π

(
2 ln 2 − 3

2

)
= 0 (B36)

to remove the 1/|x − x0| divergence, and

χ1 = 1

Ps(x0)

[
R0 + γ

(
2 ln 2 − 3

2

)]
. (B37)

Hence the spatial average of the MFPT is

〈t〉 = 1

Ps(x0)

[
1

2D(x0)Rε
+ γ ln ε + R0 − 3

2
γ

]
, (B38)

and the expression of the MFPT is

t (x) = 〈t〉 − G(x|x0)

Ps(x0)

= 1

Ps(x0)

{
− 1

2πD(x0)

1

|x − x0|

+ 1

2D(x0)εR + γ ln ε + R0 − 3

2
γ − R(x|x0)

}
,

(B39)

where the regular part of the pseudo Green’s function is

R(x|x0) = G(x|x0) − 1

2πD(x0)|x − x0| . (B40)

APPENDIX C: DERIVATION OF THE GREEN’S FUNCTION AND NARROW ESCAPE EXPRESSION IN TWO DIMENSIONS

For the two-shell geometry, the diffusion constant and the stationary probability density close to the escape region are
D(x0) = D1 and Ps(x0) = exp(−βV1)/Z , respectively, with the partition function

Z =
∫

�

exp (−βV (x)) = π{R2 exp(−βV1) + (R − �)2[exp(−βV2) − exp(−βV1)]}. (C1)

Equations (B10)–(B12) and (B13) for the pseudo Green’s function can be rewritten in the two-shell geometry to obtain its
regular part R(x|x0) defined by Eq. (B17). We use the dimensionless polar coordinates (r, θ ) defined by x/R = r cos θ and
y/R = r sin θ . The regular part of the Green’s function is denoted as R(r, θ ) without loss of generality, and the escape region
is located at r = 1 and θ = 0. Since the normal vector n is radially oriented, the normal derivative of ln |x − x0|/R at the point
(r, θ ) is

n · ∇x ln
|x − x0|

R = r − cos θ

r2 − 2r cos θ + 1
. (C2)

The value of R(r, θ ) in the inner shell and in the outer shell are defined by R1(r, θ ) and R2(r, θ ), respectively. From Eq. (B10),
the bulk equations verified by Ri(r, θ ) are

D1∇2R1(r, θ ) = exp(−βV1)

Z ′ , r > 1 − δ, (C3)

D2∇2R2(r, θ ) = exp(−βV1)

Z ′ , r < 1 − δ, (C4)

with Z ′ = Z/R2 and δ = �/R. Analogously to Eq. (7), the boundary conditions at r = 1 − δ are

R1(1 − δ, θ ) = R2(1 − δ, θ ), (C5)

D1 exp(−βV1)
∂R1

∂r
(1 − δ, θ ) − D2 exp(−βV2)

∂R2

∂r
(1 − δ, θ ) = D1 exp(−βV1) − D2 exp(−βV2)

πD1

(1 − cos θ ) − δ

2(1 − δ)(1 − cos θ ) + δ2
,

(C6)

where the relation (C2) has been used, and from Eq. (B11) the reflective boundary condition at r = 1 becomes

∂R1

∂r
(1, θ ) = 1

2πD1
. (C7)
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Finally, the condition (B12) gives the last relation needed to derive R:∫ 2π

0
dθ

[
exp(−βV2)

∫ 1−δ

0
dr rR2(r, θ ) + exp(−βV1)

∫ 1

1−δ

dr rR1(r, θ )

]
= 0. (C8)

The general solution of Eqs. (C3) and (C4), which can be rewritten as Di∇2Ri(r, θ ) = exp(−βV1)/Z ′, has the form

Ri(r, θ ) =
∞∑

n=0

fi,n(r) cos(nθ ) (C9)

due to the periodicity on the polar coordinate θ and the symmetry of the problem under the θ → −θ transformation. The
functions fi,n(r) must satisfy the differential equations

f ′′
i,n(r) + 1

r
f ′
i,n(r) − n2

r2
fi,n(r) = 0, n � 1, (C10)

Di

[
f ′′
i,0(r) + 1

r
f ′
i,0(r)

]
= exp(−βV1)

Z ′ . (C11)

The global solution is then given by fi,n(r) = ai,nrn + bi,nr−n (for n � 1) and fi,0(r) = exp(−βV1)r2/(4DiZ ′) + ai,0 + bi,0 ln r.
Hence the functions R1 and R2 have the general form

R1(r, θ ) = exp(−βV1)r2

4D1Z ′ + a0 + b0 ln r +
∞∑

n=1

[anrn + bnr−n] cos(nθ ), (C12)

R2(r, θ ) = exp(−βV1)r2

4D2Z ′ + c0 + d0 ln r +
∞∑

n=1

[cnrn + dnr−n] cos(nθ ). (C13)

Since the problem is not singular at r = 0, we must impose dn = 0 for n � 0 to have a nondivergent solution R2(r, θ ). The
boundary condition at r = 1 given by Eq. (C7) reads

exp(−βV1)

2D1Z ′ + b0 +
∞∑

n=1

n(an − bn) cos(nθ ) = 1

2πD1
. (C14)

The orthogonality of cos(nθ ) imposes an = bn for n � 1 and

b0 = 1

2πD1
− exp(−βV1)

2D1Z ′ = [exp(−βV2) − exp(−βV1)](1 − δ)2

2D1Z ′ . (C15)

The continuity at r = 1 − δ, expressed by Eq. (C5), becomes

exp(−βV1)(1 − δ)2

4D1Z ′ + a0 + b0 ln(1 − δ) +
∞∑

n=1

an[(1 − δ)n + (1 − δ)−n] cos(nθ )

= exp(−βV1)(1 − δ)2

4D2Z ′ + c0 +
∞∑

n=1

cn(1 − δ)n cos(nθ ). (C16)

The orthogonality of cos(nθ ) yields

a0 − c0 = exp(−βV1)(D1 − D2)(1 − δ)2

4Z ′D1D2
− [exp(−βV2) − exp(−βV1)](1 − δ)2

2D1Z ′ ln(1 − δ), (C17)

cn = an[1 + (1 − δ)−2n]. (C18)

Since
∫ 2π

0 dθ cos(nθ ) = 0 for n � 1, the condition (C8) becomes∫ 1−δ

0
dr r

[
D1 exp(−βV1)r2

4D2Z ′ + c0

]
+

∫ 1

1−δ

dr r

[
exp(−βV1)r2

4D1Z ′ + a0 + b0 ln r

]
= 0, (C19)

and the relation (C17) finally gives

a0 = π exp(−βV1)

8D1D2Z ′2 {(D1 − D2)(1 − δ)4 exp(−βV2) + D2[exp(−βV1) − exp(−βV2)](1 − δ)2[3(1 − δ)2 − 2]

− D2 exp(−βV1)} − π

2D1Z ′2 [exp(−βV1) − exp(−βV2)]2(1 − δ)4 ln(1 − δ), (C20)
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and the expression of c0 can be directly read from Eq. (C17). Finally, to determine the an and cn coefficients for n � 1, the
condition (C6) at r = 1 − δ becomes

D1 exp(−βV1)

{
exp(−βV1)(1 − δ)

2D1Z ′ + b0

1 − δ
+

∞∑
n=1

ann[(1 − δ)n−1 − (1 − δ)−n−1] cos(nθ )

}

− D2 exp(−βV2)

{
exp(−βV1)(1 − δ)

2D2Z ′ +
∞∑

n=1

cnn(1 − δ)n−1 cos(nθ )

}

= D1 exp(−βV1) − D2 exp(−βV2)

πD1

(1 − cos θ ) − δ

2(1 − δ)(1 − cos θ ) + δ2
. (C21)

The orthogonality of cos(nθ ) gives

D1 exp(−βV1)ann[1 − (1 − δ)−2n] − D2 exp(−βV2)cnn = −D1 exp(−βV1) − D2 exp(−βV2)

2πD1
, (C22)

where the equality (for n � 1)

2
∫ 2π

0
dθ

(1 − cos θ ) − δ

2(1 − δ)(1 − cos θ ) + δ2
cos(nθ ) = −(1 − δ)n−1 (C23)

has been used. The relation (C18) yields

an = 1

πD1n

[D1 exp(−βV1) − D2 exp(−βV2)](1 − δ)2n

D1 exp(−βV1) + D2 exp(−βV2) − [D1 exp(−βV1) − D2 exp(−βV2)](1 − δ)2n
, (C24)

and the cn coefficients can be read using Eq. (C18).
We focus on two quantities: the average MFPT and the MFPT starting at the center given by Eqs. (B15) and (B16) applied at

x = 0, respectively. These quantities are equal to

〈t〉 = Z

exp(−βV1)

[
− 1

πD1
ln

ε

4
+ exp(−βV1)

4D1Z ′ + a0 + 2
∞∑

n=1

an

]
, (C25)

t (0) = Z

exp(−βV1)

[
− 1

πD1
ln

ε

4
+ exp(−βV1)

4D1Z ′ + (a0 − c0) + 2
∞∑

n=1

an

]
. (C26)

In the following, we express these quantities in terms of χ = 1 − δ and �V = V2 − V1. The series of an is equal to

∞∑
n=1

an = 1

πD1

∞∑
n=1

uχ2n

n[1 − uχ2n]
, u = D1 − D2 exp(−β�V )

D1 + D2 exp(−β�V )
. (C27)

Since |u| < 1 and 0 � χ < 1, this series can be rewritten as

∞∑
n=1

an = 1

πD1

∞∑
n=1

∞∑
k=1

ukχ2nk

n
= − 1

πD1

∞∑
k=1

uk ln(1 − χ2k ). (C28)

Using the expression of a0 given by Eq. (C20), the GMFPT reads

T (χ ) = D1〈t〉
R2

= {1 − χ2[1 − exp(−β�V )]}
{

− ln
ε

4
− 2

∞∑
k=1

[
D1 − D2 exp(−β�V )

D1 + D2 exp(−β�V )

]k

ln(1 − χ2k )

}
+ 1

8

+ (D1 − D2)χ2 exp(−β�V ) + 3D2[exp(−β�V ) − 1](1 − χ2)

8D2{1 − χ2[1 − exp(−β�V )]} χ2 − [1 − exp(−β�V )]2χ4 ln χ

2{1 − χ2[1 − exp(−β�V )]} ,
(C29)

and from the expression of a0 − c0 given by Eq. (C17), the CMFPT is

T0(χ ) = D1t (0)

R2
= {1 − χ2[1 − exp(−β�V )]}

{
− ln

ε

4
− 2

∞∑
k=1

[
D1 − D2 exp(−β�V )

D1 + D2 exp(−β�V )

]k

ln(1 − χ2k )

}

+ 1

4
+ D1 − D2

4D2
χ2 − exp(−β�V ) − 1

2
χ2 ln χ. (C30)
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APPENDIX D: DERIVATION OF THE GREEN’S FUNCTION AND NARROW ESCAPE EXPRESSION
IN THREE DIMENSIONS

For the two-shell geometry, the diffusion constant and the stationary probability density close to the escape region are,
respectively, D(x0) = D1 and Ps(x0) = exp(−βV1)/Z , with the partition function

Z =
∫

�

exp (−βV (x)) = 4π

3
{R3 exp(−βV1) + (R − �)3[exp(−βV2) − exp(−βV1)]}. (D1)

Equations (B10)–(B12) and (B27) for the pseudo Green’s function can be rewritten in the two-shell geometry to obtain its
regular part R(x|x0) defined by Eq. (B40). We use the dimensionless spherical coordinates (r, θ, ϕ) defined by x/R = r cos θ ,
y/R = r sin θ cos ϕ and z/R = r sin θ sin ϕ. The regular part of the Green’s function is denoted as R(x|x0) = R(r, θ, ϕ)/R
without loss of generality [such that D1R(r, θ ) is dimensionless], and the escape region is located at r = 1 and θ = 0. Note that
the problem is invariant under the rotation of the azimuthal angle ϕ, and hence R(r, θ, ϕ) is independent of ϕ. Since the normal
vector n is radially oriented, the normal derivative of |x − x0|−1 at the point (r, θ, ϕ) is

n · ∇x
R

|x − x0| = − r − cos θ

(r2 − 2r cos θ + 1)3/2
. (D2)

The value of R(r, θ ) in the inner shell and the outer shell is defined by R1(r, θ ) and R2(r, θ ), respectively. From Eq. (B10), the
bulk equations verified by Ri(r, θ ) are

D1∇2R1(r, θ ) = exp(−βV1)

Z ′ , r > 1 − δ, (D3)

D2∇2R2(r, θ ) = exp(−βV1)

Z ′ , r < 1 − δ. (D4)

with Z ′ = Z/R3. Analogously to Eq. (7) the boundary conditions at r = 1 − δ,

R1(1 − δ, θ ) = R2(1 − δ, θ ), (D5)

D1 exp(−βV1)
∂R1

∂r
(1 − δ, θ ) − D2 exp(−βV2)

∂R2

∂r
(1 − δ, θ ) = D1 exp(−βV1) − D2 exp(−βV2)

2πD1

(1 − cos θ ) − δ

[2(1 − δ)(1 − cos θ ) + δ2]3/2
,

(D6)

where the relation (D2) has been used, and from Eq. (B11) the reflective boundary condition at r = 1 becomes

∂R1

∂r
(1, θ ) = 1

4πD1

1√
2(1 − cos θ )

. (D7)

Finally, the condition (B12) gives the last relation needed to derive R:

2π

∫ π

0
dθ sin θ

[
exp(−βV2)

∫ 1−δ

0
dr r2R2(r, θ ) + exp(−βV1)

∫ 1

1−δ

dr r2R1(r, θ )

]
= − 1

2πD1
Z ′. (D8)

The general solution of Eqs. (D3) and (D4), which can be rewritten as Di∇2Ri(r, θ ) = exp(−βV1)/Z ′, has the form

Ri(r, θ ) =
∞∑

n=0

fi,n(r)Pn(cos θ ) (D9)

where Pn(X ) is the Legendre polynomial of degree n, due to the spherical symmetry of the problem, independent of the azimuthal
ϕ. The functions fi,n(r) must satisfy the differential equations

f ′′
i,n(r) + 2

r
f ′
i,n(r) − n(n + 1)

r2
fi,n(r) = 0, n � 1 (D10)

Di

[
f ′′
i,0(r) + 2

r
f ′
i,0(r)

]
= exp(−βV1)

Z ′ . (D11)

The global solution is then given by fi,n(r) = ai,nrn + bi,nr−n−1 (with n � 1) and fi,0(r) = exp(−βV1)r2/(6DiZ ′) + ai,0 +
bi,0/r. Hence the functions R1 and R2 have the general form

R1(r, θ ) = exp(−βV1)r2

6D1Z ′ + a0 + b0

r
+

∞∑
n=1

[anrn + bnr−n−1]Pn(cos θ ), (D12)

R2(r, θ ) = exp(−βV1)r2

6D2Z ′ + c0 + d0

r
+

∞∑
n=1

[cnrn + dnr−n−1]Pn(cos θ ). (D13)
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Since the problem is not singular at r = 0, we must impose dn = 0 for n � 0 to have a nondivergent solution R2(r, θ ). The
boundary condition at r = 1 given by Eq. (D7) reads

exp(−βV1)

3D1Z ′ − b0 +
∞∑

n=1

[nan − (n + 1)bn]Pn(cos θ ) = 1

4πD1

1√
2(1 − cos θ )

. (D14)

The orthogonality of the Legendre polynomials and the integral value∫ 1

−1
dX

Pn(X )√
2(1 − X )

= 2

2n + 1
(D15)

impose the relations

b0 = exp(−βV1)

3D1Z ′ − 1

4πD1
= [exp(−βV1) − exp(−βV2)](1 − δ)3

3D1Z ′ , (D16)

an = 1

4πD1n
+ n + 1

n
bn. (D17)

The continuity at r = 1 − δ, expressed by Eq. (D5), becomes

exp(−βV1)(1 − δ)2

6D1Z ′ + a0 + b0

1 − δ
+

∞∑
n=1

[an(1 − δ)n + bn(1 − δ)−n−1]Pn(cos θ )

= exp(−βV1)(1 − δ)2

6D2Z ′ + c0 +
∞∑

n=1

cn(1 − δ)nPn(cos θ ). (D18)

Using Eq. (D17), the orthogonality of the Legendre polynomials yields

a0 − c0 =
[

D1 − D2

2D2
+ exp(−βV2) − exp(−βV1)

]
exp(−βV1)(1 − δ)2

3D1Z ′ , (D19)

cn = 1

4πD1n
+ bn

[
n + 1

n
+ (1 − δ)−2n−1

]
. (D20)

Since
∫ 1
−1 dXPn(X ) = 0 for n � 1, the condition (D8) becomes

2π

∫ 1−δ

0
dr r2

[
D1 exp(−βV1)r2

3D2Z ′ + 2c0

]
+

∫ 1

1−δ

dr r2

[
exp(−βV1)r2

3D1Z ′ + 2a0 + 2
b0

r

]
= − Z ′

2π
, (D21)

and the relation (D19) finally gives

a0 = − 1

2πD1
− 2π exp(−βV1)

45D1D2Z ′2 (3D2 + {2(D2 − D1) exp(−βV2) − 8D2[exp(−βV1) − exp(−βV2)]

− 10D2[exp(−βV1) − exp(−βV2)]2}(1 − δ)5 + 15D2[exp(−βV1) − exp(−βV2)](1 − δ)3), (D22)

and the expression of c0 can be directly read from Eq. (D19). Finally, to determine the an and cn coefficients for n � 1, the
condition (D6) at r = 1 − δ becomes

D1 exp(−βV1)

{
exp(−βV1)(1 − δ)

3D1Z ′ − b0

(1 − δ)2
+

∞∑
n=1

[ann(1 − δ)n−1 − (n + 1)bn(1 − δ)−n−2]Pn(cos θ )

}

− D2 exp(−βV2)

{
exp(−βV1)(1 − δ)

3D2Z ′ +
∞∑

n=1

cnn(1 − δ)n−1Pn(cos θ )

}

= D1 exp(−βV1) − D2 exp(−βV2)

2πD1

(1 − cos θ ) − δ

[2(1 − δ)(1 − cos θ ) + δ2]3/2
. (D23)

The orthogonality of the Legendre polynomials yields

D1 exp(−βV1)

[
an − n + 1

n
bn(1 − δ)−2n−1

]
− D2 exp(−βV2)cn = −D1 exp(−βV1) − D2 exp(−βV2)

2πD1
, (D24)

where the equality (for n � 1) ∫ 1

−1
dX

(1 − X ) − δ

2(1 − δ)(1 − X ) + δ2
Pn(X ) = − 2n

2n + 1
(1 − δ)n−1 (D25)
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has been used. Equations (D17) and (D20) give

bn = 2n + 1

4πD1(n + 1)

[D1 exp(−βV1) − D2 exp(−βV2)](1 − δ)2n+1

D1 exp(−βV1) + n
n+1 D2 exp(−βV2) − [D1 exp(−βV1) − D2 exp(−βV2)](1 − δ)2n+1

, (D26)

and the an and cn coefficients can be read from Eqs. (D17) and (D20), respectively.
The expressions of γ and R0 can be derived from the limit close to the escape region (1,0) of R1(r, θ ) whose the expression is

R1(r, θ ) = exp(−βV1)r2

6D1Z ′ + a0 + b0

r
+ 1

4πD1

∞∑
n=1

rn

n
Pn(cos θ ) +

∞∑
n=1

[
n + 1

n
rn + r−n−1

]
bnPn(cos θ ) (D27)

after using Eq. (D17). The generating function of Legendre polynomials yields
∞∑

n=1

rnPn(cos θ ) = R
|x − x0| ⇔

∞∑
n=1

rn

n
Pn(cos θ ) = ln

2

1 − r cos θ + |x − x0|/R , (D28)

which determines the expression of the first series. The limit when x → x0 is then

R(x → x0|x0) = − 1

4πD1R
ln

|x − x0|
2R + 1

R

[
exp(−βV1)

6D1Z ′ + a0 + b0 +
∞∑

n=1

2n + 1

n
bn

]
, (D29)

and the expressions of γ and R0 are

γ = − 1

4πD1R
and R0 = 1

R

[
exp(−βV1)

6D1Z ′ + a0 + b0 +
∞∑

n=1

2n + 1

n
bn

]
. (D30)

We focus on two quantities: the average MFPT and the MFPT starting at the center given by Eqs. (B38) and (B39) applied at
x = 0, respectively. These quantities are equal to

〈t〉 = Z

exp(−βV1)R

[
1

2D1ε
− 1

4πD1
ln ε + exp(−βV1)

6D1Z ′ + a0 + b0 +
∞∑

n=1

2n + 1

n
bn + 3

8πD1

]
, (D31)

t (0) = Z

exp(−βV1)R

[
1

2D1ε
− 1

4πD1
ln ε + exp(−βV1)

6D1Z ′ + (a0 − c0) + b0 +
∞∑

n=1

2n + 1

n
bn − 1

8πD1

]
. (D32)

In the following, we express these quantities in terms of χ = 1 − δ and �V = V2 − V1. The series of bn is equal to
∞∑

n=1

2n + 1

n
bn = 1

4πD1

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
, un = D1 − D2 exp(−β�V )

D1 + n
n+1 D2 exp(−β�V )

. (D33)

This expression cannot be further simplified. Using the expression of a0 and b0 given by Eqs. (D22) and (D16), respectively, the
GMFPT writes

T (χ ) = D1〈t〉
R2

= {1 − χ3[1 − exp(−β�V )]}
{

2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
− 1

6

}

+ D2 + {(D1 − D2) exp(−β�V ) + 4D2[1 − exp(−β�V )] + 5D2[1 − exp(−β�V )]2}χ5

15D2{1 − χ3[1 − exp(−β�V )]}

− [1 − exp(−β�V )]{1 + χ3[1 − exp(−β�V )]}
3{1 − χ3[1 − exp(−β�V )]} χ3, (D34)

and from the expression of a0 − c0 and b0 given by Eqs. (C17) and (D16), respectively, the CMFPT is

T0(χ ) = D1t (0)

R2
= {1 − χ3[1 − exp(−β�V )]}

{
2π

3ε
− 1

3
ln ε + 1

3

∞∑
n=1

(2n + 1)2

n(n + 1)

unχ
2n+1

1 − unχ2n+1
− 1

6

}

+ 1

6
+ D1 − D2

6D2
χ2 − 1 − exp(−β�V )

3
χ2(1 − χ ). (D35)

APPENDIX E: GREBENKOV’S SOLUTION FOR PIECEWISE CONSTANT DIFFUSIVITY

In Ref. [30], Grebenkov has shown an exact expression for the MFPT satisfying the equation

∇2
y t (y) = − 1

D(y)
, (E1)
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which is compatible with Eq. (3) only for the potential βV (y) = ln D(y) for the origin of potential fixed at the reference of
diffusion constants (1m2/s). The solution derived by Grebenkov reads in terms of complex variables:

t (y) =
∫

�

dx

D(x)

[
− ln |φ−1

y (x)|
2π

+ W
(
φ−1

y (x)
)]

(E2)

where φy(x) is the conformal mapping of the unit disk D on the domain � where the origin is fixed as φy(0) = y, preserving
the harmonic measure of the escape region which corresponds here to the perimeter for both domains D and �. The explicit
expression of W (z) is

W (z) = 1

π
ln

|1 − z + √
[1 − z exp(−iε/2)][1 − z exp(iε/2)]|

2 sin(ε/4)
= − 1

π
ln sin(ε/4) − 1

π

∞∑
n=1

cnrn cos(nθ ) (E3)

with z = reiθ and the coefficients cn written in terms of Legendre polynomials of degree n of cos(ε/2):

cn = Pn−1( cos(ε/2)) + Pn( cos(ε/2))
2n

. (E4)

For our two-shell geometry, the equivalence is valid for β�V = ln(D2/D1) and the conformal mapping satisfies the identities

φy(x) = y − xeiα

1 − xyeiα
, φ−1

y (x) = y − x

1 − xy
e−iα (E5)

where y is the conjugate of y, and α is an angle whose value is unimportant for the following. We first calculate the expression
of the CMFPT. From the Eq. (E2), t (0) depends only on φ−1

0 (x) = −xe−iα . Denoting x = reiθ , Eq. (E2) becomes

t (0) =
∫

�

rdr dθ

D(r)

[
− ln r

2π
− ln sin(ε/4)

π
− 1

π

∞∑
n=1

(−1)ncnrn cos (n(θ − α))

]
(E6)

since D(x) depends only on the radial coordinate. Performing the orthoradial integral, we obtain

t (0) = −
∫ 1

0

rdr

D(r)
[ln r + 2 ln sin(ε/4)]. (E7)

Performing the radial integral for the piecewise constant diffusivity, the dimensionless CMFPT [T0 = D1t (0)] is then equal to

T0 = −
(

1 + D1 − D2

D2
χ2

)
ln sin(ε/4) + 1

4
+ D1 − D2

4D2
χ2 + D2 − D1

2D2
χ2 ln χ, (E8)

where χ = 1 − �/R. The GMFPT is defined here by

〈t〉 = D−1

∫
�

dy

D(y)
t (y) with D−1 =

∫
�

dy

D(y)
. (E9)

Equation (E2) gives

〈t〉 = D−1

∫
�

dy

D(y)

∫
�

dx

D(x)

[
− ln |φ−1

y (x)|
2π

+ W
(
φ−1

y (x)
)] ≡ I1 + I2, (E10)

in which the two contributions I1 and I2 are introduced to simplify the derivation. The first contribution is independent of ε and
reads

I1 = D−1

∫
�

dy

D(y)
tD(y) with tD(y) = − 1

2π

∫
�

dx

D(x)
ln |φ−1

y (x)|. (E11)

Denoting x = reiθ and y = r0eiθ0 , Eq. (E5) reads

tD(y) = − 1

4π

∫
�

dx

D(x)
ln

r2
0 − 2rr0 cos(θ − θ0) + r2

1 − 2rr0 cos(θ − θ0) + r2r2
0

. (E12)

The orthoradial integral is performed by remarking the identity∫ 2π

0
dθ ln(1 − 2u cos(θ − θ0) + u2) = 0, ∀u ∈ [0, 1]. (E13)

Hence tD(y) depends only on the radial coordinate r0 = |y| such that

tD(r0) = 1

2

∫ 1

0

r dr

D(r)
ln

2

r2 + r2
0 + |r2 − r2

0 |
. (E14)

044124-25



MATTHIEU MANGEAT AND HEIKO RIEGER PHYSICAL REVIEW E 104, 044124 (2021)

Performing the integral for the piecewise constant diffusivity we obtain

tD(r0) =
{D2−D1r2

0
4D1D2

+ D1−D2
4D1D2

χ2 + D2−D1
2D1D2

χ2 ln χ, r0 < χ,

1−r2
0

4D1
+ D2−D1

2D1D2
χ2 ln r0, r0 > χ

(E15)

for χ = 1 − �/R. The contribution I1 is thus

I1 = 2πD−1

∫ 1

0

r0dr0

D(r0)
tD(r0) = 1

8D1
+ D1 − D2

8D1D2
2

3D2 + (D1 − 3D2)χ2

1 + D2−D1
D2

χ2
χ2 − (D1 − D2)2

2D1D2
2

χ4 ln χ

1 + D2−D1
D2

χ2
. (E16)

The second contribution depends on ε and writes

I2 = −D−1

π
ln sin(ε/4) − D−1

π

∫
�

dy

D(y)

∫
D

dz

D(|φy(z)|) |φ
′
y(z)|2

∞∑
n=1

cnrn cos(nθ ), (E17)

where the change of variable x = φy(z) has been realized and φ′
y(z) = dφy/dz is the complex derivation by the complex variable

z = reiθ . The last integral can be expanded as∫
�

r0dr0 dθ0

D(r0)

∫
D

dr dθ

D(|φy(z)|)
∞∑

n=1

(
1 − r2

0

)2
cnrn+1 cos(nθ )[

1 − 2rr0 cos(θ + α − θ0) + r2r2
0

]2 , |φy(z)|2 = r2
0 − 2rr0 cos(θ + α − θ0) + r2

1 − 2rr0 cos(θ + α − θ0) + r2r2
0

. (E18)

Considering the change of variable θ̃0 = θ0 − θ − α and using the periodicity over this new variable, the last integral becomes∫
�

r0dr0 d θ̃0

D(r0)

∫
D

dr dθ

D(|φy(z)|)
∞∑

n=1

(1 − r2
0 )2cnrn+1 cos(nθ )

(1 − 2rr0 cos θ̃0 + r2r2
0 )2

, |φy(z)|2 = r2
0 − 2rr0 cos θ̃0 + r2

1 − 2rr0 cos θ̃0 + r2r2
0

. (E19)

D(|φy(z)|) does not depend on θ anymore and the integral over the orthoradial coordinate can be moved inside the series. Since∫ 2π

0 dθ cos(nθ ) = 0 for n � 1, this integral is equal to zero. The contribution I2 is thus

I2 = − 1

D1

(
1 + D1 − D2

D2
χ2

)
ln sin(ε/4). (E20)

Adding the expression of the two contributions I1 and I2 given by Eqs. (E16) and (E20), the dimensionless GMFPT (T = D1〈t〉)
is hence

T = −
(

1 + D1 − D2

D2
χ2

)
ln sin(ε/4) + 1

8
+ D1 − D2

8D2

3D2 + (D1 − 3D2)χ2

D2 + (D1 − D2)χ2
χ2 − (D1 − D2)2

2D2

χ4 ln χ

D2 + (D1 − D2)χ2
. (E21)
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