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Ultracold bosonic atoms in optical lattices self-organize into a variety of structural and quantum phases when
placed into a single-mode cavity and pumped by a laser. Cavity optomechanical effects induce an atom density
modulation at the cavity-mode wavelength that competes with the optical lattice arrangement. Simultaneously
short-range interactions via particle hopping promote superfluid order such that a variety of structural and
quantum coherent phases can occur. We analyze the emerging phase diagram in two dimensions by means
of an extended Bose-Hubbard model using a local mean-field approach combined with a superfluid cluster
analysis. For commensurate ratios of the cavity and external lattice wavelengths, the Mott insulator-superfluid
transition is modified by the appearance of charge density wave and supersolid phases, at which the atomic
density supports the buildup of a cavity field. For incommensurate ratios, the optomechanical forces induce
the formation of Bose-glass and superglass phases, namely, nonsuperfluid and superfluid phases, respectively,
displaying quasiperiodic density modulations, which in addition can exhibit structural and superfluid stripe
formation. The onset of such structures is constrained by the on-site interaction and is favorable at fractional
densities. Experimental observables are identified and discussed.
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I. INTRODUCTION

The quantum phase transition between the Mott-insulator
(MI) and superfluid (SF) phase of the Bose-Hubbard model
is a paradigmatic example of strongly correlated systems
which can be realized with ultracold atomic ensembles in
optical lattices [1–3]. This dynamics results from the interplay
between the short-range nearest-neighbor hopping, which pro-
motes delocalization and superfluidity and can be controlled
by the lattice depth, and the on-site repulsion, which penalizes
high local densities and can be tuned by means of Feshbach
resonances [3,4].

If additional interactions are added, whose length scales
compete with the periodicity of the optical lattice, further
phases can appear where superfluidity and periodic (or
quasiperiodic) structural order coexist [5–13]. A prominent
example is the long-range interaction mediated by photon scat-
tering of atoms in a high-finesse resonator [11–13]. Here, when
the atoms are transversally driven by a laser and coherently
scatter photons into the cavity, as illustrated in Fig. 1, then
the mechanical effects of light on the atoms can give rise to a
periodic potential with the periodicity of the cavity wavelength
λ and whose depth is a function of the atomic density itself
[14–17]. Recent works analyzed how this long-range interac-
tion modifies the phase diagram of ultracold bosons when it is a
weak perturbation to the external periodic potential [15,18–21]
and when its strength competes with the on-site repulsion
[22–25], demonstrating the existence of novel phases which
are associated with structural order sustaining coherent scat-
tering into the resonator. In Ref. [18], in particular, some of
us analyzed the phase diagram emerging when the wavelength
of the external optical lattice λ0 is incommensurate with the
cavity wavelength λ for the setup of Fig. 1, assuming that the
atoms are tightly bound at the minima of the external potential.
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For this configuration a quantum Monte Carlo simulation
in one dimension predicted the appearance of compressible
phases, with vanishing superfluidity, which we denoted by a
Bose-glass (BG) phase using the terminology applied for cold
atoms in bichromatic, aperiodic potentials [26–28]. Differing
from the situations considered in Refs. [26–28], however, here
the second potential is created by atomic scattering and can
exist only if there is some type of Bragg order. Indeed, we
found that in the BG phase the atomic density is modulated at
the beating wavelength of the two potentials, thus supporting
coherent scattering into the resonator [18]. In two dimensions,
a mean-field calculation predicted that such structural order
can also coexist with superfluidity [18]. Nevertheless, the type
of mean-field approach there applied does not allow one to
precisely determine the boundary of the transition from BG
to SF phase and thus delivers only a qualitative picture of the
phase diagram.

In the present work we perform a systematic characteriza-
tion of the two-dimensional phase diagram for the setup in
Fig. 1, which is based on a local mean-field (LMF) approach
with cluster analysis, developed by some of us in Ref. [29]
for the disordered Bose-Hubbard model. This study allows us
to get a quantitative insight into the interplay between super-
fluidity and long-range interactions. We determine the phase
diagram for commensurate and incommensurate values of the
ratio λ0/λ, comparing, in particular, the commensurate case
λ = λ0 with the incommensurate one λ = λ0(1 + ε), where ε

is a small irrational number. We provide a classification of the
phases we identify and extract a detailed picture of the onset
of structural order induced by cavity backaction.

This article is organized as follows. In Sec. II we introduce
the extended Bose-Hubbard model, which is at the basis of our
study, and the local mean-field approach with cluster analysis.
In Sec. III we discuss the phase diagram when the lattice and
cavity wavelength are commensurate, while in Sec. IV we
focus on the incommensurate case. The conclusions are drawn
in Sec. V.
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FIG. 1. Bosonic atoms are confined by a two-dimensional tight
optical lattice at wavelength λ0 within a high-finesse cavity and
dispersively interact with a standing-wave mode at wavelength λ.
The cavity mode is lossy and pumped by coherent scattering of the
atoms, which are transversally pumped by a laser with the same cavity
wavelength λ. The atoms’ quantum phases result from the interplay
between the kinetic energy, the on-site s-wave scattering, and the
long-range interaction induced by the cavity forces. In this work we
apply a local mean-field approach with a cluster analysis in order to
determine the structural and superfluid order of the emerging phases
for different values of the ratio λ0/λ.

II. EXTENDED BOSE-HUBBARD MODEL

The quantum phases of the ultracold bosons in the setup
of Fig. 1 are found starting from the effective Hamiltonian
derived by means of a coarse-graining procedure [18,30].
The Hamiltonian describes the dynamics of an ultracold
gas of atoms confined to the x-z plane, which are tightly
confined by an external square lattice with lattice constant
a = λ0/2 and which interact via s-wave collisions and through
the long-range cavity forces. These forces emerge from the
adiabatic part of the cavity dynamics, under the assumption
that the typical time scale of the cavity field evolution is
much shorter than the one characterizing the atomic motion.
The Hamiltonian is cast in the form of a Bose-Hubbard
model, assuming that the dynamics is restricted to the lowest
band of the external lattice and that the interaction with the
resonator is sufficiently weak so that interband transitions are
suppressed. We denote by wi(x,z) the Wannier functions for
the optical lattice lowest band. Here, i = (ix,iy) labels the
site and ix,iy = 1, . . . ,L, such that the size is K = L2 with
periodic boundary conditions.

Below, we adopt the convention that the cavity axis is along
z and that the cavity spatial mode function is cos(kz), with
k = 2π/λ. The atoms are pumped by a standing-wave laser
propagating along x with the same wave number k, forming an
optical lattice with intensity distribution ∝ cos2(kx). The laser
frequency ωL is detuned by �c = ωL − ωc from the cavity-
mode frequency ωc. The sign of this detuning determines
whether Bragg gratings are energetically favorable [14,31–33].

In this work we restrict our analysis to the case �c < 0, for
which spatial self-organization can occur.

A. Effective Hamiltonian

The grand-canonical Hamiltonian Ĥ , which is the starting
point of our analysis, is reported in second quantization in
terms of the bosonic creation and annihilation operators of an
atom at site i, denoted by â

†
i and âi , respectively, such that

[âi ,â
†
j ] = δi,j , and takes the form [18]

Ĥ = −J
∑
〈i,j〉

(â†
i âj + â

†
j âi) + U

2

∑
i

n̂i(n̂i − 1)

+
∑

i

(εi − μ)n̂i + Kδ̂�̂2, (1)

where n̂i = â
†
i âi is the local number operator at site i. The

first three summands on the right-hand side of Eq. (1) are
(i) the kinetic energy, scaled by the hopping strength J , (ii)
the on-site collisions due to s-wave scattering with U the
strength of the interaction, and (iii) the on-site energy εi and the
chemical potential μ. The on-site energy εi = ε0 + V1Y

(x)
i has

a constant offset ε0 and a site dependence due to the transverse
laser potential which pumps the atoms. Here, V1 is the depth
of the transverse laser optical lattice at wavelength λ and the
shift it induces at the sites i is given by

Y
(x)
i =

∫
dx

∫
dz w2

i (x,z) cos2(kx). (2)

Hence, in absence of the cavity field the atoms experience
a bichromatic potential along the x axis, while along z the
potential is periodic with periodicity a.

The last term of the Hamiltonian represents the long-range
interaction mediated by the cavity field, where δ̂ is an operator
depending on the atomic density distribution, which converges
to a finite value in the thermodynamic limit we apply and
whose specific form is given at the end of this section. Finally,

�̂ = 1

K

∑
i

Zi n̂i (3)

depends on the density at each site i, and it is weighted by the
scattering amplitudes Zi at site i. The scattering amplitudes
read

Zi =
∫

dx

∫
dz w2

i (x,z) cos(kx) cos(kz) (4)

and are λ-periodic numbers. Thus, |〈�̂〉| � n̄, with n̄ the
average on-site density.

For the parameters we choose the sign of δ̂, and thus of
the potential, as negative. The cavity long-range interactions
thus favor configurations where the expectation value of the
global operator 〈�̂2〉 is maximized. This expectation value,
in turn, is proportional to the mean intracavity photon number
and is maximum when the atom density modulation has period
λ, thus forming a Bragg grating. In fact, we show below that
when 〈�̂2〉 �= 0, the structure form factor exhibits a peak at the
cavity wave vector.
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B. Local mean field with superfluid cluster analysis

We analyze the phase diagram emerging from the Hamil-
tonian (1) using LMF theory [34] combined with a superfluid
cluster analysis [29,35]. Within this framework, we define the
so-called local SF parameter by equation ψi = 〈âi〉, which
has to be determined self-consistently, being the expectation
value of operator âi taken over the ground state of the LMF
Hamiltonian Ĥ MF

μ = ∑
i Ĥ

MF
i , with

Ĥ MF
i = −ηi J (â†

i + âi − ψi) + U

2
n̂i(n̂i − 1)

+ (εi − μ)n̂i + 〈δ̂〉Zi〈�̂〉n̂i , (5)

and ηi = ∑
jn.n. ψj is the sum of the SF parameters ψj at the

nearest neighbors of site i, and 〈δ̂〉,〈�̂〉 are determined self-
consistently. The sites are classified depending on the value of
the on-site particle number fluctuations, namely,

�n2
i = 〈

n̂2
i

〉 − 〈n̂i〉2.

The sites with �n2
i = 0 are denoted by Mott-Insulator (MI)

sites; otherwise they are SF sites. We denote by NSF the
number of the SF sites and by Pj = 1 the existence of a
percolating line connecting two opposite sides of the lattice
along j = x,z; otherwise it is zero. Using these quantities we
determine the phase.

We first review the phases which typically emerge from
the interplay of kinetic energy and on-site interaction, and
in absence of the cavity potential. A phase is incompressible
provided that all sites are MI, and thus NSF = 0. A BG phase
exhibits clusters of SF sites that are surrounded by MI sites.
Within a cluster of SF sites particles are allowed to tunnel
freely, which means that these sites form a local SF island
in a background of MI sites. The phase is SFj , namely, SF
along the j = x,z direction, if at least one of these clusters
can percolate in the j direction. When Px = Pz = 1, the phase
is SF.

The cavity potential, on the other hand, favors a cavity-
mediated long-range order whose signature is the nonvanishing
expectation value of operator �̂. The onset of this order
can modify the phase that otherwise would characterize the
atoms’ ground state. Below we discuss commensurate (C)
and incommensurate (I) configurations, for which the MI or
the normal SF do not support the presence of a stationary
cavity field, being

∑
i Zi = 0 and thus 〈�̂〉 = 0 [18]. The

corresponding classification is summarized in Table I.
We now argue that for λ = λ0 the cavity-mediated potential

tends to induce a (π,π ) density modulation, also denoted as
charge density wave (CDW), in the form of a checkerboard
pattern with alternating site occupation numbers. For this
purpose we introduce the structure form factor operator, which
is defined as

Ŝ(kx,kz) = 1

K

∑
i,j

exp[−i(kxjx + kzjz)a]n̂i n̂j . (6)

Using Eq. (4), and that for this commensurate case Zi ∝ (−1)i ,
then

Ŝ(π,π ) = K�̂2 . (7)

TABLE I. Observables determining the phases for the com-
mensurate (C, left) and, correspondingly, for the incommensurate
(I, right) quantum potential. NSF indicates whether the number of SF
sites is larger than zero; PX,Z = 1 when percolating lines, signaling
superfluidity, exist along the x,z directions. The expectation value
〈�̂〉 �= 0 is found when the atomic density forms a Bragg grating,
corresponding to a peak of the structure form factor at the cavity
wave vector along the z axis with wave number k.

Phase C NSF PX PZ 〈�̂〉 Phase I NSF PX PZ 〈�̂〉
MI 0 0 0 0 MI 0 0 0 0
CDW 0 0 0 Yes BG Yes 0 0 Yes
SF Yes 1 1 0 SF Yes 1 1 0
SFX Yes 1 0 0 SFX Yes 1 0 0
SFZ Yes 0 1 0 SFZ Yes 0 1 0
SS Yes 1 1 Yes SG Yes 1 1 Yes
SSX Yes 1 0 Yes SGX Yes 1 0 Yes
SSZ Yes 0 1 Yes SGZ Yes 0 1 Yes

Thus, in addition to the homogeneous phases, SF and MI, also a
CDW long-range order with 〈�̂〉 �= 0 can occur. This diagonal
long-range order can in principle also coexist with off-diagonal
SF order, which is then commonly denoted as a supersolid
(SS) phase [6–10]. We will denote the phase supersolid in
j = x,z direction (SSj ) when the phase is SF only along j

(namely, when Pj = 1 but vanishes in the other direction).
Correspondingly, when instead the ratio is incommensurate,
the density modulation is quasiperiodic. The phase is a BG
when NSF = 0 and a superglass (SG) in j = x,z direction
(SGj ) if it coexists with SF order.

We note that while the mean-field approximation used for
the kinetic energy term has been often applied in the literature,
in writing Eq. (5) we also perform a mean-field approximation
on the long-range interacting term which consists in the
following assumption:

δ̂�̂2 → 〈δ̂〉〈�̂〉�̂.

This approximation neglects density-density correlations and
assumes that operator �̂ is an order parameter that is
independent of the superfluid order parameter. It has been
so far applied in the literature [18,24] and not yet rigorously
tested. We also use it in our local mean-field model, keeping in
mind that the results we obtain are valid within the framework
of this assumption.

C. Experimental parameters

The Hamiltonian we consider describes the coherent dy-
namics of a driven-dissipative system, which emerges within a
coarse-grained description. The energy of the atoms’ external
degrees of freedom is thus conserved when the cavity field
rapidly relaxes to a state that is determined by the atomic
density distribution [18,30]. The parameters of the long-range
interactions depend on the characteristic parameters of the
photon scattering dynamics, namely, on (i) the coherent
scattering amplitude S0 that determines the rate at which the
cavity is pumped, which reads S0 = �g/�a , where � is the
laser Rabi frequency, g the vacuum Rabi frequency, and �a

the detuning of the fields from the atomic dipole transition;
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(ii) the cavity loss rate κ whose interplay with S0 gives the mean
intracavity photon number; (iii) the bare detuning between
laser and cavity field �c, such that the frequency offset reads

δ̂eff = �c − U0

∑
i

Y
(z)
i n̂i , (8)

where the second term on the right-hand side is the dynamical
Stark shift due to the atomic density distribution with U0 =
g2/�a . Moreover, the depth of the transverse laser optical
lattice is V1 = ��2/�a and it is connected to the other two
characteristic frequencies S0 and U0 by the relation V1 =
�S2

0/U0. In this work we rescale these quantities according to a
thermodynamic limit of Refs. [14] and [15], where U0 = u0/K

and S0 = s0/
√

K . In particular, the long-range potential in
Eq. (1) reads

δ̂ = �s2
0

δ̂2
eff + κ2

δ̂eff . (9)

Our description is valid when the atoms are in the lowest
band of the external optical lattice, so that the long-range
interaction is a perturbation. We will use here the parameters
for the two-dimensional calculation in Ref. [18], namely, s0 =
0.15κ, u0 = 237κ, �c = −0.5κ , and κ = 2π × 1.3 MHz,
which is consistent with the cavity setup of Ref. [11]. The
strength of the on-site potential is found by performing
the integral U = g0

∫
dx

∫
dzw(x,z)4 with g0/� = 5.5 ×

10−11 Hz m2 [36]. Consistent with the experimental setup
of Ref. [11], we choose λ0 = λ = 830 nm, while for the
incommensurate case λ = 785 nm and λ0 = 830 nm.

III. COMMENSURATE WAVELENGTHS

We first consider the phase diagram when the optical lattice
and the cavity mode have commensurate wavelength. We focus
on the case λ = λ0, which has been recently experimentally
realized, and shortly discuss other commensurate ratios at the
end of this section.

A. Preliminary considerations

To better understand which phases could actually occur in
the present model we inspect a slightly simplified Hamiltonian
in which we neglect the site dependence of the on-site potential
εi (i.e., setting εi = 0), and which corresponds to the models
considered in Refs. [19,20,23,24]. We further perform the
substitution 〈δ̂〉 → −δ in Eq. (5), where δ > 0. Then

Ĥ ′ = −J
∑
〈i,j〉

(â†
i âj + âi â

†
j ) + U

2

∑
i

n̂i(n̂i − 1)

−μ
∑

i

n̂i − δ

K

(∑
i,even

n̂i −
∑
i,odd

n̂i

)2

, (10)

where
∑

i,even (
∑

i,odd) is restricted to the sites where ix and
iz are even (odd) numbers. If the cavity coupling δ is larger
than the on-site repulsion U,δ > U , a complete even or odd
imbalance (i.e., either all even sites or all odd sites empty) is
energetically favorable.

The phase diagram as a function of the ratio δ/U has been
evaluated in Ref. [24] by means of a mean-field treatment,
supported by results from quantum Monte Carlo simulations

for the hard-core (U → ∞) limit. Here, we make some general
considerations on the basis of analogies with a well-known
model. These considerations start from the observation that
the Hamiltonian Ĥ ′ is invariant under all discrete translations
that leave this checkerboard pattern invariant. Therefore, its
ground state must possess the same symmetry, which implies
that all even sites and all odd sites have identical properties in
the ground state. Consequently, the mean-field approximation
in Eq. (5) for Ĥ ′ leads to an effective two-site Hamiltonian
of the form Ĥ ′

MF = K
2 (ĥe + ĥo), where ĥe and ĥo refer to the

single-site mean-field (MF) Hamiltonians for even and odd
sites, respectively, and read

ĥ = −Jη(â†
 + â − ψ) + U

2
n̂(n̂ − 1)

−μn̂ − δ

2
n̂2

 + δ

2
n̂en̂o, (11)

where  = e,o,ηe = 4ψo, and ηo = 4ψe. It is interesting to
note that the last term on the right-hand side of Eq. (11),
(δ/2) n̂en̂o, has the form of a repulsive nearest-neighbor
interaction between bosons on neighboring even and odd
sites and is also characteristic for the mean-field theory
of the extended Bose-Hubbard model with nearest-neighbor
repulsion, where the interaction takes the form V

∑
〈i,j〉 n̂i n̂j

(see Refs. [7–9,37,38]). Here, it was shown that when the
nearest-neighbor interaction V is sufficiently strong, namely,
of the same order of magnitude as the on-site repulsion U , then
it can stabilize a CDW order even inside the SF phase, yielding
alternating MI and CDW insulating lobes whose centers are
shifted by half-integer values of μ/U . This model further
predicts that the CDW insulating lobes are equipped with a
supersolid SS tip regions. On the basis of the equality of
the mean-field theories for Eq. (10) and for the extended
Bose-Hubbard model, their mean-field phase diagrams for
Eq. (10) look as those depicted in Ref. [37]. Nevertheless,
in Eq. (11) the effective nearest-neighbor interactions strength
δ diminishes the on-site repulsion. For δ > U , in particular,
the effective on-site interaction becomes attractive, for which
reason the grand-canonical ensemble becomes invalid. For
fixed particle densities, at small J the phase is CDW with
either the even or the odd sites occupied.

Further insight can be gained in the limit of strong on-site
repulsion (U → ∞), denoted as the limit of hard-core bosons.
In this limit n can only be 0 or 1. Then via the identification
â
†
i = Ŝ

†
i = Ŝx

i + iŜ
y

i and n̂i = Ŝz
i + 1/2 (Ŝx

i ,Ŝ
y

i ,Ŝz
i the spin-

1/2 operators) the Hamiltonian (10) maps onto the spin-1/2
Hamiltonian

Ĥspin = −t
∑
〈i,j〉

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

) − h
∑

i

Ŝz
i − δ

L2
M̂2

stagg,

(12)

where h = μ − δ/2, t = 2J , and M̂stagg = (
∑

i,even Ŝz
i −∑

i,odd Ŝz
i ) is the total staggered magnetization of the square

lattice and thus the order parameter for Néel (i.e., antifer-
romagnetic) long-range order of the spin system. Thus, in
the hard-core limit the cavity-mediated long-range interaction
is identical to a mean field and thus maximally long-ranged
antiferromagnetic (AFM) interaction among the spins’ z com-
ponent. The hopping term in (10), on the other hand, translates
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into a ferromagnetic (FM) short-range interaction in the spins
XY plane. Thus CDW or SF order in the bosonic system is
equivalent to AFM-z or FM-xy order in the spin system. A
supersolid phase then corresponds to simultaneous AFM spin
order in the z direction and FM spin order in the xy plane. Both
types of order can, in principle, coexist in magnetic systems,
as, for instance, in the fully symmetric Heisenberg model [39].

B. Phase diagram

We now analyze the predictions of the LMF with SF
cluster analysis for Hamiltonian (5). Figure 2(a) displays the
μ-J phase diagram for λ = λ0, where we labeled the phases
according to the criteria listed in the left Table I. Besides the
MI and the SF phases, we observe the appearance of a charge-
density wave (CDW) and a supersolid phase at fractional
densities. As visible in subplot (b), these phases correspond to
a nonvanishing intracavity photon number (〈�̂〉 �= 0), such that
the cavity field is maximum in the CDW phase, at sufficiently
small hopping rates, and it gradually decreases to zero as J

increases (and thus the density modulation decreases) in the
SS phase. By changing μ and/or J the CDW has a direct
transition to either a MI, a SF, or a SS phase. Here, the chemical
potential is shifted by the on-site energy εi , which depends on

the density. Moreover, we take into full account the density
dependence of δ, which determines the unusual behavior of
the quasiparticle (quasihole) branch as J/U → 0.

Inspection of subplot (c), depicting the contour plot of
the mean density, shows that the transition between CDW
and MI or SF is associated with a jump in the value of
the mean density, while the CDW and SS phases occur for
the same value of the mean density and particularly for
n̄ = 1/2 and n̄ = 3/2. Indeed, for the chosen parameters these
densities [as well as all other fractional densities (2 + 1)/2
not shown in the plot] allow for the buildup of a Bragg
structure. (The corresponding Bragg-ordered region decreases
as  increases since for larger densities the on-site interaction
makes them energetically unstable.) In the CDW and for
n̄ = 1/2 a filled site is surrounded by empty sites, giving rise
to a checkerboard structure. Using the notation introduced in
Ref. [24], the occupation of any pair of nearest neighbors
can be symbolized by the vector (1,0), whose entries give
the occupations of the two neighboring sites. For n̄ = 3/2 the
checkerboard structure is instead (2,1). Thus, for the chosen
strength of the long-range interacting potential Bragg order
can only occur at fractional densities and can coexist with
SF off-diagonal order. This result is in agreement with the
supersolidity revealed at the Dicke phase transition [11,12].

FIG. 2. Phase diagram in the J -μ plane evaluated from Eq. (5) using LMF with cluster analysis when the atoms are trapped in squared
lattice with interparticle distance a = λ0/2 and interacting with a cavity field along the z direction with λ = λ0. Here, the chemical potential is
shifted by the on-site energy V1Y , with Y = Y i

x given in Eq. (2). (a) Classification of the phases according to Table I. The red lines separate the
incompressible from the compressible phases, the black lines the regions with Bragg order from the ones where the intracavity field vanishes
(see Table I). (b) Contour plot of the expectation value of operator �̂ and (c) of the mean atomic density as a function of μ/U and J/U . The
lattice is composed by K = 100 × 100 sites with periodic boundary conditions. Subplots (d) and (e) display the density distribution in the
lattice in the SS and in the CDW phase, respectively. See Sec. II C for the other parameters.
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It is also interesting to compare this phase diagram with
the one obtained when the atoms are solely trapped by
the potential they scatter. In this case one also observes a
transition from SF to SS, followed by CDW at fractional
densities n̄ = 1/2,3/2,... Between these phases there is a
gap of values of the chemical potential, where the phase
remains SS [15]. Figure 2(a) shows that, in the presence of
an external commensurate potential and at small J , the phases
at fractional densities remain CDW while within the gaps the
phase is MI.

We comment that if the strength of the long-range inter-
action is increased with respect to the on-site repulsion, thus
when δ/U is sufficiently large, other types of checkerboard
structures can appear at commensurate and other fractional
densities. For instance, at n̄ = 1 a Bragg structure can appear
with occupation (2,0), for an n̄ = 3/2 checkerboard with the
occupation (3,0) [24]. The parameter choice we have made
in this work is such that the on-site repulsion dominates;
therefore only the fractional densities n̄ = (2 + 1)/2 favor
the formation of stable CDW phases.

For the same value of δ/U we have further analyzed the
phase diagrams for other commensurate ratios λ0/λ, focusing
on the values λ0/λ =  with  integer. We identify two classes
of behavior: For  odd the phase diagram has an analogous
form to the one of Fig. 2, showing CDW phases with a SS tip
at the fractional densities, for which Bragg gratings can form.
The value of  even is particular, since for this choice the
MI is a Bragg grating. Therefore, the phase diagram exhibits
MI and SF phases and all over the phase diagram the number
of intracavity photons is different from zero: it is larger at
small tunneling, when the density modulation is larger, and it
increases with the on-site density, thus with μ.

IV. INCOMMENSURATE WAVELENGTHS

We now consider the case when λ and λ0 are incom-
mensurate, so that the resulting Hamiltonian is aperiodic and∑

j Zj/K 
 0. The calculations we present are for the choice
λ = λ0(1 − ε), where ελ 
 0.05. This specific case has been
analyzed by some of us in Ref. [18] in one dimension, where
we predicted, besides the MI and SF phases, the appearance
of BG phases where the atomic density is quasiperiodically
modulated, so as to allow for coherent scattering into the cavity.
In two dimensions mean-field analysis identified relatively
large regions of the phase diagram, where the phase is SS.
This structural quasiperiodic order, in fact, is a Bragg grating
which maximizes the cavity-induced long-range interaction:
the on-site density 〈n̂i〉 oscillates at the beating wave number
k0 − k, such that when convoluted with the amplitude Zi it
gives rise to a nonvanishing value of 〈�̂〉 and thus of the field.
Being the Hamiltonian aperiodic, the resulting phases exhibit
the features of a glass.

In this section we analyze the resulting phase diagram in two
dimensions by means of the LMF with SF cluster analysis for
the Hamiltonian (5). Figure 3(a) displays the phase diagram
in the J -μ plane, which we have restricted to the region of
parameters where the on-site density is between 0 and unity.
The parameter region where Bragg order is found is delimited
by the black line: within this border the intracavity photon
number is nonvanishing [see subplot (b)]. This region exhibits

a rich number of phases, which we classify as BG, SS, and SGz.
The BG phase is vertically separated by a SGz phase, which
persists also at vanishing tunneling J . The SGz phase, in turn,
is almost vertically splitted into two regions by the tip of the
SS phase, which then broadens as J is increased and becomes
a SF phase at the black line, where the intracavity photon
number vanishes. Comparison with subplot (c), displaying the
corresponding mean atomic density, shows that the intracavity
photon number is maximum about n̄ = 0.5, which is the value
where the CDW is formed in the commensurate case. We
further observe that at sufficiently low J there seems to be
a direct transition between the MI and BG phase, analogous
to the direct transition from MI to CDW in the commensurate
case. Differing from the commensurate case, the density within
the BG phase varies continuously with μ, the phase being
compressible.

The details of the density distribution give further insight.
In the region where the intracavity photon number vanishes,
the MI and the SF phases are separated by the SFz phase.
This phase is characterized by SF stripes along z induced by
the transversal standing-wave laser, which is incommensurate
with the confining potential. The density distribution is shown
in subplot (d); the stripes are quasiperiodic along the laser
propagation direction (x axis). Moving along a line at constant
density with 1 > n̄ > 0.9 towards J → 0, the phase remains
always SFz. At lower values of the densities, 0.9 > n̄ > 0.4,
the SFz has a transition to a SGz phase, namely, the SF
stripes start to shrink while the density becomes modulated,
exhibiting Bragg order, as shown in subplot (f). Further
decreasing J shrinks the width of the SF stripes until they
all split up into isolated islands, as visible in subplot (e). This
signals the BG phase.

For densities n̄ ∼ 0.4 the phase is SG down to zero
tunneling; the structure is shown in subplot (g). This density
separates two BG regions with different features of the
structure form factor, corresponding to the two different
patterns one can form so as to match Bragg order. Roughly
speaking, the patterns in the upper BG lobe correspond to
those of the lower one by substituting particles with holes.
The density separating the two regions cannot match both
conditions simultaneously, unless particles can percolate along
one direction, which could be a reason why the phase is SGz

down to zero tunneling. A similar behavior is observed for the
SS region. This region separates two SGz regions which are
qualitatively different. In this case, this becomes visible in the
SF cluster analysis by the structure of the patterns of MI and SF
clusters. In both cases the different phases are signaled by the
appearance or disappearance of an additional component of
the structure form factor. Differing from the one-dimensional
case of Ref. [18], thus, the formation of an intracavity field
sustains a variety of phases which can exhibit superfluidity.
In addition to the MF study of Ref. [18], moreover, the LMF
with SF cluster analysis further reveals that the self-organized
phase exhibits different orders, such as SGz and SG, and also
qualitatively different patterns. The on-site repulsion plays
an important role, setting an additional constrain to achieving
the Bragg order, and can force the system to remain a SG.

We have further analyzed the form of the phase diagram
for different incommensurate cases taking λ = λ0/ + ελ. For
 odd, the phase diagram presents the same phases as for
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(d) (e) (f) (g)

FIG. 3. (a) Phase diagram in the J -μ plane evaluated from Eq. (5) using LMF with SF cluster analysis when the atoms are trapped in a
squared lattice with interparticle distance a = λ0/2 and interacting with a cavity field along the z direction with λ = λ0(1 − ε) with ε 
 0.05.
(a) Classification of the phases (according to Table I), (b) contour plot of 〈�̂〉 (b) and (c) of the atomic density n̄. In (a) the border of the
MI region (blue dots) marks the appearance of SF sites. The border of the BG region (red, dots) marks the percolation of the SF cluster.
The black line delimits the region where the intracavity field is nonvanishing and the atomic density modulation exhibits quasiperiodic order
supporting Bragg scattering into the cavity. The black crosses, which are labeled with the circled letters, mark the points chosen in (d)–(g) for
showing the local boson occupation number 〈n̂i〉 across the lattice. The points correspond to the parameters (d) J/U = 0.0194, μ/U = 0.378,
(e) J/U = 0.0134, μ/U = 0.198, (f) J/U = 0.0296, μ/U = 0.198, and (g) J/U = 0.0002, μ/U = 0.02.

 = 1; the main difference is in the fractional densities which
constrain the formation of a BG phase. For  even we also
observe the formation of BG phases at the border of the MI
phase, which then become SG at the interface. The system
tends to be Bragg ordered structured at low densities. In
general, this behavior shows that the long-range interaction
favors the formation of quasiperiodic structures supporting
scattering into the cavity mode.

V. CONCLUSION

To conclude, we have used the local mean-field approach
with SF cluster analysis to calculate the phase diagrams for
the extended Bose-Hubbard model with cavity-mediated
long-range interactions. When the cavity wavelength λ is
commensurate with that of the external periodic potential
λ0, the phase diagram is similar to the phase diagram of
the extended Bose-Hubbard model with repulsive nearest-
neighbor interactions. For λ = λ0, in particular, it exhibits MI
lobes around half-integer values of the ratio between chemical
potential and on-site repulsion, μ/U , and incompressible
CDW checkerboard lobes around integer values. Each tip

of the CDW lobes is covered with a small supersolid (SS)
region. We expect the phase diagram to be qualitatively
identical in the experimental two-dimensional setup, sketched
in Fig. 1, and also for higher dimensions (d > 2). In one space
dimension LMF is a rather crude approximation, but still we
expect similar features of the phase diagram to occur [7,8,10].

In the incommensurate case, for λ = λ0(1 − ε) with ε � 1
our LMF calculation combined with a SF cluster analy-
sis [29,35] reveals a much richer phase diagram than predicted
by conventional mean-field theory [18]. In addition to MI, SFz,
and SF phases, we could identify also an isotropic and striped
superglass phase, which is characterized by an aperiodic
(glassy) density modulation and isotropic or striped superfluid
(off-diagonal) order. The striped SG regions are characterized
by superfluid stripes in z direction, implying off-diagonal order
(i.e., phase coherence) along these stripes. In an experimental
setup, such as the one of Ref. [11], one would expect an
exponentially small overlap between the wave function of the
different stripes leading to extremely small but nonvanishing
phase coherence also in the perpendicular direction.

We note that similar striped superfluid phases have
also been identified in the extended Bose-Hubbard model
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with nearest- and next-nearest-neighbor repulsion [7,8].
Moreover, we expect that SG phase shall also occur in the
two-dimensional Bose-Hubbard model with an aperiodically
modulated chemical potential, when the modulation wave
vector is only slightly different from the lattice constant.

We finally remark that, even though superior to a con-
ventional MF approach, the LMF method underestimates the
effect of quantum fluctuations that can change the critical
properties, as is well known in the disordered case [40–46].
Therefore it would be desirable to check our predictions for

the commensurate as well as for the incommensurate case by
means of quantum Monte Carlo simulations.
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