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Abstract

The dynamics of strongly disordered systems becomes extremely slow or

glassy at low temperatures, which results in a characteristic aging scenario.

This means that the outcome of measurements strongly depends on the history

of the system within the glassy phase, even on macroscopic time scale like

hours, weeks or years. This area of non-equilibrium dynamics in disordered

systems became recently a major focus of research interest, in particular with

respect to spin glasses and related systems. Here we give an overview on these

activities with a focus on Monte Carlo studies.
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I. INTRODUCTION

The physics of strongly disordered systems has been a focal point of research by experi-

mentalists and theoreticians in recent years. Among the most studied materials/models in

this category are magnetic systems with impurities and especially spin glasses1,2. However,

their glassy features observed in experiments as well as the theoretical problems occurring in

spin glass models are also encountered in various different situations: So for instance in the

context of structural glasses3, manifolds (e.g. polymers) in random media4, protein folding5,

dirty superconductors6, charge–density–wave systems with impurities7 and also other areas

like neural networks, population dynamics, immunology and biological evolution8.

Much of the theoretical effort has concentrated on the existence and characterization

of an equilibrium phase transition in spin glass models. Here much progress has been

made, although some questions still await a final answer2. An at least equally fascinating

subject, for which theory is even harder, is the description of its non-equilibrium dynamics.

Experimentally this is the predominant scenario one has to deal with, since equilibration of

a spin glass is nearly impossible on laboratory time scales. A major part of glassy dynamics

takes place out of equilibrium and a characteristic feature of it is what one calls aging.

This has been first observed by experimentalists 10 years ago9 and denotes the striking

dependence of e.g. magnetization measurements in spin glasses on the history (or age) of

the system within the frozen phase.

A huge number of experimental investigations of this phenomenon has been performed

since then10–12 and it turned out that it occurs quite commonly in all different kinds of spin

glass materials and can also be observed in other disordered substances like in amorphous

polymers13, high–Tc superconductors14 or in charge-density-wave systems15. Furthermore

it does not depend on the existence of an equilibrium phase transition, for instance also

two-dimensional spin glasses exhibit aging16. We will argue below that it is a characteristic

feature of any disordered or amorphous system with a broad distribution of relaxation times

and is therefore observable also in the various contexts mentioned above.

On the theoretical side the aging phenomenon in spin glasses has attracted ever increasing

interest in recent years. Due to its extreme mathematical difficulties it was not possible up to

now to formulate a microscopic theory for the non-equilibrium dynamics of finite dimensional

spin glasses. Only very recently progress has been made in the analytic treatment of aging

in mean-field models of Ising spin glasses17 and simplified or toy models18. However, it has

not been possible yet to make quantitative predictions that would render a comparison with

experiments possible. More successful in this respect are phenomenological theories like the

droplet model by Fisher and Huse19 and the domain theory by Koper and Hilhorst20.

Therefore numerical studies play a decisive role in discriminating between various predic-
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tions of the existing phenomenological models. As is well known in a Monte-Carlo simulation

one can obtain much more detailed information about the dynamical processes and the spa-

tial correlations in the system under consideration. Moreover with increasing computer

power one might even be able to come close to the macroscopic time scales that are rele-

vant in real experiments. Much progress has been obtained recently and in this paper we

intend to give an overview on our recent numerical studies on aging in spin glasses and other

strongly disordered systems.

II. AGING IN SPIN GLASSES

The first observation that one makes by dealing with spin glasses and related systems is

that their dynamics is extremely slow at low temperatures and that for instance equilibration

cannot be achieved any more on laboratory time scales. This is a disadvantage only as

long as one is solely interested in equilibrium quantities, but it becomes a very fascinating

subject for investigation as soon as one gives up the pretension to explore this regime that

is an unnatural form of existence for glassy materials anyway: they are typically out of

equilibrium. In this sense aging is just another word for non-equilibrium dynamics and means

that the outcome of any experiment that is done with the system under consideration will

depend on the procedures one has applied to it at former times.

Supposed one is interested in the functional form of the time-dependence of some observ-

able O(t), where the point t = 0 is chosen deliberately and defines a separation between the

beginning of the observation and the system’s former history in the glassy phase of duration

tw, the waiting time or the time for which the system has aged. Experimentalists usually

apply after this particular time a change in a field Ô that is conjugate to the observable

O so that O(t) is essentially the response of the system to this field change. Instead one

might also measure (e.g. in Monte-Carlo simulations) the corresponding correlation function

O(t)O(t+ tw), which would even contain the same information via the fluctuation dissipa-

tion theorem provided equilibrium conditions would hold. Note that one is not interested

in this information per se, but only in the characteristic aging scenario where O(t) depends

on the whole functional form Ô(tw) even for macroscopically large waiting times tw of the

order of hours, weeks or even years.

To be concrete let us consider the Edwards-Anderson (EA) model of an Ising spin glass

in three dimensions, which (most probably)1,2 has a phase transition into a spin glass phase

at some finite temperature:

H = −
∑

〈ij〉
JijSiSj . (1)
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The Ising spins Si = ±1 are put on a simple cubic lattice of linear dimension L with

periodic boundary conditions. The interaction strengths Jij are quenched random variable

obeying a Gaussian distribution with zero mean and variance one, the spin glass transition

temperature is Tg ≈ 0.91. Usually we are interested in a stochastic, microscopic, single-spin-

flip dynamics that is non-conservative in energy and magnetization, modelling the coupling

of the magnetic moments in real spin glasses to a heat-bath representing the lattice phonons.

Hence we choose the so-called heat-bath algorithm, which flips single spins with a probability

w(Si → −Si) = min{1, exp(∆Ei/T )}, ∆Ei being the energy difference H(Si) − H(−Si)
between the old and the new configuration. However, the results will not depend significantly

on this choice, as we have checked explicitly.

The quantity that convincingly demonstrates the aging phenomena and which is best

accessible for a quantitative analysis in numerical simulations is the spin autocorrelation

function

C(t, tw) =
1

N

∑

i

[〈Si(t+ tw)Si(tw)〉]av , (2)

where for instance S(tw) is the configuration of the system after the waiting time tw and

time is measured in number of Monte-Carlo sweeps through the whole lattice. The angular

brackets indicate the average over different initial conditions and [· · ·]av mean the disorder

average. Note that as mentioned before in experiments usually the corresponding response

function, i.e. the thermo-remanent magnetization decay after a field change at time tw is

measured. In fig. 1 the result for one particular temperature (in the spin glass phase) is

shown in a log-log plot. Several characteristic features can be read off immediately, like the

a crossover from a slow quasi-equilibrium decay for t� tw to a faster non-equilibrium decay

for t� tw and the functional form of these decays being algebraic rather than logarithmic,

which can be subsumed in the scaling formula21,22

C(t, tw) = t−x(T )ΦT (t/tw) , (3)

with ΦT (y) = cT for y = 0 and ΦT (y) ∝ yx(T )−λ(T ) for y → ∞. The most impor-

tant observation is the t/tw scaling behavior, in contrast to e.g. the prediction C(t, tw) ∼
(ln t)−θ/ψΦ̃{ln(t/τ )/ ln(tw/τ )} by the droplet theory19. Nevertheless we think that the do-

main growth or coarsening picture of the latter theory is appropriate: for the length and

time scales under consideration only a basic scaling assumption has to be modified in order

to be consistent with the result (3), see2,21,22 for details.

The domain growth taking place during the waiting time tw can be studied in a straight-

forward manner within Monte-Carlo simulations by calculating the spatial correlation func-

tion G(r, tw) = [〈Si(tw)Si+r(tw)〉2]av. From this one can extract the correlation length ξ(tw)
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either with the help of the expected scaling form G(r, tw) ∼ g̃(r/ξ(tw)) or via the integral

ξ(tw) = 2
∫
dr G(r, tw). In fig. 2 the waiting time dependence of this correlation length for

a particular temperature is shown in a log-log plot. It turns out22 that a fit of the waiting

time dependence of this correlation length to an algebraic growth law ξ(tw) ∼ tα(T )
w works

very well22, which is consistent with the asymptotic algebraic decay of the autocorrelation

function C(t, tw) and its t/tw-scaling behavior.

In addition to waiting time experiments described above also other procedures (in terms

of the function Ô(tw) mentioned in the first paragraph of this section) have been applied ex-

perimentally. For instance so-called temperature cycling experiments, which consist of two

temperature changes during the time in which the material is aged in the spin glass phase:

either a short heat pulse is applied to the spin glass during the waiting time after which

the relaxation of e.g. the thermo-remanent magnetization is measured, or a short negative

temperature cycle is performed, which is the same as a heat pulse but with a negative tem-

perature shift during the pulse. It has been pointed out that this kind of experiments can

discriminate between the droplet picture19 and the hierarchical picture10. The interpretation

of the experimental situation is still controversial11,12 and as long as numerical simulations

follow exactly the lines of the experiments the outcome is pretty similar23,24, meaning in-

conclusive. However, in numerical studies one has a much broader spectrum of quantities

that can be analyzed and in22 the overlap-correlation function [〈SiSi+r〉T 〈SiSi+r〉T±∆T ]av was

calculated explicitely. Here no indication of the existence of an overlap-length, which is one

of the underlying concepts of the droplet theory, could be found.

Finally it should be noted that the microscopic theory for the off-equilibrium dynamics

of mean field models of spin glasses has been pushed forward recently17. The mathematical

difficulties for an analytically exact solution of the dynamical off-equilibrium mean field

equations for e.g. the SK-model come from the lack of the fluctuation-dissipation theorem

(FDT) that relates autocorrelation and response function. The new approaches circumvent

this by considering a so-called fluctuation-dissipation ratio defined via

x(t, t′) =
r(t, t′)

β∂C(t, t′)/∂t′
(4)

and postulating a particular set of properties for this function x(t, t′) in various asymp-

totic limits, essentially setting up an ”ultrametric” for timescales. In this way Parisi’s static,

equilibrium (!) order parameter function q(x) finds its counter-part in off-equilibrium dy-

namics. This scenario has been checked in numerically in three dimensions25. Indeed a

nontrivial function x(q) was found (the validity of the FDT-theorem would imply simply

x(q) = 1) and it seems that these concept might also be applicable in finite dimensions.
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III. INTERRUPTED AGING

Two-dimensional spin glass models do not have a spin glass transition at a finite temper-

ature. This means that the equilibrium correlation length ξeq = limtw→∞ ξ(tw) (where ξ(tw)

is defined in the last section) stays finite if T > 0. Moreover there is a finite, but very large,

equilibration time τeq characterized by ξ(tw) ∼ ξeq for tw ≥ τeq. In terms of a coarsening

picture this means that after a temperature quench domains will steadily grow for a some

time and aging in the sense described above will persist. However, as soon as the waiting

time reaches the order of τeq the system is equilibrated and aging is interrupted.

Monte-Carlo simulations of the two-dimensional EA-model of an Ising spin glass (iden-

tical to (1) but on a square lattice) indeed confirm this picture of interrupted aging26. In

fig. 3 the autocorrelation function (2) is shown for different temperatures. Here it is nicely

demonstrated that for higher temperatures the system reaches equilibrium and the differ-

ent curves for C(t, tw) collapse onto a single curve Ceq(t) for waiting times large than the

equilibration time τeq. For lower temperatures the figure becomes indistinguishable from

the three dimensional case, fig. 1, which is a consequence of the fact that the equilibration

cannot take place any more on time scales that are accessible. This is also the situation that

is reported in experiments on two-dimensional spin glasses16. Moreover, it can be shown26

that for these temperatures the correlation length grows algebraically with a temperature

dependent exponent, similar to the three-dimensional case. At higher temperatures the

domain growth saturates at some finite correlation length as expected.

Up to now only frustrated systems were considered, however, glassy dynamics and aging

also occurs in non-frustrated systems. We studied the non-equilibrium dynamics and domain

growth in the random Ising chain27

H = −
L∑

i=1

JiSiSi+1 , (5)

with random ferromagnetic bonds Ji (note that the distribution does not need to be

confined to positive couplings since their sign can be removed by a simple gauge transfor-

mation). Although this system does not have any frustration a typical (interrupted) aging

scenario at low temperatures can be observed. A broad distribution of (free) energy barriers

results in a very slow domain growth results. The latter can easily be studied in this context,

since domains are simply ferromagnetically ordered segments of the chain.
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IV. NON-CONVENTIONAL AGING

From what has been said in the last section in might occur that only a very few ingre-

diences might be necessary in order to observe aging at least over some time scale. Indeed

aging becomes manifest already in the ferromagnetic Ising chain H = −J ∑i SiSi+1 at zero

temperature27, where the dynamics is simply described by kink diffusion and annihilation.

In particular the autocorrelation function C(t, tw) scales with t/tw as observed in many other

models with and without disorder or frustration, too. However, this is not the only possible

scenario one can think of and some systems show deviations from this t/tw scaling, which

we call non-conventional aging. For instance it is also possible that after the temperature

quench the system gets trapped in narrow (free) energy minima of a particular depth in

such a way that contiuous domain growth (or steady equilibration) is not possible any more.

In this way, very reminiscent of the structural glass transition, the system is frozen into an

amorphous metastable state for an astronomically long time.

To illustrate this sort of behavior we studied a very simple spin model without any

frustration or disorder that possesses many glass like features at low temperatures. It is

defined by the following p-spin interaction Hamiltonian for Ising spins on a chain28

H = −J
L∑

i=1

SiSi+1 · · · Si+p−1 . (6)

For simplicity we consider the case p = 3. The groundstate of this system has a 4–

fold degeneracy (in general 2p−1). Introducing a local energy-variable τi = Si−1SiSi+1 all

groundstate configurations are described by τi = +1 for all sites i. Consider a configuration

in τ and S variables

(τ ) · · · + + + + + + + + + ++ − + + + + + + + + + + + + + + + · · ·

(S) · · · + + + + + + + + + ++ + −−+−−+−−+−−+−−+ · · ·

i

(7)

which consists of two domains, both being in a minimum energy configuration, separated

by a domain wall located at site i. It costs an energy of 2J to move the domain wall at

position i to the right or left, thus the system is frozen into such a metastable configuration

for a time tfreeze ≈ exp(2J/T ). Moreover, it can be shown that all configurations of the type

(7) consisting (expressed in τ -variables) of strings of arbitrary length l ≥ 2 with τ = +1

separated by isolated sites with τ = −1 are indeed metastable. In a chain of length L

an exponentially large number nstable ∼ L1.4655 of these configurations exist. Starting with

a random initial state the sequential update procedure at zero temperature will drive the

system into one of this exponentially large number of metastable states within only two

7



sweeps through the whole chain. Thus after 2t0, where t0 is the microscopic time scale, the

system will be frozen for a time tfreeze = t0 exp(2J/T ). This can be seen for instance by

looking at the waiting time depends of the average domain size, which enters a plateau at a

small value (which can be calculated exactly to be 5.775 lattice spacings28) after two time

steps that extends to infinity for T → 0 as is shown in fig. 4.

As mentioned before this is an extremely simplified model with one single characteristic

energy barrier that prevents the the system from relaxing into its equilibrium configuration

for an exponentially large time. By allowing the interaction strengths to vary spatially and

arranging them for instance in a hierarchical way one generates spatially varying energy

barriers and a broad distribution of exponentially large trapping times. On the other hand

it is possible to generalize this model to higher dimensions. In this case even a true equilib-

rium phase transition is possible and a closer contact to the physics of the structural glass

transition might become feasible.

V. SUMMARY

As we have seen the non-equilibrium dynamics of strongly disordered systems is a very

fascinating subject. Experimentally as well as numerically one is confined to rather restricted

time and length scales for which a complete theory is still missing (although some progress

has been announced29). Aging does not only occur in frustrated systems, as has been

demonstrated in the random bond Ising chain, and can even be observed in systems without

any disorder. Most systems show an aging behavior in which spin autocorrelations scale

with t/tw and the domain growth depends algebraically on the waiting time tw. However

also other scenarios are possible and models are currently under investigation that are very

reminiscent of the structural glass transition.
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performed within the SFB 341 Köln–Aachen–Jülich.
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FIG. 1. Autocorrelation function C(t, tw) for the EA-spin glass model in three dimensions as

a function of time t for tw = 5n (n = 1, . . . , 8) at T = 0.6. The system size is L = 24 and the

disorder average was performed over 256 samples.
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FIG. 2. Waiting time dependence of the correlation length ξ(tw) in three dimensions for

different temperatures. The straight lines are least square fits to an algebraic growth law

ξ(tw) ∼ t
α(T )
w with the exponent α(T ) varying approximately linear between α(T = 0.2) = 0.026

and α(T = 0.7) = 0.081.
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FIG. 3. Autocorrelation function C(t, tw) for the EA-spin glass model in two dimensions as a

function of time t for tw = 5n (n = 1, . . . , 8) at T = 1.0 and 0.8, (n = 2, . . . , 8) at 0.6 and 0.2. The

system size is L = 100 and the disorder average was performed over 256 samples. The errorbars

are smaller than the symbols.
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FIG. 4. Average domain size in dependence of the waiting time t of the Ising chain with 3-spin

interactions (6) for various temperatures calculated via Monte-Carlo simulation of a system with

106 spins. The intermediate growth (between melting of the frozen domains and final saturation

by equilibration) can be fitted nicely to d(t) ∼ t1/2 (solid line).
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