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Ising spin models with multisite interactions are investigated on pure Husimi trees, which is an analo-
gon to the Bethe approximation for these models in finite dimensions. The interaction strengths are
quenched random variables and mean-field theory predicts a spin-glass transition from a paramagnetic
phase to a spin-glass phase with nonvanishing Edwards-Anderson order parameter. We invesigate
different kinds of distribution for the interactions at zero temperature as well as at nonvanishing temper-
ature and the effect of external fields. We show that on the Husimi tree the mean-field scenario does not
take place for small coordination numbers, not even at zero temperature, although frustration is present
after fixing the boundary spins. This result concurs with the observations made by looking at several
random multisite interaction models in two-dimensional lattices. In the limit of infinite coordination
number the (replica-symmetric) mean-field result is recovered.

I. INTRODUCTION

Since Baxter’s solution of the eight-vertex model,' Is-
ing models with multisite interaction have gained increas-
ing interest. Several of them could be solved exactly in
two dimensions,> and in three dimensions they show
unusual features, such as first-order phase transitions
even within an external field.> The investigation of
mean-field (or infinite-range) models with p-spin interac-
tions that are quenched random variables led to the
discovery of the only nontrivial spin-glass model that is
exactly solvable in the thermodynamic limit: the random
energy model, which is the p — o limit of the p-spin in-
teraction spin glass.*

In addition, these spin-glass models show an interest-
ing phase transition scenario that is different from the
usual (p =2) Sherrington-Kirkpatrick (SK) model. The
Edwards-Anderson (EA) order parameter jumps discon-
tinuously to a nonvanishing value when crossing a tem-
perature T, from above. Nevertheless, thermodynamic
quantities are continuous since they involve only integrals
over the Parisi order-parameter functions gq(x).> Fur-
thermore, it was possible to show that this equilibrium
phase transition is preceded by a dynamical freezing tran-
sition at a temperature T, > T, where the correlations do
not decay to zero on finite time scales.® There is a close
analogy to structural glass transitions,” and indeed the
mathematical structure of the effective equations describ-
ing the dynamical behavior of the spin-autocorrelation
function are similar to those considered in mode coupling
theories of the structural glass transition.®

So far much is known about the infinite-range version
of these multisite interaction spin models with quenched
disorder, but nothing about their counterparts in finite di-
mensions, especially two or three. In another publication
we addressed the question of how to achieve a nontrivial
realization of these models on regular lattices.’ In this
paper we consider models with random p-spin interac-
tions among spins on a pure Husimi tree,'® which is a
natural generalization of the Bethe approximation for

45

usual two-spin interaction models to the models with
multisite interactions. As in the former case, one expects
this approximation to be a useful alternative to the
mean-field approximation, if one is interested in the be-
havior of finite dimensional systems with short-range in-
teractions.!! 7! Indeed it is found that, in contrast to the
spin glass on the Bethe lattice, the Husimi tree does not
have a spin-glass transition as long as the coordination
number is small—reminiscent of the absence of such a
transition in several two-dimensional random multisite
interaction models.’

The outline of the paper is as follows. First we define
the construction of the Husmi tree and derive recursion
relations for the random fields acting upon the spins after
performing a partial trace over the outer branches at-
tached to it. Then we consider several special cases with
small coordination numbers and show that a spin-glass
transition is absent. In the succeeding section we demon-
strate how the mean-field secenario is recovered in the
limit of infinite coordination number. Finally we discuss
our results, put them into a more general context—
especially with respect to Potts glasses—and address
some open questions.

II. THE MODEL AND RECURSION RELATIONS

A pure Husimi tree is constructed in the following
way: We start with a polygon of p vertices, with one Ising
spin located at each vertex. This is the first-generation
branch and one of the spins is called the base spin o, of
the first-generation branch. All p spins interact via a sin-
gle p-spin interaction J, its contribution to the Hamiltoni-
an of the system is —J [] ?=,0}. Figure 1 gives an exam-
ple for p=3.

In the (n+1)-th step one draws a new base polygon
with base spin o, ,; and attaches to each of the remain-
ing p —1 vertices ¢ —1 nth-generation branches—as is
shown in Fig. 1 for ¢ =4. The number g is the coordina-
tion number of the tree, in analogy to the Cayley tree.
Each of the (p —1)(g — 1) nth generation branches has its
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FIG. 1. Construction of the Husimi tree (Ref. 10) for p=3,
g=4. The upper triangle is the first-generation branch with the
base spin at the bottom. The lower part is the second-
generation branch, again with the new base spin at the bottom.
Since the polygons are triangles, the resulting Husimi tree is
also called a cactus (Ref. 10).

own p-spin interaction strength if we deal with the disor-
dered case. The p-spin interaction strength of the base
polygon is a random variable, uncorrelated with the oth-
ers. The probability distribution of the couplings is p(J).
One continues analogously up to the n , th generation
and completes the graph by finally connecting together g
otherwise uncorrelated n.,,th-generation branches at
their base spins.

In this way—apart from the boundary spins—each

|
1 H
PG, )= s S exp |BJ, 110,41 o
b i=1 ‘7,, i=1

N, is a normalization constant [N, =P(+)+P(—
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inner spin is placed simultaneously on the vertex of ¢
different p-gons. Therefore p=4, ¢g=4 should be an ap-
proximation for the square lattice with four-spin interac-
tions among spins on the basic plaquettes; p=3, g=6 cor-
responds to an approximation to the triangle lattice with
three-spin interaction among the spins on basic triangles;
and finally in the three-dimensional fcc lattice with four-
spin interactions among the spins on each elementary
tetrahedron, we have p=4 and ¢=8.

Note that the ratio of the number of boundary spins
N3BS to the number of inner spins NIS at the nth-
generation branch is always greater than 1 for all num-
bers n. This suituation is the same in the case of a Cayley
tree. The Hamiltonian of the Husimi tree is

ZJPOIHUPO1+H201 ) (1)

pol i=1

where the first sum is over all polygons of the tree and
the second sum is over all spins of the tree.

Fixed boundary conditions lead generically to frustra-
tion if the p-spin interactions can take on both signs. We
only consider symmetric distributions of the couplings
p(J)=p(—J) and after a gauge transformation we are left
with only non-negative couplings. In contrast to the
Bethe lattice there is some arbitrariness in the gauge
transformation: Starting with the boundary polygons one
can absorb the sign of their interactions by flipping one of
their p — 1 boundary spins. A boundary configuration of
all spins up does not lead to complete random boundary
conditions since only a fraction of 1(p —1) of the spins
are flipped after the gauge transformation. Therefore we
start with 1 of the spins up, the others down, which is not
altered after the gauge transformation. The resulting dis-
tribution of interactions is then p, (J)=2p(J)0(J).

Now let us connect the probability distribution
P(o, ) for the base spin of a (n +1)-th-generation
branch to the (p —1)(g —1) probability distributions
P oy) (i=1,...,p—1, j=1,...,q—1) nth-
generation branches that are attached to the base po-
lygon. This probability distribution is given by

p—1qg—1

T I 2o . @)

i=1 j=1

)], J, +1 the p-spin interaction strength of the base polygon of the

(n +1)-th branch, and B is the inverse temperature. Note that in the isotropic case—which was investigated recently'>

for p=4, g=4—all P, ;

i are the same (starting with homogeneous initial conditions for the distribution of boundary

spins), but in the disordered case they were random variables, since they depend on the specific realization of the ran-
dom p-spin interactions within the corresponding branches as well as on their random boundary conditions.

The magnetization of the base spin o, , is now given by

H —BH.
eBH_,—B Xn 41 2ﬁﬂp(n—H)(_)

M, —_———— , X =e .
eBH+e—BHxn+1 n+l1 P(n+l)(+)

n+1

(3)

In analogy to the definition of x, ;| one can define this quantity for the (p —1)(g — 1) distributions of the base spins of

the nth-generation branches

xi,j__eZBHP A
§ PI,J(+)

4)



9774

H. RIEGER AND T. R. KIRKPATRICK 45

(where we dropped the index n on the right-hand side); then one gets the relation

pil D exp

i=1 o;

p—1 p—1
—BJlyi1 [1oitBH 3 o
i=1

i=1

i=1

j._

Xnp+17

pi D exp

i=1 o;

p—1 p—1
+BJ, 1 Il oitBH 3 o;
i=1

i=1

i=1 j=1 P

p—1g-1 P,-j(a,»)evBHo’
=1 P j(+)e PH

p—1g-1 Pi-(cr,-)e_BHa" . ®
(+)e PH

ij

It turns out that the quantitity x can be identified with an effective field by

Bh=—1Inx ,
so that
Pi,j(ai )e _BHU,'
TP (1)e pr _ xpBhi;l0; 1)

ij

Therefore [since the factors [ ;; exp(—h; ;) cancel] we have

pil D exp

i=1 o;

i=1 i=1

p—1 p—1
=B, [[o:+8 > (H+h;)o;

Bhn+1=—%ln p—1
> S exp

i=1 o;

i=1 i=1

where h; = ?;llh,-yj. The meaning of 4; and 4, ; is rath-
er obvious: h;; is the contribution of the jth nth-
generation branch attached to the spin o; of the base po-
lygon, altogether resulting in a random field contribution
h; exerted from the higher levels of the branch onto the
spin ;. The effective random field A, ,, of the base spin
can therefore be calculated recursively if the fields stem-
ming from the (p —1)(g —1) nth-generation branches are
known. this means that starting with a given realization
of random fields at the boundary [or equivalently with
certain probability distributions for the boundary spins
themselves, leading via x =e??HP(—)/P(+) to a distri-
bution of the effective fields], one has an iterative process
to calculate the effective field / at the base spin, whose
magnetization is then given by

(O pase) = tanh[B(H +h)] . 9)

If one completes the tree as described above by connect-
ing together g nth-generation branches, the magnetiza-
tion of the central spin is simply given by

q
H+ 3 h;

i=1

(04)= tanh . (10)

B

Suppose now that the probability distribution of the fields
at the boundary is given by the requirement that the
iterative process preserves that contribution; one gets the
following coupled integral equations for this probability
distribution!!:

p—1
P(h= [ TI lg(h;)dh,]
i=1
X(B[h—BAlgﬁl’BH(hl,. ..,hp_ﬁl)])_[ y

(11)

p—1 p—1
+BJ, 1 [1 o:+B 11 (H+h;)o;

) (8)

f

, (12)
j=1

91 91
gth)= [ TI [P(h;;)dh, ;16 |h,— 3 h;;
j=1

where Fg;gy(hy,...,h, ;) is given by the right-hand
side (rhs) of (8) and the angular brackets mean average
over the distribution p(J) of couplings. The Fourier
transforms of g and P are simply connected via (12):
g(k)=[P(k))? ", but unfortunately even integrating out
the & function in (11) leaves us with p —2 integrals on the
rhs of (11). Therefore the work that was done in the case
of the Bethe lattice!! (p =2) cannot be generalized in a
straightforward manner.

III. SMALL COORDINATION NUMBERS

Instead of trying to solve Egs. (11) and (12) numerical-
ly, we take a look at the self-consistency equations for the
moments of the distribution of 4 that occur if we expand
the rhs of (8) in powers of the fields. For simplicity we
consider the case p =3, ¢ =3 and vanishing external field
(H =0). In this case (8) becomes

Wil e cosh(h,+h,)+e P cosh(h,—h,)
=11n i
> e P cosh(h,+hy)+eP cosh(h, —h,)

(13)

where h,=h, +hy, and h,=h, +h,,. Expanding in
the fields one gets

h = tanh(BJ)h h,+ L+ tanh(BJ )(hih, +h h3)

+O(hSh, +hih})

and therefore for the moments (note that 4, and h, are
uncorrelated),
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(h?)=10t,(h?)*+E(h*)
(h*)=4t,(h*)?+(24t,+30t, )X h*){(h?)? (14)
+t,(h2)* 421, (h®)(h?) ,

where t,={( tanh?(BJ));. Neglecting the term with
(h®), one gets only {4%)=0 as a solution, in contrast to
the Bethe lattice, where one has a critical value of ¢,
below which a stable solution {A2)50 occurs.!?> Thus,
assuming a second-order transition, like in the SK model,
one concludes that there is no spin-glass phase. But
mean-field theory predicts a first-order transition, where
the EA order parameter jumps discontinuously at T,
which means that the second moment of the distribution
of internal fields also behaves discontinuously. The above
expansion is one for small fields, and one cannot get in-
formation about a possible first-order transition, since
there is no other small quantity (as, for instance, in a
p =2+ € expansion®).

For zero temperature (13) simplifies to (note that J > 0)

Xmin{J,L[|h+h,+2H|—|h —h,|l} , (15)

where H is again the external field for later reference, but
at the moment H is still zero. We insert the rhs of (15)
for the function B_lgﬁj’ﬁH in (11), but since it is hard to
solve (11) analytically even in this case for a given p(J),
we try to find a distribution p(J), when the distribution of
fields is given.!* For a >0, one gets

[ “dn P(h)

[ Zdrpn= (16)

o0 h °
[ "dn, [ dh,g(hyg(hy)

We tried to obtain a non-negative distribution p(J) for
several functions P(4), but this was not possible. For ex-
ample, P(h)=e ~ 2" Jeads to

[ Zdip=e*(14+a)72, (1n

and hence to a range of J, where p(J) becomes negative.
In what follows we will see that this is a typical result,
since P(h)=©6(h) is the only solution of (15) for different
classes of distributions p(J).

Starting with a randomly chose set of fields at the
boundary (e.g., distributed uniformly or according to a
Gaussian) we iterated (15) numerically with up to eight
levels. This was done up to 10000 times and the second
moment (/4?2) of the resulting distribution of fields at the
base spin was calculated. The results for H =0 are de-
picted in Fig. 2 for different distributions p(J) of the in-
teractions. We see that ( h2) decays to zero with increas-
ing number of levels, the decay rate slightly dependent on
the specific distribution p(J). For comparison we did the
same for the Cayley tree with ¢ =3, in which case the
iteration equation for zero temperature becomes

h=sgn(h,+h,)min{J,|h, +h,|} , (18)

and obtained the expected result that (42) decays to a
nonvanishing limit for increasing number of levels, which
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FIG. 2. Second moment {4?) of the distribution of fields at
the base spin in dependence of the number of levels for zero
temperature and field, p=3, g=3. The distribution of interac-
tions p(J) (before the gauge transformation mentioned in the
text) are: stars for a =1 distribution, diamonds for a uniform
distribution between —2 and +2, triangles for a Guassian dis-
tribution with variance 1.

indicates the spin-glass behavior in the case of the Bethe
lattice. Thus we get the surprising result that on the
Husimi tree (with p =3, g =3) there is no spin glass, al-
though frustration is present. We performed the above
numerical procedure also for higher values of p ( < 6) and
g ( =8), for zero temperature as well as for finite tempera-
ture, using (8). No qualitative differences occur, but it
has to be noted that the number of levels that can be ex-
plored numerically decreases rapidly with increasing p
and g (mainly because of storage problems), which makes
the results less and less reliable.

Furthermore we invesigated the situation in a nonvan-
ishing field. Using (15) (i.e., zero temperature and p =3,
q =3) we obtained results, part of which are depicted in
Fig. 3. Now we get a nonvanishing value of (4?), but to
check whether this is due to a possible spin-glass phase or
due to an ordering along the external field, we iterated
(15) simultaneously for the same realization of interaction
but starting with different boundary conditions,'? result-
ing in two fields i, and h, at the base spins. The case
(h?)70 and (h,h,)=0 would indicate a spin-glass be-
havior, but a look at Fig. 3 shows us that after an inter-
mittency regime both correlations increase to the same
value (h%)={(h,h,)=1 (this is obvious for H >0.5; for
lower values of H we have to extrapolate to higher num-
bers of levels, which we did not explore numerically).
Indeed, P(h)=8(h —1) is a self-consistent solution of (15)
for a +1 distribution of interaction; that means J=1 in
(15). We obtained similar results for other distributions
as well as for higher values of p and ¢. In other words: an
external field leads to a fully magnetized state deeper in-
side a large enough system. This ferromagnetic phase
persists for temperatures below a critical value dependent
on the external field. We leave it as an open quesion,
whether the occuring phase transition to a paramagnetic
phase is then still of first order for a certain range of
external fields (as in the isotropic case!'®) or whether it is
of second order.
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IV. INFINITE COORDNATION NUMBER

To obtain a well-defined ¢ — « limit, one has first (as
in the infinite range models) to rescale the interaction
strengths via J —J /V' g —1. To see how a simplification
occurs, one has to recall the definition of the fields 4; on
the rhs of (13):

qg—1
=3 h,. (19)

j=1

In the limit of infinite coordination number g — o, ac-
J

B(h?)= 2+y

where f(EJ,h,,hz) is given by the rhs of (13), replacing
BJ by BJ and B=B/V'q —1. The paramagnetic solution
({h?)=0) is always possible and if a transition to a non-
vanishing expectation value of the second moment of the
field distribution occurs, then it must be a discontinuous
one, since expanding the rhs of (20) yields

(h?)={(tanh®BJ)) ;(g—1)BHh*)*+0((h?)?)
—BI(h?)2+0((h?)?)
as g — o, with B<<Vg—1. (21)

For simplicity we focused on a *J distribution p(J) and
solved (20) numerically. In fact one finds a nonvanishing
solution for (h?) at T,~0.39J, where (h?)~0.15. The
critical temperature one finds in the mean-field theory (or
infinite-range version) of the p =3 multisite interaction
spin glass within the replica-symmetric theory® (and the
spherical approximation), is 7,=<0.47J, where the

4
Number of levels

FIG. 3. Second moment {(h?) (solid lines) and the correla-
tion (h,h, ) (dotted lines) for zero temperature; H =0.25 (stars)
and H=0.5 (diamonds), and p=3, ¢=3 in case of *1 distribu-
tion of interactions before the gauge transformation.
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cording to the central limit theorem the random field A;
becomes a Gaussian variable with mean square
(g —1){h?), where (h?) is the second moment of the
probability distribution of the random fields. This distri-
bution need not to be a Gaussian, nevertheless, (8) pro-
vides us with a self-consistency equation for its second
moment by replacing the random fields
h;(i=1,2,...,p—1) by Gaussian random variables,
taking the square on both sides of (8) and integrating the
rhs over the p —1 Gaussian random variables. This
yields the expectation value {42). We demonstrate this
idea for the case p =3. One gets then

[ dip()fHB,xBY (h?),yBV (h*)) (20)

Edwards-Anderson order parameter jumps discontinu-
ously to a nonvanishing value.

In mean-field theory the replica-symmetric solution is
unstable, the phase transition temperature is somewhat
different due to replica-symmetry breaking effects and,
furthermore, the equilibrium phase transition is preceded
by a dynamical transition, where spin correlations do not
decay on finite time scales. The fact that we chose a +J
distribution instead of a Gaussian distribution is without
consequence for the comparison with the mean-field re-
sults, since these only depend on the first two cumulants
of the distribution, because of the scaling of the interac-
tions with the system size. With decreasing temperature
(h?) increases monotonically (nearly linear) to (h%)=1
for zero temperature. Whether the system is in the spin-
glass phase indicated by (h2)0 below T, depends on
the variance of the fields at the boundary, which has to be
large enough. The absence of replica-symmetry breaking
effects in our treatment is connected to the choice of un-
correlated boundary conditions.!® It would be interesting
to check how one can recover the mean-field solution
with replica-symmetry breaking in the case of Husimi
trees.

V. DISCUSSION

The most unusual feature of the results we obtained is
the fact that the existence of a spin-glass transition is
dependent on the coordination number of the Husimi
tree. This dependence is completely absent in the Bethe
approximation to the Edwards-Anderson model, which
predicts a spin-glass transition for any coordination num-
ber of the tree. Presumably the degree of frustration in
the Husimi tree is not high enough to lead to a spin-glass
phase for small coordination number and increases for
larger values.

Since this number is proportional to the number of
nearest neighbors (z=pq), it can be interpreted as the
dependence of the existence of the phase transition on the
dimensionality of spin systems with random p-spin in-
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teractions, supposing one accepts the Husimi tree as a re-
liable approximation to these models. Indeed one can
show that in several two-dimensional systems a spin-glass
transition cannot occur, and there are indications from
numerical simulations that, in the (three-dimensional) fcc
lattice with random four-spin interactions among spins
on the elementary tetrahedra, an equilibrium phase tran-
sition is either absent or is preceded by a dynamical tran-
sition, and therefore can hardly be observed in simula-
tions within reasonable computer time.® Up to now it is
an open question whether a finite coordination number g,
exists, above which the mean-field scenario takes place,
or whether g, is infinite. It might be possible to settle
this question by a 1/q expansion. Furthermore, as al-
ready mentioned, the behavior of the system is extremely
sensible to the choice of the boundary conditions.
Throughout this paper we used uncorrelated (but fixed)
boundary conditions. Using correlated (or closed) bound-
ary conditions'® could have some effect on g, and perhaps
even lead to a spin-glass transition for small g.

This problem is of course related to the unknown
upper critical dimension of random multisite interaction
spin-glass models. It is not obvious to formulate a field
theory for these models in finite dimensions, because
there is much arbitrariness (and presumably some sensi-
bility of the theoretical predictions) to the definition of
the p-spin interactions among nearest neighbors.
Furthermore—supposing that one has much a formula-
tion for, e.g., p =3—it is questionable whether the usual
expansion in the order-parameter fields in the vicinity of
the critical point is meaningful, since one would expect a
discontinuous phase transition. Hence one needs a
theory in finite dimensions, where one is able to perform
an analytical continuation to noninteger values of p, so
that a further small parameter, namely e=p —2, becomes
available.

Similiar difficulties are encountered in Potts glasses.
The mean-field results indicate that the p-state Potts glass
(for p>4) and the p-spin interaction spin glasses (for
p >?2) are in the same universality class.® But results for
Potts glasses on the Bethe lattice!” differ from those we
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obtained for p-spin interaction models on Husimi trees,
since the former shows a spin-glass transition analogous
to the mean-field scenario. Therefore it is an important
issue to clarify whether both models are in different
universality classes for finite dimensions, or whether a
range of dimensions exists, where both are still within the
same.

We would like to draw some attention to another
point. In mean-field theory the limit p — « drastically
simplifies the model—it becomes the random energy
model, which can be solved exactly.4 Such a
simplification does not occur on Husimi trees, mainly be-
cause spin-spin correlation functions do not enter the re-
cursion formulas for the field by which we investigate the
system. Therefore it might be desirable to obtain a
different formulation of the problem, perhaps similar to
the one used in the case of the Potts glass on the Bethe
lattice.!’

Concluding, we mention that in this paper we ad-
dressed only the static behavior of the random p-spin in-
teraction models on Husimi trees. An important point,
especially with respect to the dynamical models of the
structural glass transition (see the Introduction), is also
the investigation of the dynamics of these models. One
could, for instance, think of calculating quantities such as
the remanent magnetization with methods successfuly
applied to the spin glass on the Bethe lattice.!® Further-
more, one cannot exclude that these models show a
dynamical phase transition, where relaxation times
diverge, although no equilibrium phase transition occurs.
We will address several of the important issues men-
tioned in this discussion in future work.
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