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The number (N,) of solutions of the equations of Thouless, Anderson, and Palmer for p-spin-
interaction spin glass models is calculated. Below a critical temperature 7, this number becomes
exponentially large, as it is in the Sherrington-Kirkpatrick model (p = 2). But in contrast to this,
for any p > 2 the factor a(T") = N~! In{N,) jumps discontinuously at T.(p), which is consistent with
the discontinuity occurring within the mean-field theory for these models. For zero temperature the
results obtained by Gross and Mézard are reproduced, and for p — oo one gets the result for the

random energy model.

I. INTRODUCTION

The free energy surface of a spin glass! has an ex-
tremely complicated structure, which manifests itself
in the presence of many valleys with high barriers be-
tween them. Below a critical temperature T, the num-
ber of valleys becomes exponentially large and the bar-
riers diverge with system size (at least in the mean-field
limit). The local mean-field equations for the site mag-
netizations, originally written down by Thouless, Ander-
son, and Palmer (TAP) (Ref. 2) in an effort to solve
the Sherrington-Kirkpatrick (SK) model® without using
replicas, give rise to an exponentially large number N; of
solutions below T.. In the case of the SK model it was
shown* that N, o exp[a(T) N], where o(T') increases
very slowly [a(T) « (T — T.)®] below T.. To recover
the Parisi solution® of the SK model one has to attribute
Boltzman weights to each of these solutions before taking
the average over the bond distribution,® since only those
with the lowest free energies contribute significantly to
the thermodynamics.

The spin-glass transition occurring in the mean-field
theory of p-spin-interaction spin glasses” 10 is somewhat
different for p > 2 (for a discussion of finite-dimensional
realizations of these models see Refs. 11 and 12). The
equilibrium phase transition at a temperature Tx man-
ifests itself by a discontinuous jump in the Edwards-
Anderson (EA) order parameter (although the transition
itself is of second order). But already at a higher tem-
perature Ty > Tk a discontinuous dynamical freezing
transition takes place, where spin autocorrelations do not
decay anymore on finite time scales.!®> Within the TAP
approach this means that at Ty an exponentially large
number of solutions has to appear, which are uncorre-
lated and have a higher free energy than the paramag-
netic state — similar to what happens in p-state Potts
glasses with p > 4.14

In this paper we generalize the above-mentioned cal-
culation of Bray and Moore* to the case of p-spin-
interaction spin glasses. We perform a white average,!®
which means that we attribute the same weight to all
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solutions, so one cannot discuss the thermodynamics of
these models on the basis of our calculation. Nevertheless
it will be interesting to observe that the temperature de-
pendence of N,(T') is essentially different for p > 2 from
that of the SK model — in a way that is consistent with a
discontinuous transition. The organization of the paper
is as follows: In Sec. II we formulate the problem and
derive the self—consistency equations, which are solved in
Sec. III, where also the results are presented. Section IV
contains their discussion and two lengthy calculations are
deferred to the appendixes.

II. NUMBER OF TAP SOLUTIONS

The Hamiltonian for p-spin-interaction spin glasses
within the mean-field approximation reads

H=-— Z Jir"ipa‘il . 'a'i,, - Hzai ) (1)
i

1:1<"'<1:p

o;==x1,i=1,...,N and H is an external field. The p-
spin couplings are quenched random variable distributed
according to a Gaussian

1 Jizl...ip Eo) sz!
PO = grgen(-52 ) P i @
Each spin is subject to a local field of strength
1

hi= ——

(p _ 1)' . Z JijZ"’ijjg . 'a'j,, + H. (3)

J25--30p

Hence — in analogy to Ref. 2 — the TAP equations are
1
m; = tanhﬂ(-———(p Y Z JijgeripMiy - =M+ H) )
j21'~~1jp

(4)
with m/, = m;—x;; A, which is the magnetization of site
j minus the Onsager—correction term (or cavity field).
Xj; is the susceptibility of spin j:
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x4 =B(1 - m?) (5) tanh_l(mi) = Z Jija-. 3pMja ** " My,

and Ahj is the field induced at site j by the magnetiza- ]2' e 2
tion of site +ﬂH—wnﬁﬂ) p(p—1)(1 - q)¢*?,
1 7
Ah; =m,;- P Z JijhgekpMkg " Mk, - (6) (7)
(p—2)! karakp where we defined the self-overlap of a paricular TAP so-

lution

Inserting this expression into Eq. (4) yields a rather com- = _IIV Z m? . (8)

plicated structure for the TAP equations with terms up i
to order p in the couplings J;,,...;,. In Appendix A we  One can obtain Eq. (7) by differentiation of the free-
show that neglecting terms of order O(N~!) one gets energy functional f with respect to m;:

om0}

2
_% Z Jigeesip Mg+ M, — @[(p— 1)¢? —pg?~ ' +1]. (9)

11 < <ip

The number of solutions N, of the TAP equations Eq. (7) is given by

N, =N/01dq /ilndmié(Nq—Zm?) Ha(GmdetAl, (10)

where
Gi= g(mi Z JijgejpMiy My, (11)
.72» “Jp
o(my) =tanh~(my) + m BT oo~ 1)1 — )22 — o1, (12)
0G; ﬁ
Aij: am; aib;; — ( — 21 zk Jijks-- kMg ** " Mg, (13)
1 J _
a= ot B 1 - g, (1)

Following Ref. 4 we calculate (N,) — which means the average of Ng over the distribution of the couplings (2) —
and discuss the implication of the fact that one should rather introduce replicas and perform the average In{N,) in
Sec. IV:

= [44 [ 757 e i exp{; srag(ms) +q(Nq—2;m3)} 15)

X <exp{——ﬂ——' Z Jil‘,.jpm,-lmiz e mip }det(4)> . (16)
-1,
1ty
The last factor can be written as
(81 i
(. . > = H exp 4(— (Z mﬂ(il)mr(ig) e mr(i,)) (deté') s (17)
1< <ip x
where ) is a sum over all permutations of p different integers 4y, ...,1i, and
B (8J)%p .
Aij =ai - =2\ . Zk Jijiegkp Mg * + = M, + (p - 2)INP-1T Zk D () () M (ks) * * * M (k) M+~ Mk -
339 Kp 3yeeyKp T
(18)

The first sum yields a Gaussian random variable of order O(1/v/N), whereas the second sum produces three kinds
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of terms: N~ 1(m,m, + mith;)gP~2, N~ (rhim; +m1mj)q” M2, and N~'m;m;q?~3G, where M = N‘lz m; and
G = N71Y, mith;. They are all proportlonal to N~! and can therefore be neglected which implies A’ = A. The
squared sum in Eq. (17) is treated as follows:

DD Py Mnia)

mr(ip) ﬁli]_ miz My

2
=(p- 1)!{N‘°‘1¢1"’"1 D mi+(p—1)NP2gP? (Z 'ﬁlimi) } :
i i

‘i1,...,‘ip ™
. . . . (19)
Using a Hubbard Stratonovig transformation to linearize the squared term we get
N dm;drn; N .
(N,) = C/dy/dqdq/H o exr»{zmig(mf,) + q(Nq - Emf) }
i i
X exp{ pg? ! Z S+ y Z mimh; — Ny® 3 }(det A). (20)
(BJ)2p(p — 1)gP~

In Appendix B we derive an expression for (det A), the above integration will be done by steepest descent (which
becomes exact in the limit N — oco) and we are left with

Ly2 22
(Ng) = Sy 2,46 €xp N| dg — =— + —
A A
+1 (o) dri U N
X / dm/ — exp |ithg(m) — gm® + =¢P 1 (im)? + ymz’rh] (a— z)} , (21)
-1 —o00 2w 2
where S means “saddle point” and u = (8J)%p/2, A = 2u(p—1)¢?~2? and a = (1 — m?)~!
we set the external field H to zero from now on. Introducing the variables used in Ref. 4

B=z—)‘(1_Q)/27

+ (1 — ¢)\/2. For simplicity

(22)
and performing the integration over 7 (which is Gaussian) we get
. — A?
(Ns) =8B,a,q,4€XP N[—qq - (B+A)1-q)+ 3 (p g2 + lnI] , (23)
1 dm 1 [tanh~ (m) — Am]? . ,
I= -1 2mpgr-1 (1 s B) exP{ - 2ugP-t am } ’ (24)

which reduces in the special case p = 2 to Egs. (15)—(17) of Ref. 4. The saddle-point equations again admit the solution
B = 0, which we adopt here. We define o = 1/ugP~1, A = A/o and use the variable substitution x = tanh™!(m)/o
to proceed further. Then the saddle-point equations for ¢, A and § read

a=7 [ dolanb(oa)) explLio, A,

— oo -~
A= pql Il, / dz z tanh(ozx) exp[L(o, A, §)] — p~ u(l —q)¢? %(p 1), (25)
i= / dz [z — Atanh(oz))? exp|L(c, A, §)] — 1 p-1 + oA + —2A—2
! “2¢ p—12"
I
where it is also advisable to use (§ — A) instead of §, since the
- 1 - latter also diverges for T — 0.
L(o,A,§) = —E[x — Atanh(oz))? + §[tanh(oz))?

(26) III. RESULTS

= /Oco dz exp [L(0, A, §)] .

Since A is well behaved for T — 0 the quantity A di-
verges, which is the main reason for this substitution.
For the numerical solution of the saddle-point equations

First we look at the the zero-temperature limit. For
B — oo the quantity g will diverge also and therefore
o — 00, too. Hence we may replace tanh(oz) by 1 within
the integrals, since they only extend over z > 0. This
yields (as expected) ¢ = 1 and furthermore, after a shift
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y=x— A T T T

o 0 2 i

I' =¢f / dye™V/? (27) 7

_A _

and hence .

_A? i

A=p-1) 55— . 28 .

0= oy (28) :

With the above-defined quantities (and I = I'(/2/m) we 7
get for T =0 L

0 0.1020304050607 0809 1

A ©
Ng) =exp N ln2———-—+ln/ dye™¥ ,

(29)

where A has to be determined via Eq. (28). This is in
complete agreement with what was found by Gross and
Mézard (Ref. 8). For T = 0 the number of TAP solutions
increases monotonically from In Ny = 0.1992N for p = 2
(see also Ref. 16) to (N,) ~ 2V for p — oo (the random
energy model).

The exploration of the behavior of N, for nonvanishing
temperatures has to be done numerically. The success of
numerical methods for solving nonlinear equations like
Eq. (25) rely heavily on the quality of an initial guess.
Therefore we started at T = 1 — ¢t with t < 1 (we set
J =1 from now on) for p = 2, where one has an analytic
expression for ¢, A and § in form of a power series in ¢.4
Then we decreased the temperature by small steps 67,
always using ¢(T"), A(T), and §(T') as an initial guess for
q(T — 6T), A(T — 6T), and (T — 6T). This was done
down to very small temperatures and then we fixed the
temperature and increased p by small steps ép up top = 3
using the same procedure. Finally we fixed p = 3 and
increased the temperature again, up to a value, where the
solution disappeared discontinuously. In the same way
we solved Eq. (25) for higher values of p. Numerically it is
much more difficult to start with p = 2 and a temperature
near T = 1 and then to increase p slowly, since ¢ = A =
4G = 0 is always a stable solution for any temperature as
long as p > 2. By the method we used we were sure to
be on the same solution branch as the low-temperature
solution for p = 2. We did not find other nontrivial
solutions of Eq. (25) although they might exist.

The result for a(T) = N~!In(N;) is shown in Fig. 1.
At Te(p) the factor o(T") jumps discontinuously for any
p > 2. Furthermore one observes that as long as there is
an exponentially large number of TAP solutions it in-
creases monotonically with p for a fixed temperature.
With increasing p the critical temperature T,(p) first de-
cays from T, = 1 for the SK model (p = 2) to a value
slightly below the critical temperature TR of the ran-
dom energy model [p — oco: TRE = (2¢/In 2)~! ~ 0.60
(Ref. 7)]. For p > 4 it increases slowly to that value.
Also (N,) approaches for p — oo the form predicted
by the random energy model, which is a step function:
a(T) = In2-6(TRE —T). For p — oo nearly every
spin configuration of the system is a solution of the TAP
equations.®

T/

FIG. 1. The factor (T) = N~ In(N,(T)) in dependence
of the temperature T for p = 2, 3, 4, 5, and 6 (from bottom
to top). The curve for p = 2 is already known from Ref. 4.

In Fig. 2 we plotted the result of the mean-squared
magnetization ¢ = (m?2) of the TAP solutions in depen-
dence of the temperature. The curve for the SK model
(p = 2) resembles that of the EA order parameter gga
[or g(z = 1) in Parisi’s theory®] — but we point out that
they are not the same, since we performed a white aver-
age over the solutions (see Sec. I). As long as there is an
exponentially large number of TAP solutions g increases
monotonically with p for a fixed temperature. Again we
observe that in the limit p — oo the result for the random
energy model, where ¢ = 1 below TRE is approached.
This means that in nearly every configuration of the sys-
tem all spins are frozen below T..

From the last figure one recognizes that solutions of the
TAP equations describe configurations of the system that
are frozen to a large extent already for rather small values
of p. This means that the spins are more or less fixed to
values +1 or —1 and do not fluctuate significantly below
Te(p). This feature is expected in the limit p — oo, but
it is rather surprising that it is a good approximation for
p as small as 5. In Ref. 8 it was argued that an expansion
of the free energy and the order parameter function g(z)
around p = oo might be rapidly convergent, which means
that already for rather small values of p > 2 the features
of the random energy model might dominate the physics

0.8 1
0.6 - -
m?

0.4+ 1

02 F .

0 1 1 1 1 1 1 1 1
0 0102030405 0.6 07 0809 1
T/]

FIG. 2. The order paramterer ¢ = (m?) (or mean-squared
magnetizations of the TAP solutions) in dependence of the
temperature T for p = 2, 3, 4, 5, and 6 (from bottom to top).
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of p-spin-interaction spin glasses. Our results support

this conjecture.

IV. DISCUSSION

After reducing the problem of calculating the number
N, (T) of TAP solutions for p-spin-interaction spin glasses
to a set of self-consistency equations, we showed that be-
low a critical temperature this number becomes exponen-
tially large: Ns(T) o exp[a(T) N]. For p > 2 the factor
a(T) jumps discontinuously at the critical temperature
T.. This is consistent with existing mean—field theories
of p-spin-interaction spin glasses, where the discontinuity
is observed in the EA order parameter gga. For increas-
ing p the critical temperature approaches the (exactly
known) value for the random energy model very rapidly
and the shape of a(T") approaches the step function of
the random energy model.

We also observe that the mean-squared magnetization
(m?2) of the TAP solutions behaves similarly to gea and
becomes equal to it in the limit p — co. Nevertheless
it should be noted that for finite p, (m?) # gga, since
we performed a white average, whereas gga can only be
obtained by attributing a Boltzman weight to the TAP
solutions. Furthermore, the discontinuity in o(T') is rem-
iniscent of the jump in a quantity called “complexity” or
“configurational entropy” in the context of metastable
states in p-state Potts glasses with p > 4.14

The latter work, combined with the observation that
the mean—field theory for p-spin-interaction spin glasses
with p > 2 and that for p-state Potts glasses with p > 4
seem to be in the same universality class,!® gives us rea-
son to believe that performing the average over Ny —
as we did — instead over In(NN,) yields the right fac-
tor a(T) at least in a small temperature regime around
T.. In the Potts case it was shown!4 that in a tempera-
ture regime Tx < T < Ty (T, is the temperature, where
the above-mentioned conﬁgurational entropy jumps dis-
continuously), the TAP solutions only have self-overlap.
This means that calculating In(NN,) via replicas requires
only diagonal order parameters (in replica space) for
T > Tx.'* Hence the behavior of a(7T') around T, —
especially the discontinuity — will not be changed if one
performs the correct average over In(N,). At a lower
temperature Tx < T., where the true equilibrium phase
transition takes place, the picture might change slightly.
It is desirable to undertake more detailed investigations
on the above-mentioned points and work on the TAP-
approach to the thermodynamics of p-spin-interaction
spin glasses is in progress.!”
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APPENDIX A

Here we derive Eq. (7) of the main text. Remembering
Egs. (4)-(6) we have

B
G 2 Sy, = A= B+,
]2,..4,_7?
(A1)
where we define
B
A= (P— 1)| Z J“Jz GpMjp Mgy, (A2)

J2,-- “Jp

B = (p 2)'2 Z J"J2y )mez(l ?2) Mg mjp

~Jp
X Z Jijzka---kpmka soe mkp .
kayeorkp
(A3)
The remaining part C contains terms of higher order than
second within the couplings. Note that we have already

used the permutation symmetry of the couplings for the
expression B. It can be written as

(p 2)!2 Z(l
X ( Z Jijks...kpmks e

k3,eorkp

(A9)

2
mk,> .

The sum, which is squared is a sum over M = NP~2
dependent random variables X 1,...,X; p, whose vari-
ance is (X2) o< 1/NP~L. It can be sphtted into two parts:

-(£xe) -2

=: Sj =: 6SJ

J,n+ Z XJ',an,m (A5)

n#Em

The first summation S; is a sum over positive random
numbers of order 1/NP~! and therefore yields a quan-
tity of order O(M/NP~1) = O(1/N), whereas the second
summation 6S; yields (by using the central limit theo-
rem) a Gaussian random variable with mean zero and
variance M2?(X?)2 = O(1/N?). Hence B is

- Sa-m

B is a term of order O(N'S) = O(1), whereas 6B is again
a Gaussian variable with zero mean and variance N -
(652) ox 1/N, which can be neglected with respect to B.
ThlS leaves us with

B -
x Z

ks,.. 1

m3)(S; +6S;]=B+6B. (AS6)

m3)(p — 2)!

2
PikarkyMitg M, 5 (AT)
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the factor (p—2)! stems from the permutation symmetry =~ where we neglected again fluctuations around the aver-
of the couplings. Using age, which are of lower order in N, we finally end up
with

J2p! _ (ﬁ BJ)? 2
Z ijKs..k mk,, ( ijks--k )(mz,,) = 53,—5:7(1, B plp=1)(1 —q)¢"". (A9)
The part C on the rhs of Eq. (Al) is a sum over terms
(A8) (s>2)
|

s+1
T= Z (1 - m?1) U (1 - m?, ( Z Jijl"'jak..+1"'kpmka+1 te mkp) . (AIO)
j k

-+ly~~~)kp

The order of T is given by

O(T) = o(Na iwn] m) : (A11)

where M, = NP~(s+1) and X,, are again independent random variables with zero mean and variance (X?) = 1/N?~1,
Therefore the order of T' cannot be greater than O(N —s*), which proves the correctness of Eq. (7) up to order O(1/N).

APPENDIX B

Here we calculate (det A) by using the identity

det A= lim_ /H H \/_e p{—%gfiam&ja}. (B1)

i=1a=1

From Eq. (13) in the main text we have then

<det4>=< / H%exp{ Zatem = 2).2 > JieipGirabinamis ---m }>

a iy,.. ,lp

J 2
/H \/— ex p{ 3 Zaigiza + TG—(%?—:LW Z (Z §7r(i1)a§1r(in)am1r(i3) ce mw(i,,)) } » (B2)

1< <ip ‘M

where ), means again the sum over all permutations of p different integers 41, ...,%,. After some algebra we get
1
{ -3 L ad
J af1 2
(ﬂ ) (p 1) Z [2 P (TV- Z&ia&i‘y)
i
+4(p =20 (3 bt ) (37 2 o) (5 )
N - 1a Sy N - iallly N - iy TTeq
1 211 ?
—4
+(—2)(p—3)¢° (7\/'— Xi:ﬁiami) <ﬁ ;&—ymz) ] } . (B3)

To see that one can neglect the last two terms one introduces é funtions for

- _]]\.7 Z&iaéi’y )

(det 4) =

(B4)
= th_ Z &iamy,

with the help of conjugate variables 2, and &, respectively (we do not pay attention to the fact that zay = 24a
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because it does not matter for this discussion).
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(det 4) = NZ/H \/2_77 /H dza'ydza»y /H da:ad:z:a {__ZZSW ”,mgﬂ}

i,j o,y

5 . J)? -
X exp N{Z ZQ1ZQ—Y + Zmaxa + _(_'82_)p(p - 1)qp 2 Z z?x‘)’} ’
o,y a ay

where

(ﬂJ) ——p(p —

Mij,a“/ = ([ai - éaa]éay - za.y)é,-j

(BS)

a4 1
1)(p— 2){4‘Ip—2za'7 + (p — 3)Taz~q? 4}'ﬁmimj . (B6)

The last term is of order O(1/N) and corresponds to the two terms under discussion. Therefore they will be dropped
and we get from Eq. (B3) after performing a Hubbard-Stratonovic transformation

dz des 1 9 22, 1
(det A / = / 4 exp{—— atl, - NY L+ ZarSiakiv [ (B7)
4= H V2rAN-1 g\/zw 2Za e ; 2) 2;; vty
where A\ = (8J)%p(p — 1)gP~2. We calculate the integral over 2z, by steepest descent and choose the diagonal saddle

point zqy = 264~. We calculated (det A) also with the help of Grassman variables instead of replicas (see Ref. 6) and
checked in this way the correctness of this saddle point. Then we obtain

(det4) =

. 2
cH(ai —22)""2exp {—-N;)‘z }

2
nos2 CH(ai —22) exp{ﬂ)-?—} )

] 2
c‘/g j%exp{—%iz;(ai — 22)¢2, —NZ; %}

(B8)

where c is a prefactor and z has to be determined variationally.
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