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The low-temperature dynamics of the two- and three-dimensional Ising spin-glass model with Gaussian
couplings is investigated via extensive Monte Carlo simulations. We find an algebraic decay of the remanent
magnetization. For the autocorrelation functid(t,t,) =[(S;(t+1t,)Si(t,))]a @ typical aging scenario with a
t/t,, scaling is established. Investigating spatial correlations we find an algebraic growﬂ(tlg;\)fwtj‘vm of
the average domain size. The spatial correlation funci®{r,t,)=[(S(t.)Si,(tw))*]a Scales with
r/&(t,). The sensitivity of the correlations in the spin-glass phase with respect to temperature changes is
examined by calculating a time-dependent overlap length. In the two-dimensional model we examine domain
growth with the following method: first we determine the exact ground states of the various séofiglestem
sizes up to 108 100) and then we calculate the correlations between this state and the states generated during
a Monte Carlo simulation.

I. INTRODUCTION In this paper we present the results of large scale MC
simulations of the two(2D)- and three-dimensional3D)

In spin glassesbelow the transition temperature charac- Ising spin-glass model with nearest-neighbor interactions
teristic nonequilibrium phenomena can be obseA/ddhe  and acontinuousbond distribution. The focus is on the three-
typical experiment where these phenomena are encountereémensional model whose low-temperature dynamics is ex-
is the measurement of tHehermojremanent magnetization. amined in detail by calculating correlation functions in time
The procedure is the following: a spin-glass sample is rapand space. In earlier work&*? mainly the case of &inary
idly cooled within a magnetic field to a temperature belowbond distribution was studied and the focus was on the time-
the transition temperaturg; and then the field is switched dependenautccorrelations. Thus by also calculating correla-
off after a certain waiting time,,. The striking observation tions in space one might hope to gain a deeper insight into
then is that the decay of the magnetizatidift) is found to  the aging process and a more direct check of the phenom-
depend on the waiting timé, even on laboratory time enological theories. In contrast to the two-dimensional model
scales, a phenomenon called agiging is not restricted to  the 3D model is known to have a finite spin-glass transition
spin glasses and has also been found in other disordered wmperature ofT,~0.9 (Refs. 14—1§ for Gaussian cou-
amorphous systems such as polynfetsigh-temperature plings. The nonequilibrium dynamics of the two-dimensional
superconductordand charge-density wave systémehere model has been investigated in a previous pipend an
certain quantities show a characteristic history dependenceinterrupted aging scenario was reported there which means

Several attempts have been made to explain this behavidinat the aging process is interrupted as soon as the waiting
theoretically. However, it has not been possible up to now tdime exceeds the equilibration time of the system which is
determine the nonequilibrium dynamics of short-rangefinite for nonvanishing temperatures in 2D. This led to the
finite-dimensional spin-glass models starting from a micro-conclusion that a finite transition temperature is not neces-
scopic Hamiltonian analytically. Thus one depends on phesary to observe aging effects. Even in simpler models with-
nomenological models which are either of a hierarchical typeout frustration® or disordet®?° aging was found. In the
where the relaxation process is described by diffusion in gresent paper we present the results of an alternative method
treelike structure of phase sp&€er scaling theories which to identify domains in the two-dimensional model. In sys-
consider the energetically low-lying excitations in real spacegems whose ground state is not known, this is a nontrivial
which are supposed to be connected cluster of reversearoblem and in the previous wdrkas well as in the three-
spins¥1% An important ingredient of the latter theories are dimensional model a replica method has been used. How-
domain growth laws which determine the growth of the av-ever, it is possible to compute the ground state of the 2D
erage domain size in dependence of the waiting time. Experimodel for fairly large system sizes which is used to calculate
mentally this quantity cannot be measured whereas in Montthe average, time dependent domain size and we compare the
Carlo(MC) simulations one has direct access to all quantitiesesults of both methods.
of interest. Thus MC simulations are an important touchstone The outline of the paper is as follows: in Sec. Il the three-
for phenomenological theories and their underlying assumpedimensional spin-glass model is introduced. In Secs. IIl and
tions. IV the simulation results of the autocorrelation function and
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the spatial correlations are given. In Sec. V the spatial cor- An Intel Paragon XP/S 10 parallel computer with 136
relations in the two-dimensional spin-glass model are exami860XP nodes and a Parsytech GCel1024 transputer cluster
ined. The last section presents a summary and a discussionwith 1024 T805-processors have been used for the simula-

our numerical results. tions. A single correlation function took about 16 hours of
CPU time on 128 nodes of the Paragon system. On the trans-
Il. THE THREE-DIMENSIONAL SPIN-GLASS MODEL puter cluster a single processor is roughly 10 times slower

) ) ) ) ) ~ than on the Intel machine and thus one run took about 160 h
We consider the three-dimensional Ising spin glass withyn 128 nodes there.

nearest-neighbor interactions whose Hamiltonian is given by

IIl. THE AUTOCORRELATION FUNCTION
H=-2> J,;SS;. (1) IN THE 3D MODEL

(i) ) . .
heS— + ) . ol bic | A simple way to observe aging effects in the present
TheS==1 are Ising spins on B XL XL simple cubic lat-  ,qqe| js to calculate the autocorrelation function
tice and the random interaction strengfiisare drawn from

a Gaussian distribution

1
Cltitw) = 52 S+ tw)Si(tw)] av @

1 I
P(‘]ij)_\/T—TreXF< _7)' 2) which measures the overlap of the spin configurations at
timest+t,, andt,,. [ ], indicates an average over different
with zero mean and variance one. We used single-spin-flipealizations of the bond disorder agylis a thermal average,
Glauber dynamics where each spin is flipped with probabili.e., an average over different initial conditions and realiza-
ity tions of the thermal noise. Initially the spins take on random
valuesS;= + 1 corresponding to a quench frof=« to the
&) temperaturel <Tg at which the simulation is run.
First we discuss the quantity(t,0) which corresponds to
. . . the remanent magnetizatidvi (t) after a quench from infi-
éiE: ?.elmgnt??heen;:jggtg{ze\;,?t%?i t_)eltw_?i;netihser: eef\;\lsj:ggeir‘:vmﬁite magnetic field. Note that for a symmetric bond distribu-
Monte Carlo sweep$MCS) thrlough .the whole lattice and tion thg .fully mggneti.zed states(= 1 for aII_i) and a ran-
dom initial configuration are completely equivalent. In Fig. 1

per1|_cr>]d|c itrfulnﬁa:]y (\:A?nrdltlor;fs \r,vrr?r?j I[;nf)“v?/dth transition t rnthe remanent magnetization is shown for different tempera-
€ Simuiations were performed belo € transition em+, 65 in a log-log plot. One observes that after a few time

perat_ureTg=0.9i0.1(Ref. 14 in the spin-glass phase. De- steps the decay of(t,0) clearly is algebraic. Fits to the
pending on temperaturd, lattice sizes fromL=14 to function

L=32 were used. For lower temperatures smaller lattice

sizes were sulfficient since the correlation length grows less M (t)~t =D (5)
rapidly for smaller temperaturdsee Sec. Y. As the corre-

lation length is much smaller than the system sizes finite-sizgive the set of exponents(T) which are shown in Fig. 2.
effects can be excluded which we checked also explicitly byTemperatures were converted to ratibsly with Ty=0.9.
varying the system sizes. We also tried logarithmic fits of the data as was proposed in

W(=S=S)= T aqAeim
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os b - - - - T - - ] models, as for instance in the 3D Ising spin glass with
: couplings'? a mean-field spin-glass modeéland the one-

MT) ot and two-dimensional spin-glass models for low

MT,10) —— temperature$>!® The crossover from a slow quasiequilib-

X%T(ﬂ,éggg e T rium decay fort<t,, to a faster nonequilibrium decay for
Exberim. i

0.25

t>t,, can be understood in terms of equilibrated domains:
during the waiting time,, the domains have reached a cer-
. tain average size. On time scalest,, processes then take
place inside the domains and thus are of a quasiequilibrium
} type whereas for>t,, the domains continue to grow and the

] situation is a nonequilibrium one resulting in a faster decay
of the correlations.

The difference between the model considered here and the
models in one and two dimensions is that the latter do not
have a spin-glass transition at nonvanishing temperature
which leads to a finite equilibration timg,, for T>0. There-
fore in one and two dimensions(t,t,) becomes indepen-

: . dent oft,, for t,> ., and the curves for differertt, then
08 09 coincider®®? In three dimensions the equilibration time is
infinite below the transition temperature and thus such data
collapse is not expected to occur. This can be verified in Fig.

FIG. 2. The nonequilibrium exponent(T,t,) of the 3D EA 1.Where the absence of data collapse€¢f,t,,) even for the_

model. The straight line is a linear fit af T) and is a guideline for higher temperaturd=0.6 can be seen, at least on the time

the eye only. The experimentally determined exponents are takepcales accessible in the simulations. S
from Ref. 22, see also Ref. 23. It should be noted that(t,t,,) and the waiting time de-

pendent remanent magnetization behave similarly but differ-
Ref. 9 within the droplet theory but they did not give accept-ences between them exist: only in thermal equilibrium the
able results. For better readability a linear fit\(fT) is also ~ fluctuation dissipation theorertFDT) holds and the two
shown. The exponents(T) increase linearly with tempera- quantities are simply proportional. In a nonequilibrium situ-
ture to a good approximation. ation the FDT is violatett*! and a simple relation between

The remanent magnetization can also be measured expethem does not exist.

mentally. This can be done by fully polarizing a sample in a  Algebraic fits for the long time behavior &@(t,t,)
magnetic field, switching off the field and then measuring the
decay of the time dependent magnetization. In experiments Ct,ty) ~t MW t>t (6)
with an amorphous, metallic spin glass
(Fey 1Nig g9 75P16BsAl; (Ref. 22 an algebraic decay of Yield the set of exponents(T,t,) which are shown in Fig.
M(t) was found for temperatures beldly. We read off the 2. One observes that the exponents for fixed temperature
resulting exponents from Fig.(# in Ref. 22 and included decrease with increasing waiting time and that the waiting
them in Fig. 2. Comparing these exponents with the one§me dependence is stronger for higher temperatures. The
from the simulations one finds that there are quantitativeéxponents fot,=10* andt,,= 10> are not shown since the
differences but that the difference between them diminishegvailable time range for the fits is too small. We also tried to

0.15

0.05

close to the critical temperature. fit the data to a logarithmic functio®(t,t,,)~ (Int) ™ as
Next we consider the autocorrelation functit,t,) for ~ has been proposed in Ref. 9 but the results were not accept-
the waiting timest,,=10" (n=1,...,5). Figure 3 shows able over the whole time range.

C(t,t,) for T=0.2 andT=0.6 in a log-log plot. The curves For the short time behavidr<t,, the decay of the auto-
show a characteristic crossover from a slow algebraic deca§orrelation function is also algebraic and we fitted the data to
for timest<t,, to a faster algebraic decay for-t,,. This is

very similar to what has been observed in other spin-glass Cltt,) ~t XM t<t,. (7
] T=0.2 ] T=0.6
B "”“tf%‘fg‘“‘*fm:“k\ ] %f%f%:*%“&
09t NN ‘ﬁk "y ] 07t NN
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"\ “ﬂ.\ 05} W ™ ]
08 .\,\ . “&, \b AN %%‘ \s& of the 3D EA model for temperature¥=0.2
3 “'\ .\‘ 3 ™ A (lefty and T=0.6 (right). Note the differenty
S o7l . f"h. S 03 N "\\(R‘q“\ ranges for the two temperatures. The decay of
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experimentally in the short range Ising spin-glass
FeysMngsliO; (Refs. 23 and 24 close to T,
x (T/T4=1.029)x=0.07 was found.

Gaussian distribution ~o— P Next we examine the scaling behavior 6{t,t,). The

Binary distribution —+— ' droplet theory of Fisher and Hubepredicts a scaling
C(t,ty) ~ d(Int,/Int) whereas in MC simulations of some of
the above mentioned spin-glass modfet§*3and in a mean-
field-like modet’ a scaling law C(t,t,)~®(t/t,) was
found. In the present model a logarithmic scaling can be
clearly ruled out whereas the data do speak in favor of a
t/t,, scaling. This can be seen from Fig. 5 where scaling plots

0.05

0.04 | Fa 1

x(T)

0.03

of the form
0.02 E
- In(t/7)
~ —0lyp| 7
o _ C(t,t,)~(Int) (D(In(tW/T)) (8
and
%. 1 C(t,ty) =cet *Dbr(tt,,) 9)

are shownx(T) is the exponent describing the quasiequilib-
rium decay ofC(t,t,,) in (7). For the logarithmic scaling law
the ratio /¢ and the variabler have been used as param-
eters in order to obtain maximum data collapse. Best results

_ _ o were obtained fog/=0 but scaling remains unsatisfactory
Again we tried logarithmic fits but the results for the alge-\yhich is similar to what is reported in Ref. 8 where the

braic fits are more convincing even though it is harder toscaling behavior of experimental data for the waiting time
discriminate between a logarithmic and an algebraic decayependent remanent magnetization is investigated.
for the short time behavior of(t,t,) since the quasiequi-

librium exponentx(T) is much smaller than the nonequilib-
rium exponent (T,t,). As can already be seen in Fig. 3 the
exponentx(T) for fixed temperature is independent of the  Since it has been proposed that an extremely slow domain
waiting time and thus the data fog,=10° have been used growth is the reason why aging can be observed in short
for the fits since the quasiequilibrium time range is longestange spin glass&$® and because domain growth laws are
there.x(T) is shown in Fig. 4. For comparison the corre- an important ingredient of phenomenological models as
sponding quantities for the 3D spin-glass model with a bi-pointed out in the Introduction we also examined spatial cor-
nary distribution of the couplings which were determined inrelations in the simulations in order to calculate a time de-
Ref. 12 are also shown. One observes th@l) increases pendent correlation length. This correlation length can be
with temperature and that the shape of the curves is similathought of as a measure of the average domain size in the
for both distributions but quantitative differences betweensystem after the temperature quench. The situation is similar
the exponents exist which, however, depend on the assumed ferromagnets, where the nonequilibrium dynamics after a
critical temperatures. For the model with Gaussian couplingsemperature quench is characterized by growth of domains
T4 is not known to great accuracy. To our knowledge threewhere the spins are aligned as in either one of the two ground
different values for T, have been determined: states.

T,=0.9-1.0" T,=1.0-0.2,'° and T,=0.8+0.1.1° If one In spin glasses the identification of domains is more dif-
assumed ;=1.0 instead off ;7=0.9, the curve for Gaussian ficult since the ground state is unknown in three dimensions.
couplings in Fig. 4 is shifted to the left and both curves thenA suitable correlation function has to be used instead. The
roughly coincide. The exponer({T) has also been measured generalization of the usual ferromagnetic correlation func-

FIG. 4. The equilibrium exponent(T) of the 3D EA model for
Gaussian and:-J couplings.

IV. DOMAIN GROWTH IN THE 3D SPIN-GLASS MODEL
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tion G(r)=(SS ) to spin glasses is 2

G(r)=[(SS+)%]a. However, as became obvious in MC §T(tw)=2f Gr(r,ty)dr. (11
simulations of the two-dimensional spin gldSshe square 0

makes it difficult to get good statistics for the quant@(r)  This definition is motivated by the fact that for a purely
since it leads to a positive bias in the signal. Instead, a repexponential deca@(r,t,,) ~exp(-r/é) this effective corre-
lica method has been used where the square is substituted Rition length is equal to the length scaje The factor 2 in

the spins of two replicas of the system, i.e., systems with11) is introduced sinc&(r,t,,) in (10) measures the square
identical couplingsJ;; but different initial conditions and of a correlation function.

thermal noise. This leads to the generalized time dependent When e\/a|uating the integra]]_]_) the periodic boundary

correlation function conditions have to be taken into account. In a system of
length L the correlations can only be calculated up to
N, 2t,—1 r=L/2. Furthermore, for fixed one actually measures the

GT(r1tW):NE - E [<Sa(t)3.a+r(t)S.b(t)Sbﬂ(t)ﬂav, correlatio_nG(r,tW)+G(L_—r,tw)..Thus.the integral over
i=1 lwt=t, the function measured in the simulations has contributions

(10 from G(r,t,) andG(L—r,t,):
which is suitable to measure the expected domain growth. | = f"’z
Note that in two dimensions th@ip to a global spin flip 0
unique ground state for Gaussian couplings can be calculated
and be used if10) instead of the spins of one of the replicas. Assuming an exponential decay G#(r,t,) ~exg —r/&(ty)]
The results of such an analysis are presented in Sec. V. one obtains an implicit equation fa(t,,):

The waiting times were chosen to be,=4"

(n=1,...,10) ort,=5" (n=1, ... ,8),respectively. To im- I=&(ty){1—exd —L/&(ty) 1} (13
prove the statistics d&(r,t,,) for smaller waiting times the
number of samples was chosen to be waiting time depende
such that the product samples, was approximately con-

L/2
G(r,tw)dr+f G(L—r,t,)dr. (12
0

The resulting values of(t,) are shown for different tem-
B‘aratures in Fig. 7. On the left-hand side logarithmic fits

stant. For larger waiting times the average was taken over at t V= énlIn(t. )11 14
least 128 samples; for the smallest waiting tintg={4) §(tw) = o~ [In(t)] (14
520 000 samples have been used. and on the right-hand side algebraic fits

G+(r,t,) is shown for two different temperatures in a
log-linear plot in Fig. 6. The different curves correspond to §(tw)~t\7v(T) (15)

different waiting timeg,, . One observes that the correlations
fall off rapidly with r for small waiting times which means are plotted. As can be seen, both fits are of the same quality
that the typical domain size is only of the order of a fewand in terms of a test there is no difference between them.
lattice spacings. For larger waiting times, however, the corVia the algebraic fit one obtains a set of temperature depen-
relations increase. This is caused by the growth of orderedent exponents/(T) which increase approximately linearly
domains as mentioned earlier. In the log-linear plot thewith temperature, for instance it i8(T=0.2)=0.026 and
curves look approximately linear which means that the decay(T=0.7)=0.081. These exponents are very small since the
of G(r,t,) is roughly exponential. In contrast to the two- correlation length grows only slowly with time. Even for the
dimensional spin glass the curves for larger waiting times ddiighest temperatur&=0.7 used in the simulation&t,,) is
not coincide which means that the system is not equilibratetess than four lattice spacings after®1dCS. The logarith-
even after the longest waiting time in the simulations. This ismic fit yields a roughly temperature independent value of
in agreement with what has been said about the autocorrela~0.71+0.02 which is in agreement with the bound
tion functionC(t,t,,) in the previous section. y=d—1 given in Ref. 9. Recently a value @f~0.8 has

In principle an effective correlation length can be deter-been determined experimentéflyin the Ising spin-glass
mined fromG+(r,t,,) by calculating the integral Fey sMng sTiO3 via dynamic scaling.
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Considering the scaling law9) of the autocorrelation L(t+t,)]* and thus also logarithmic scaling which is not
function one expects a similar scaling law to hold for thecompatible with the results of the simulations as was shown
spatial correlation functiofs(r,t,,). This can be seen in Fig. above. However, with an algebraic growth 14%6) the au-

8 where a scaling plot of the form tocorrelation function decays algebraically and scales with
. t/t,, which is exactly what we found. A logarithmic growth
G(r,tw)~glr/&(ty)] (16)  law was used in Ref. 9 by Fisher and Huse. They assumed a

particular scaling lawB (L)~ LY for the (free) energy barri-

i it " ~tal) . . - .
with the characteristic length scali{t,)~t,, " is shown. o5 on length scale and via activated dynamics obtained
The exponentsy(T) have been determined such that beStR(tW)~(|nt)1"” for the average domain size. As has already

scaling_ behavior was achieved. The;y concur within thg €MOheen noted in Ref. 12 a modified activated dynamics sce-
bars with the exponents(T) determined by the above inte- 410 with a scaling law
gration procedure. Thus the characteristic length scale
£(t,,) can be obtained via the scaling 1&®6) in a different B(L)~A(T)In(L) (17)
and more simple way than K{1) since the problems arising
from the periodic boundary conditions and the extrapolatiorfor the energy barriers leads to algebraic domain growth
to infinity are avoided. The numerical errors are roughly theé(ty) ~t2(M with «(T)=T/A(T) and thus is appropriate to
same for both methods. describe the results of the simulations. In Ref. 26 the depen-
Considering the algebraic dec#§), (7) and the scaling dence of the barrier height on length schlbas been exam-
behavior(9) of the autocorrelation functio@(t,t,) an alge- ined explicitly by an annealing procedure and there was no
braic growth law(15) for the correlation length gives a more evidence for an algebraic dependence but also a logarithmic
consistent picture from our point of view for the following law B, ~InL was found thus supporting our results. The pre-
reason: Assuming a logarithmic growth lg®¥) one obtains dictions for the different scaling assumptions are summa-
a logarithmic decay ofC(t,t,) since C(t,t,)~[L(ty)/  rized in Table I.
Finally we want to discuss the concept of an overlap
length. It has been argut?’ that the correlations in the

05 . l T=0|'4 . . . spin-glass phase are extremely sensitive to temperature and
o field changes. This sensitivity should be observable via the
045 F + :wfj; ° correlation function
04 *A t‘x=4i o 4
el ity O Ty, T)=[(SS+)1(SS I Ja: (18
03 D+ Ew:ig . | This function is expected to decay a®(r,T;,Ty)
~ o W=4g . ~exd —r/L(T,,T,)] with the length scal&(T,,T,) being the
= 025 . :w:jﬁof overlap length. Thus the correlations at temperatiireand
o oz L o W | T, are the same for length scales smaller thgm,,T,)
) * whereas the correlations on larger length scales are com-
0.15 | * . pletely destroyed.
o1 | ot | It is expected’ that L(T,,T,) is finite even below the
) Eg spin-glass transition temperature where the usual correlation
0.05 | S, 8 length &, is infinite. In  thermal  equilibrium
ol T L(Tl.,T2)~|T1_—T2|‘1’f with positive ¢(=dJ/2—6 is
05 1 15 2 25 3 35 4 45 predictec?’ ds is the fractal dimension of the droplets in the
it droplet theory and the exponent describing the free energy
of the dropletsF ~L".
FIG. 8. Scaling plot ofG(r,t,) of the 3D EA model for To check the existence of such an overlap length we cal-

T=0.4. The characteristic length scalé(t,) grows as culated the(nonequilibrium correlation function(10) but
£(ty) ~ta™ with the two replicas andb having the temperaturdg and
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TABLE I. Predictions of different scaling assumptions. The bul- comparing the overlap length fdr,=0.4 andT,=0.6 with

lets indicate that the Monte Carlo simulations confirm the corre-the correlation length fof =0.4. With increasing tempera-

sponding prediction in the last column. A bullet with brackets tyre differenceT,— T, the overlap length does not change

means that the numerical data can also be interpreted according gnificantly (see the curves fof;=0.4 andT,=0.5, 0.6,

the predictions of the droplet model. Concluding the hypothesiq)j, and 0.8, respectivelyin particular it does not decrease

(17) seems to give a more consistent description of experimentaj ;i increasing temperature difference, contrary to what one

and numerical results on aging in spin glasses presented so far. might expect according to the arguments given above. This

means that either an overlap length in its original sense does

not exist or more likely, that the overlap length is much

Droplet model MC sim.

(Ref. 9 larger than the correlation lengths reached in the simulations,
Energy barrier B ALY A(MINL @ which would make it impossible to observe the effects of its
Activated dynamics 7 T~expBIT  7~expB/T existence on the accessible time scales. The only effect of
Domain size L (1) T \W te(m (@) setting one replica tolT; and the other replica tdl,
(Klm) (T,<T,) is that the faster dynamics at the higher tempera-
Remanent M i (AT ® ture T leads to faster domain growth and thus the correla-
i TRM Il tions increase faster than with both replicas having tempera-
magnetization (A m) ture T,. However, the increase of the correlations seems to
1 ’

be limited by the lower of the two temperatures.
Aging Cttw)  — InW L[t o This interpretation is compatible with the outcome of tem-
(m t perature cycling experiments for the same mo@éth bi-
Asymptotic decay  tt,, (Int)~ ¥ AT ° nary couplings Howgver, no_t?’e3 that similar .to the S|tuat|on
—ay —x(T) with regards to experiments; 33 also other interpretations
t<t, (Int) t (@)
have been suggestéd.

Ly

T,, respectively, which yield®(r,t,;T,,T,). Note that V. DOMAIN GROWTH IN THE 2D SPIN-GLASS MODEL
Iimtw_m(a(r,tw;Tl,T2)=®(r,T1,T2) as defined in(18).

The resulting curves look very similar to the correlation
functions in Fig. 6. Thus we determined the waiting time
dependent overlap length in the same way as the correlati
length &£(t,,) by calculating the integral over the function

In this section we consider the two-dimensional spin-glass
model and present the results of an alternative method to
identify domains. The model is the two-dimensional analog

the 3D model introduced in Sec. Il, i.e., we have nearest-
neighbor interactions, periodic boundary conditions, Gauss-

O(r,ty,T1,T2) as in(11): ian couplings, and Glauber dynamics.
In contrast to the 3D moddl), it is now possible to
. P . calculate the ground state of the model in two dimensions. A
= . . . p
L(twiTa,To) 2]0 O twi Ty, T)dr (19 very fast implementation of a branch and cut algorithhas

been used making it possible to obtain ground states for lat-
The results are shown in Fig. 9 whekrét,,;T,,T,) and for tice sizes up to 158 150 on an ordinary workstation. Thus it
comparison the correlation lengfy(t,,) are shown. One is not necessary to introduce a replica system to identify
observes that the overlap length for temperatdreandT, = domains since the ground state can be used instead. An
(T,<T,) increases faster than the correlation length withanalysis using a replica system has been performed in a pre-
both temperatures set b, as can be seen for example by vious work® and we compare the results of both methods.

\
\
\
LN
\

3L T,=0.3,T,=0.5 ro .
T1=0.4, T5=05 = 4
T1=0.4, To=06 ro—

T1=04, To=0.7 re—i

T)=0.4, To=0.8 +o— )
T=0.3 -
T=04 — %
T=05 —-

FIG. 9. The overlap lengti.(t,,;T,,T,) of
the 3D EA model and the correlation length
&(t,,) for different temperatures.

L(t,:T4,To)
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T=0.30

ty=102 ty =102

FIG. 10. Domain growth in the 2D EA model
with Gaussian couplings. The right-hand side
shows the domains relative to the ground state
and the left-hand side shows the same configura-
tion relative to a replica system.

In Fig. 10 the time evolution of an initially random spin by using the ground stat@ is a suitably chosen time win-
configuration is shown. The domains have been identified bow andS® denotes the ground state of the spin at &itén
calculating for each spin both methods the same couplings were used. Obviously both

methods show an increasing average domain size but the

EA 14712 b method using ground states shows larger domains since in
q; (tW):KZ SHHS(1) (200 the replica method one has two thermally active systems.
T Note that the domain structures look very different in both
for the replica method and methods even though the initial configuration of one of the

replicas was the same as that of the system used in the

141 ground state method. In contrast to ferromagnetic systems
95(t,)= Kz Si(t)SO (21) even for very large waiting times very small domains exist.

t=ty These are either very stable clusters because strong bonds
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Glr,t,), T=0.30 1 Glrt,). T=0.80
1 T T T T T T T
01| 0.1 g
N FIG. 11. The spatial correlation function
Ginty) Glrty) . G(r,t,) of the 2D EA model spin glass and
001 L 001 L WO X temperaturesT=0.3 andT=0.8. The waiting
’ ’ Noom o % times aret,,=5" (n=1,...,9).
- \‘i_\
0.001 L 1 |“‘« S | .“X 0.001 1 1 1 \“ ! b\.‘
0 2 4 6 8 10 o 2 4 6 8 10

have to be broken to flip the spins or new domains within the As in the 3D model an effective correlation length can be
bigger ones appear since less strongly bound spins initializealculated fromG(r,t,,) by
the formation of a new domain.

To compare both methods quantitatively we measured the

correlation function g(tw)zf G(r,t,)dr. (23

0
N o2t,—1

1
Gt =g & USOS OS2

The factor 2 present ifill) is left out here because the cor-
relation function defined i22) is similar to a ferromagnetic
in the simulations. This correlation function is different from correlation function. Our results fat,,) are shown in Fig.
the one(10) used in the 3D model in that the spins of the 12 and for somewhat higher temperatures in Fig. 13. Again
replica system have been substituted by the ground state. Wegarithmic fits according t¢14) and algebraic fits according
used 128 ground states of 4@0 lattices to perform our t0 (15 have been done. Only the low temperatures have been
investigation. In order to obtain good statistics also forconsidered since for higher temperatures the correlation
smaller waiting times we averaged over up to 4000 differentength saturates for small waiting times thus limiting the time
initial configurations and realizations of the thermal noise forrange for the fits. Obviously our data can nicely be fitted to
each ground state. the logarithmic growth law as well as to the algebraic law.
Figure 11 showss(r,t,,) for two different temperatures Comparing the values of the correlation length to the earlier
in a log-linear plot. As in the 3D modeb(r,t,) decreases investigatiort® where the replica method has been used, we
rapidly with r but the decay is slower than in the 3D model. obtain smaller values for the correlation length. However, the
For lower temperaturegsee the curve folf=0.3) G(r,t,)  exponents «(T=0.2)=0.046, «(T7=0.3)=0.068, and
increases monotonously with waiting time as in the 3D«(T=0.4)=0.090 describing the algebraic growth of the
model whereas for higher temperatudesee G(r,t,) for  correlation length and also the roughly temperature indepen-
T=0.8] the curves for higher waiting times coincide. This dent value ofyy=0.61+0.05 agree within the errorbars with
means that the system is equilibrated at a certain waitinghose obtained from the replica method. Furthermore it
time and the correlations take on their equilibrium valuesshould be mentioned that the exponea(d) grow linearly
which is due to the fact that the 2D model HBg=0 and ~ With temperature. _ o
thus the equilibration time is finite. For lower temperatures The scaling behavior oB(r,t,) is shown in Fig. 14. As
the equilibration time is larger than the simulation timein (16) for the 3D model the exponentg(T) for the charac-
which makes the resulting curves qualitatively indistinguish-teristic length scalef(tw)fvt;“vm have been determined such
able from the ones in the 3D model. that best scaling was achieved. Analogous to the 3D model

E(ty) £t
T T T T T T 5 T T T T T T
T=020 -
T=030 '
& 4L T=040 --- ]
* i E FIG. 12. Algebraic(left) and logarithmic
- ol el - e (right) fits of the correlation lengtki(t,,) of
| e the 2D EA model for different temperatures.
2 = 9}/y,,e’ |
e
! 1 ) | L
107 e -7
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FIG. 13. The correlation lengt§(t,,) of the 2D EA model for

higher temperatures.

the values for the resulting exponeiatéT) also agree within
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they take on roughly the same values but it is hard to decide
whether they are universal quantities or not since the critical
temperature for the model with Gaussian couplings is not
known to adequate accuracy.

The investigation of the spatial correlations showed that
the average domain size depends algebraically on the waiting
time. These results can be explained consistently within a
modified droplet theory where the original barrier law
B(L)~LY is replaced byB(L)~InL. The investigation of
the sensitivity of the spatial correlations with respect to tem-
perature changes did not show evidence for the existence of
a finite overlap length on time scales accessible in the simu-
lations. For the two dimensional we investigated the growth
of spatial correlations by calculating the overlap of the spin
configurations with the exact ground state state of the system
(determined via combinatorial optimization methpdshe
correlations defined in this way give rise to a quasiferromag-
netic correlation function. It turns out that in this way one
gets the same waiting time dependence of the domain size as
that obtained previously using the spin-glass correlation
function or replica overlap. We believe that the situation is

the errorbars with those obtained from the integrationvery similar in three dimensions.

method.

VI. SUMMARY AND DISCUSSION

At this point we would like to make a few remarks, which
reflect our interpretation of the numerical results that we ob-
tained. Therefore the following discussion has to remain
speculative to some extent, which might provide motivation

Concluding we examined the nonequilibrium dynamics offor future work. It is worth noting that the two-replica cor-
the two- and three-dimensional spin-glass model in detail byelation function is sensible to the presence of a large number
calculating correlation functions in time and space. In the 3Dof nearly degenerate states, whereas the ground state overlap
model algebraic decay of the autocorrelation function includ-measure only correlations of the spin configurations with the
ing the remanent magnetization was found. The exponents @fiobal minimum of the energy function. Thus, having the
the decay of the remanent magnetization are in quantitativeoncept of many pure states in spin glasses in mind, this
agreement with experimental values. The autocorrelatiombservation seems to be pretty important: in two dimensions

function was found to scale with/'t,, and a typical aging

the nonequilibrium dynamics is surprisingly similar to the

scenario was established. A comparison of the exponents dene-dimensional case, where no frustration is present, and if

scribing the quasiequilibrium decay €f(t,t,,) for a Gauss-

the same observation could be made in the three-dimensional

ian and a binary distribution of the couplings showed thatEA (Edwards-Andersonmodel, it behaves like a disguised

Grt,), T=0.30

-,

01 F

Girty)

0.01 |

OS> M XDPXDO+ O

0.001 L
0

FIG. 14.
T=0.3.

Scaling

t/E(ty)

plot ofG(r,t,) of the 2D EA model for

ferromagnet with the ferromagnetic ground state replaced by
some other state and the magnetization as an order parameter
replaced by the global overlap with this state and identical to
the (now trivial) EA-order parameter. The dynamics is
slowed down by the presence of many metastable states and
(free) energy barriers between them that obey an extremely
broad distribution — but otherwise nothing dramatical might
be observable: neither chaos in spin gla$éesor aging in
various asymptotic regimes:®

One conclusion might be that the characteristics of the
spin-glass dynamics, which discriminates itself from a slow
quasiferromagnetic domain growth, become observable only
on much larger lengtfand time scales than those attainable
by Monte Carlo simulations. The same, as we think, is also
true with respect to experiments: although the number of
decadegin time) that can be explored in a single experiment
is approximately He.g., from 1 to 16 seconds in a typical
aging setuf’'?3 and thus even smaller than in our simula-
tions, the time scales themselves can vary over a much
broader range. However, assuming a microscopic time of
10~12 seconds, which we deliberately identify for the mo-
ment with 1 Monte Carlo step in our simulations, the above
mentioned experimental time scale could only be reached by
performing 102 to 10'® MC steps, which looks hopeless at
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the moment. The length scales that are physically relevargrowth of energy barriers as a function of the domain size,
are indeed comparable, though, simply for the reason of theshich describes consistently the physics of the two- and
extremely sluggish domain growth: if the latter would be three-dimensional spin-glass models on the length scales we
logarithmic, as proposed by the droplet thebtiie correla-  were able to explore. Obviously a more complete theory is
tion length reached in the experiments will be not muchasked for, which might reveal the deeper reason for akiis

larger (depending on the exponer) than twice the corre- hocscaling assumption, which we leave open as a challenge
lation length of the Monte Carlo simulations. We do notig future research.

think that the physics is much different then.

The lesson that we have to learn from it is the following:
Most of t_he existing thgories for the nonequilibri_um dynam- ACKNOWLEDGMENTS
ics of spin glasses, which are claimed to be validasgmp-
totic time scales, seem to be inappropriate for the description We would like to thank the Center of Parallel Computing
of the physics orintermediatdength scales that are relevant (ZPR) in Koln and the HLRZ at the Forschungszentrum Ju
for the experiments and for the results obtained in this papdich for the generous allocation of computing time on the
(quite recently some ideas that might be relevant in this contransputer cluster Parsytec—GCel1024 and on the Intel Para-
text have been propos&il We have suggested a modified gon XP/S 10. This work was performed within the SFB 341
scaling picture, whose basic assumption is a logarithmi&oln—Aachen-Jiich.
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