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The low-temperature dynamics of the two- and three-dimensional Ising spin-glass model with Gaussian
couplings is investigated via extensive Monte Carlo simulations. We find an algebraic decay of the remanent
magnetization. For the autocorrelation functionC(t,tw)5@^Si(t1tw)Si(tw)&#av a typical aging scenario with a
t/tw scaling is established. Investigating spatial correlations we find an algebraic growth lawj(tw);tw

a(T) of
the average domain size. The spatial correlation functionG(r ,tw)5@^Si(tw)Si1r(tw)&

2#av scales with
r /j(tw). The sensitivity of the correlations in the spin-glass phase with respect to temperature changes is
examined by calculating a time-dependent overlap length. In the two-dimensional model we examine domain
growth with the following method: first we determine the exact ground states of the various samples~of system
sizes up to 1003100) and then we calculate the correlations between this state and the states generated during
a Monte Carlo simulation.

I. INTRODUCTION

In spin glasses1 below the transition temperature charac-
teristic nonequilibrium phenomena can be observed.2 The
typical experiment where these phenomena are encountered
is the measurement of the~thermo-!remanent magnetization.
The procedure is the following: a spin-glass sample is rap-
idly cooled within a magnetic field to a temperature below
the transition temperatureTg and then the field is switched
off after a certain waiting timetw . The striking observation
then is that the decay of the magnetizationM (t) is found to
depend on the waiting timetw even on laboratory time
scales, a phenomenon called aging.3Aging is not restricted to
spin glasses and has also been found in other disordered or
amorphous systems such as polymers,4 high-temperature
superconductors,5 and charge-density wave systems6 where
certain quantities show a characteristic history dependence.

Several attempts have been made to explain this behavior
theoretically. However, it has not been possible up to now to
determine the nonequilibrium dynamics of short-range,
finite-dimensional spin-glass models starting from a micro-
scopic Hamiltonian analytically. Thus one depends on phe-
nomenological models which are either of a hierarchical type
where the relaxation process is described by diffusion in a
treelike structure of phase space7,8 or scaling theories which
consider the energetically low-lying excitations in real space
which are supposed to be connected cluster of reversed
spins.9,10 An important ingredient of the latter theories are
domain growth laws which determine the growth of the av-
erage domain size in dependence of the waiting time. Experi-
mentally this quantity cannot be measured whereas in Monte
Carlo~MC! simulations one has direct access to all quantities
of interest. Thus MC simulations are an important touchstone
for phenomenological theories and their underlying assump-
tions.

In this paper we present the results of large scale MC
simulations of the two~2D!- and three-dimensional~3D!
Ising spin-glass model with nearest-neighbor interactions
and acontinuousbond distribution. The focus is on the three-
dimensional model whose low-temperature dynamics is ex-
amined in detail by calculating correlation functions in time
and space. In earlier works11,12 mainly the case of abinary
bond distribution was studied and the focus was on the time-
dependentautocorrelations. Thus by also calculating correla-
tions in space one might hope to gain a deeper insight into
the aging process and a more direct check of the phenom-
enological theories. In contrast to the two-dimensional model
the 3D model is known to have a finite spin-glass transition
temperature ofTg;0.9 ~Refs. 14–16! for Gaussian cou-
plings. The nonequilibrium dynamics of the two-dimensional
model has been investigated in a previous paper13 and an
interrupted aging scenario was reported there which means
that the aging process is interrupted as soon as the waiting
time exceeds the equilibration time of the system which is
finite for nonvanishing temperatures in 2D. This led to the
conclusion that a finite transition temperature is not neces-
sary to observe aging effects. Even in simpler models with-
out frustration18 or disorder19,20 aging was found. In the
present paper we present the results of an alternative method
to identify domains in the two-dimensional model. In sys-
tems whose ground state is not known, this is a nontrivial
problem and in the previous work13 as well as in the three-
dimensional model a replica method has been used. How-
ever, it is possible to compute the ground state of the 2D
model for fairly large system sizes which is used to calculate
the average, time dependent domain size and we compare the
results of both methods.

The outline of the paper is as follows: in Sec. II the three-
dimensional spin-glass model is introduced. In Secs. III and
IV the simulation results of the autocorrelation function and
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the spatial correlations are given. In Sec. V the spatial cor-
relations in the two-dimensional spin-glass model are exam-
ined. The last section presents a summary and a discussion of
our numerical results.

II. THE THREE-DIMENSIONAL SPIN-GLASS MODEL

We consider the three-dimensional Ising spin glass with
nearest-neighbor interactions whose Hamiltonian is given by

H52(̂
i j &

Ji j SiSj . ~1!

TheSi561 are Ising spins on aL3L3L simple cubic lat-
tice and the random interaction strengthsJi j are drawn from
a Gaussian distribution

P~Ji j !5
1

A2p
expS 2

Ji j
2

2 D , ~2!

with zero mean and variance one. We used single-spin-flip
Glauber dynamics where each spin is flipped with probabil-
ity

w~2Si→Si !5
1

11exp~DE/T!
, ~3!

DE being the energy difference between the new state with
Si511 and the old state withSi521. Time is measured in
Monte Carlo sweeps~MCS! through the whole lattice and
periodic boundary conditions were implied.

The simulations were performed below the transition tem-
peratureTg50.960.1 ~Ref. 14! in the spin-glass phase. De-
pending on temperatureT, lattice sizes fromL514 to
L532 were used. For lower temperatures smaller lattice
sizes were sufficient since the correlation length grows less
rapidly for smaller temperatures~see Sec. IV!. As the corre-
lation length is much smaller than the system sizes finite-size
effects can be excluded which we checked also explicitly by
varying the system sizes.

An Intel Paragon XP/S 10 parallel computer with 136
i860XP nodes and a Parsytech GCel1024 transputer cluster
with 1024 T805-processors have been used for the simula-
tions. A single correlation function took about 16 hours of
CPU time on 128 nodes of the Paragon system. On the trans-
puter cluster a single processor is roughly 10 times slower
than on the Intel machine and thus one run took about 160 h
on 128 nodes there.

III. THE AUTOCORRELATION FUNCTION
IN THE 3D MODEL

A simple way to observe aging effects in the present
model is to calculate the autocorrelation function

C~ t,tw!5
1

N(
i

@^Si~ t1tw!Si~ tw!&# av ~4!

which measures the overlap of the spin configurations at
timest1tw andtw . @ #av indicates an average over different
realizations of the bond disorder and^ & is a thermal average,
i.e., an average over different initial conditions and realiza-
tions of the thermal noise. Initially the spins take on random
valuesSi561 corresponding to a quench fromT5` to the
temperatureT,Tg at which the simulation is run.

First we discuss the quantityC(t,0) which corresponds to
the remanent magnetizationM (t) after a quench from infi-
nite magnetic field. Note that for a symmetric bond distribu-
tion the fully magnetized state (Si511 for all i ! and a ran-
dom initial configuration are completely equivalent. In Fig. 1
the remanent magnetization is shown for different tempera-
tures in a log-log plot. One observes that after a few time
steps the decay ofC(t,0) clearly is algebraic. Fits to the
function

M ~ t !;t2l~T! ~5!

give the set of exponentsl(T) which are shown in Fig. 2.
Temperatures were converted to ratiosT/Tg with Tg50.9.
We also tried logarithmic fits of the data as was proposed in

FIG. 1. The remanent magnetization of the
3D EA model ~1! for temperaturesT50.2 to
T50.7 ~from top to bottom!.
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Ref. 9 within the droplet theory but they did not give accept-
able results. For better readability a linear fit ofl(T) is also
shown. The exponentsl(T) increase linearly with tempera-
ture to a good approximation.

The remanent magnetization can also be measured experi-
mentally. This can be done by fully polarizing a sample in a
magnetic field, switching off the field and then measuring the
decay of the time dependent magnetization. In experiments
with an amorphous, metallic spin glass
(Fe0.15Ni0.85)75P16B6Al3 ~Ref. 22! an algebraic decay of
M (t) was found for temperatures belowTg . We read off the
resulting exponents from Fig. 4~b! in Ref. 22 and included
them in Fig. 2. Comparing these exponents with the ones
from the simulations one finds that there are quantitative
differences but that the difference between them diminishes
close to the critical temperature.

Next we consider the autocorrelation functionC(t,tw) for
the waiting timestw510n (n51, . . . ,5). Figure 3 shows
C(t,tw) for T50.2 andT50.6 in a log-log plot. The curves
show a characteristic crossover from a slow algebraic decay
for times t!tw to a faster algebraic decay fort@tw . This is
very similar to what has been observed in other spin-glass

models, as for instance in the 3D Ising spin glass with6J
couplings,12 a mean-field spin-glass model17 and the one-
and two-dimensional spin-glass models for low
temperatures.13,18 The crossover from a slow quasiequilib-
rium decay fort!tw to a faster nonequilibrium decay for
t@tw can be understood in terms of equilibrated domains:
during the waiting timetw the domains have reached a cer-
tain average size. On time scalest!tw processes then take
place inside the domains and thus are of a quasiequilibrium
type whereas fort@tw the domains continue to grow and the
situation is a nonequilibrium one resulting in a faster decay
of the correlations.

The difference between the model considered here and the
models in one and two dimensions is that the latter do not
have a spin-glass transition at nonvanishing temperature
which leads to a finite equilibration timeteq for T.0. There-
fore in one and two dimensionsC(t,tw) becomes indepen-
dent of tw for tw.teq and the curves for differenttw then
coincide.18,13 In three dimensions the equilibration time is
infinite below the transition temperature and thus such data
collapse is not expected to occur. This can be verified in Fig.
1 where the absence of data collapse ofC(t,tw) even for the
higher temperatureT50.6 can be seen, at least on the time
scales accessible in the simulations.

It should be noted thatC(t,tw) and the waiting time de-
pendent remanent magnetization behave similarly but differ-
ences between them exist: only in thermal equilibrium the
fluctuation dissipation theorem~FDT! holds and the two
quantities are simply proportional. In a nonequilibrium situ-
ation the FDT is violated11,21 and a simple relation between
them does not exist.

Algebraic fits for the long time behavior ofC(t,tw)

C~ t,tw!;t2l~T,tw!, t@tw ~6!

yield the set of exponentsl(T,tw) which are shown in Fig.
2. One observes that the exponents for fixed temperature
decrease with increasing waiting time and that the waiting
time dependence is stronger for higher temperatures. The
exponents fortw5104 and tw5105 are not shown since the
available time range for the fits is too small. We also tried to
fit the data to a logarithmic functionC(t,tw);(lnt)2l/c as
has been proposed in Ref. 9 but the results were not accept-
able over the whole time range.

For the short time behaviort!tw the decay of the auto-
correlation function is also algebraic and we fitted the data to

C~ t,tw!;t2x~T!, t!tw . ~7!

FIG. 3. The autocorrelation functionC(t,tw)
of the 3D EA model for temperaturesT50.2
~left! and T50.6 ~right!. Note the differenty
ranges for the two temperatures. The decay of
C(t,tw) is much faster atT50.6. The waiting
times aretw510n (n51, . . . ,5) ~from bottom to
top!.

FIG. 2. The nonequilibrium exponentl(T,tw) of the 3D EA
model. The straight line is a linear fit ofl(T) and is a guideline for
the eye only. The experimentally determined exponents are taken
from Ref. 22, see also Ref. 23.

6420 53J. KISKER, L. SANTEN, M. SCHRECKENBERG, AND H. RIEGER



Again we tried logarithmic fits but the results for the alge-
braic fits are more convincing even though it is harder to
discriminate between a logarithmic and an algebraic decay
for the short time behavior ofC(t,tw) since the quasiequi-
librium exponentx(T) is much smaller than the nonequilib-
rium exponentl(T,tw). As can already be seen in Fig. 3 the
exponentx(T) for fixed temperature is independent of the
waiting time and thus the data fortw5105 have been used
for the fits since the quasiequilibrium time range is longest
there.x(T) is shown in Fig. 4. For comparison the corre-
sponding quantities for the 3D spin-glass model with a bi-
nary distribution of the couplings which were determined in
Ref. 12 are also shown. One observes thatx(T) increases
with temperature and that the shape of the curves is similar
for both distributions but quantitative differences between
the exponents exist which, however, depend on the assumed
critical temperatures. For the model with Gaussian couplings
Tg is not known to great accuracy. To our knowledge three
different values for Tg have been determined:
Tg50.921.0,14 Tg51.060.2,15 andTg50.860.1.16 If one
assumesTg51.0 instead ofTg50.9, the curve for Gaussian
couplings in Fig. 4 is shifted to the left and both curves then
roughly coincide. The exponentx(T) has also been measured

experimentally in the short range Ising spin-glass
Fe0.5Mn0.5TiO3 ~Refs. 23 and 24! close to Tg
(T/Tg51.029) x50.07 was found.

Next we examine the scaling behavior ofC(t,tw). The
droplet theory of Fisher and Huse9 predicts a scaling
C(t,tw);F̃(lntw /lnt) whereas in MC simulations of some of
the above mentioned spin-glass models12,18,13and in a mean-
field-like model17 a scaling law C(t,tw);F(t/tw) was
found. In the present model a logarithmic scaling can be
clearly ruled out whereas the data do speak in favor of a
t/tw scaling. This can be seen from Fig. 5 where scaling plots
of the form

C~ t,tw!;~ lnt !2u/cF̃S ln~ t/t!

ln~ tw /t! D ~8!

and

C~ t,tw!5cTt
2x~T!FT~ t/tw! ~9!

are shown.x(T) is the exponent describing the quasiequilib-
rium decay ofC(t,tw) in ~7!. For the logarithmic scaling law
the ratiou/c and the variablet have been used as param-
eters in order to obtain maximum data collapse. Best results
were obtained foru/c50 but scaling remains unsatisfactory
which is similar to what is reported in Ref. 8 where the
scaling behavior of experimental data for the waiting time
dependent remanent magnetization is investigated.

IV. DOMAIN GROWTH IN THE 3D SPIN-GLASS MODEL

Since it has been proposed that an extremely slow domain
growth is the reason why aging can be observed in short
range spin glasses9,10 and because domain growth laws are
an important ingredient of phenomenological models as
pointed out in the Introduction we also examined spatial cor-
relations in the simulations in order to calculate a time de-
pendent correlation length. This correlation length can be
thought of as a measure of the average domain size in the
system after the temperature quench. The situation is similar
to ferromagnets, where the nonequilibrium dynamics after a
temperature quench is characterized by growth of domains
where the spins are aligned as in either one of the two ground
states.

In spin glasses the identification of domains is more dif-
ficult since the ground state is unknown in three dimensions.
A suitable correlation function has to be used instead. The
generalization of the usual ferromagnetic correlation func-

FIG. 4. The equilibrium exponentx(T) of the 3D EA model for
Gaussian and6J couplings.

FIG. 5. Scaling of the autocorrelation function
C(t,tw) of the 3D EAmodel. Logarithmic scaling
plot ~left! and t/tw scaling ~right!. Obviously
C(t,tw) scales witht/tw .
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tion G(r )5^SiSi1r& to spin glasses is
G(r )5@^SiSi1r&

2#av. However, as became obvious in MC
simulations of the two-dimensional spin glass,13 the square
makes it difficult to get good statistics for the quantityG(r )
since it leads to a positive bias in the signal. Instead, a rep-
lica method has been used where the square is substituted by
the spins of two replicas of the system, i.e., systems with
identical couplingsJi j but different initial conditions and
thermal noise. This leads to the generalized time dependent
correlation function

GT~r ,tw!5
1

N(
i51

N
1

tw
(
t5tw

2tw21

@^Si
a~ t !Si1r

a ~ t !Si
b~ t !Si1r

b ~ t !&# av,

~10!

which is suitable to measure the expected domain growth.
Note that in two dimensions the~up to a global spin flip!
unique ground state for Gaussian couplings can be calculated
and be used in~10! instead of the spins of one of the replicas.
The results of such an analysis are presented in Sec. V.

The waiting times were chosen to betw54n

(n51, . . .,10) ortw55n (n51, . . . ,8),respectively. To im-
prove the statistics ofGT(r ,tw) for smaller waiting times the
number of samples was chosen to be waiting time dependent
such that the product samples•tw was approximately con-
stant. For larger waiting times the average was taken over at
least 128 samples; for the smallest waiting time (tw54)
520 000 samples have been used.

GT(r ,tw) is shown for two different temperatures in a
log-linear plot in Fig. 6. The different curves correspond to
different waiting timestw . One observes that the correlations
fall off rapidly with r for small waiting times which means
that the typical domain size is only of the order of a few
lattice spacings. For larger waiting times, however, the cor-
relations increase. This is caused by the growth of ordered
domains as mentioned earlier. In the log-linear plot the
curves look approximately linear which means that the decay
of GT(r ,tw) is roughly exponential. In contrast to the two-
dimensional spin glass the curves for larger waiting times do
not coincide which means that the system is not equilibrated
even after the longest waiting time in the simulations. This is
in agreement with what has been said about the autocorrela-
tion functionC(t,tw) in the previous section.

In principle an effective correlation length can be deter-
mined fromGT(r ,tw) by calculating the integral

jT~ tw!52E
0

`

GT~r ,tw!dr. ~11!

This definition is motivated by the fact that for a purely
exponential decayGT(r ,tw);exp(2r/j) this effective corre-
lation length is equal to the length scalej. The factor 2 in
~11! is introduced sinceG(r ,tw) in ~10! measures the square
of a correlation function.

When evaluating the integral~11! the periodic boundary
conditions have to be taken into account. In a system of
length L the correlations can only be calculated up to
r5L/2. Furthermore, for fixedr one actually measures the
correlationG(r ,tw)1G(L2r ,tw). Thus the integralI over
the function measured in the simulations has contributions
from G(r ,tw) andG(L2r ,tw):

I5E
0

L/2

G~r ,tw!dr1E
0

L/2

G~L2r ,tw!dr. ~12!

Assuming an exponential decay ofG(r ,tw);exp@2r/j(tw)#
one obtains an implicit equation forj(tw):

I5j~ tw!$12exp@2L/j~ tw!#%. ~13!

The resulting values ofj(tw) are shown for different tem-
peratures in Fig. 7. On the left-hand side logarithmic fits

j~ tw!2j0;@ ln~ tw!#1/c ~14!

and on the right-hand side algebraic fits

j~ tw!;tw
a~T! ~15!

are plotted. As can be seen, both fits are of the same quality
and in terms of ax2 test there is no difference between them.
Via the algebraic fit one obtains a set of temperature depen-
dent exponentsa(T) which increase approximately linearly
with temperature, for instance it isa(T50.2)50.026 and
a(T50.7)50.081. These exponents are very small since the
correlation length grows only slowly with time. Even for the
highest temperatureT50.7 used in the simulationsj(tw) is
less than four lattice spacings after 106 MCS. The logarith-
mic fit yields a roughly temperature independent value of
c'0.7160.02 which is in agreement with the bound
c<d21 given in Ref. 9. Recently a value ofc'0.8 has
been determined experimentally25 in the Ising spin-glass
Fe0.5Mn0.5TiO3 via dynamic scaling.

FIG. 6. The spatial correlation function
G(r ,tw) of the 3D EA model for temperatures
T50.4 and T50.5. The waiting times are
tw54n (n51, . . .,10) ~from bottom to top!.
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Considering the scaling law~9! of the autocorrelation
function one expects a similar scaling law to hold for the
spatial correlation functionG(r ,tw). This can be seen in Fig.
8 where a scaling plot of the form

G~r ,tw!;g̃@r / j̃~ tw!# ~16!

with the characteristic length scalej̃(tw);tw
ã(T) is shown.

The exponentsã(T) have been determined such that best
scaling behavior was achieved. They concur within the error
bars with the exponentsa(T) determined by the above inte-
gration procedure. Thus the characteristic length scale
j(tw) can be obtained via the scaling law~16! in a different
and more simple way than by~11! since the problems arising
from the periodic boundary conditions and the extrapolation
to infinity are avoided. The numerical errors are roughly the
same for both methods.

Considering the algebraic decay~6!, ~7! and the scaling
behavior~9! of the autocorrelation functionC(t,tw) an alge-
braic growth law~15! for the correlation length gives a more
consistent picture from our point of view for the following
reason: Assuming a logarithmic growth law~14! one obtains
a logarithmic decay ofC(t,tw) since C(t,tw);@L(tw)/

L(t1tw)#
l and thus also logarithmic scaling which is not

compatible with the results of the simulations as was shown
above. However, with an algebraic growth law~15! the au-
tocorrelation function decays algebraically and scales with
t/tw which is exactly what we found. A logarithmic growth
law was used in Ref. 9 by Fisher and Huse. They assumed a
particular scaling lawB(L);Lc for the ~free-! energy barri-
ers on length scaleL and via activated dynamics obtained
R(tw);(lnt)1/c for the average domain size. As has already
been noted in Ref. 12 a modified activated dynamics sce-
nario with a scaling law

B~L !;D~T!ln~L ! ~17!

for the energy barriers leads to algebraic domain growth
j(tw);tw

a(T) with a(T)5T/D(T) and thus is appropriate to
describe the results of the simulations. In Ref. 26 the depen-
dence of the barrier height on length scaleL has been exam-
ined explicitly by an annealing procedure and there was no
evidence for an algebraic dependence but also a logarithmic
law BL; lnL was found thus supporting our results. The pre-
dictions for the different scaling assumptions are summa-
rized in Table I.

Finally we want to discuss the concept of an overlap
length. It has been argued9,10,27 that the correlations in the
spin-glass phase are extremely sensitive to temperature and
field changes. This sensitivity should be observable via the
correlation function

Q~r ,T1 ,T2!5@^SiSi1r&T1^SiSi1r&T2#av. ~18!

This function is expected to decay asQ(r ,T1 ,T2)
;exp@2r/L(T1,T2)# with the length scaleL(T1 ,T2) being the
overlap length. Thus the correlations at temperaturesT1 and
T2 are the same for length scales smaller thanL(T1 ,T2)
whereas the correlations on larger length scales are com-
pletely destroyed.

It is expected27 that L(T1 ,T2) is finite even below the
spin-glass transition temperature where the usual correlation
length jeq is infinite. In thermal equilibrium
L(T1 ,T2);uT12T2u21/z with positive z5ds/22u is
predicted.27 ds is the fractal dimension of the droplets in the
droplet theory andu the exponent describing the free energy
of the dropletsFL;Lu.

To check the existence of such an overlap length we cal-
culated the~nonequilibrium! correlation function~10! but
with the two replicasa andb having the temperaturesT1 and

FIG. 7. Algebraic ~left! and logarithmic
~right! fits of the correlation lengthj(tw) of the
3D EA model for different temperatures.

FIG. 8. Scaling plot ofG(r ,tw) of the 3D EA model for
T50.4. The characteristic length scalej(tw) grows as
j(tw);tw

ã(T) .
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T2 , respectively, which yieldsQ(r ,tw ;T1 ,T2). Note that
limtw→`Q(r ,tw ;T1 ,T2)5Q(r ,T1 ,T2) as defined in~18!.
The resulting curves look very similar to the correlation
functions in Fig. 6. Thus we determined the waiting time
dependent overlap length in the same way as the correlation
length j(tw) by calculating the integral over the function
Q(r ,tw ,T1 ,T2) as in ~11!:

L~ tw ;T1 ,T2!52E
0

`

Q~r ,tw ;T1 ,T2!dr. ~19!

The results are shown in Fig. 9 whereL(tw ;T1 ,T2) and for
comparison the correlation lengthjT(tw) are shown. One
observes that the overlap length for temperaturesT1 andT2
(T1,T2) increases faster than the correlation length with
both temperatures set toT1 as can be seen for example by

comparing the overlap length forT150.4 andT250.6 with
the correlation length forT50.4. With increasing tempera-
ture differenceT22T1 the overlap length does not change
significantly ~see the curves forT150.4 andT250.5, 0.6,
0.7, and 0.8, respectively!, in particular it does not decrease
with increasing temperature difference, contrary to what one
might expect according to the arguments given above. This
means that either an overlap length in its original sense does
not exist or more likely, that the overlap length is much
larger than the correlation lengths reached in the simulations,
which would make it impossible to observe the effects of its
existence on the accessible time scales. The only effect of
setting one replica toT1 and the other replica toT2
(T1,T2) is that the faster dynamics at the higher tempera-
ture T2 leads to faster domain growth and thus the correla-
tions increase faster than with both replicas having tempera-
ture T1 . However, the increase of the correlations seems to
be limited by the lower of the two temperatures.

This interpretation is compatible with the outcome of tem-
perature cycling experiments for the same model~with bi-
nary couplings!.28 However, note that similar to the situation
with regards to experiments,29–33 also other interpretations
have been suggested.34

V. DOMAIN GROWTH IN THE 2D SPIN-GLASS MODEL

In this section we consider the two-dimensional spin-glass
model and present the results of an alternative method to
identify domains. The model is the two-dimensional analog
to the 3D model introduced in Sec. II, i.e., we have nearest-
neighbor interactions, periodic boundary conditions, Gauss-
ian couplings, and Glauber dynamics.

In contrast to the 3D model~1!, it is now possible to
calculate the ground state of the model in two dimensions. A
very fast implementation of a branch and cut algorithm35 has
been used making it possible to obtain ground states for lat-
tice sizes up to 1503150 on an ordinary workstation. Thus it
is not necessary to introduce a replica system to identify
domains since the ground state can be used instead. An
analysis using a replica system has been performed in a pre-
vious work13 and we compare the results of both methods.

FIG. 9. The overlap lengthL(tw ;T1 ,T2) of
the 3D EA model and the correlation length
j(tw) for different temperatures.

TABLE I. Predictions of different scaling assumptions. The bul-
lets indicate that the Monte Carlo simulations confirm the corre-
sponding prediction in the last column. A bullet with brackets
means that the numerical data can also be interpreted according to
the predictions of the droplet model. Concluding the hypothesis
~17! seems to give a more consistent description of experimental
and numerical results on aging in spin glasses presented so far.

Droplet model MC sim.
~Ref. 9!

Energy barrier B DLc D(T)lnL d

Activated dynamics t t;expB/T t;expB/T
Domain size L „t… STD lntD1/c ta(T) (d)

Remanent
magnetization

M TRM STD lntD2d/c t2l(T) d

Aging C„t,t w)
C̄S ln~t/t!

ln~tw /t!D C̃S ttwD
d

Asymptotic decay t@t w (lnt)2d/c t2l(T) d

t!t w (lnt)2u/c t2x(T) (d)
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In Fig. 10 the time evolution of an initially random spin
configuration is shown. The domains have been identified by
calculating for each spini

qi
EA~ tw!5

1

D (
t5tw

D21

Si
a~ t !Si

b~ t ! ~20!

for the replica method and

qi
g.s.~ tw!5

1

D (
t5tw

D21

Si~ t !Si
0 ~21!

by using the ground state.D is a suitably chosen time win-
dow andSi

0 denotes the ground state of the spin at sitei . In
both methods the same couplings were used. Obviously both
methods show an increasing average domain size but the
method using ground states shows larger domains since in
the replica method one has two thermally active systems.
Note that the domain structures look very different in both
methods even though the initial configuration of one of the
replicas was the same as that of the system used in the
ground state method. In contrast to ferromagnetic systems
even for very large waiting times very small domains exist.
These are either very stable clusters because strong bonds

FIG. 10. Domain growth in the 2D EA model
with Gaussian couplings. The right-hand side
shows the domains relative to the ground state
and the left-hand side shows the same configura-
tion relative to a replica system.

53 6425OFF-EQUILIBRIUM DYNAMICS IN FINITE-DIMENSIONAL . . .



have to be broken to flip the spins or new domains within the
bigger ones appear since less strongly bound spins initialize
the formation of a new domain.

To compare both methods quantitatively we measured the
correlation function

G~r ,tw!5
1

N(
i51

N
1

tw
(
t5tw

2tw21

@^Si~ t !Si1r~ t !Si
0Si1r

0 &#av ~22!

in the simulations. This correlation function is different from
the one~10! used in the 3D model in that the spins of the
replica system have been substituted by the ground state. We
used 128 ground states of 40340 lattices to perform our
investigation. In order to obtain good statistics also for
smaller waiting times we averaged over up to 4000 different
initial configurations and realizations of the thermal noise for
each ground state.

Figure 11 showsG(r ,tw) for two different temperatures
in a log-linear plot. As in the 3D modelG(r ,tw) decreases
rapidly with r but the decay is slower than in the 3D model.
For lower temperatures~see the curve forT50.3) G(r ,tw)
increases monotonously with waiting time as in the 3D
model whereas for higher temperatures@seeG(r ,tw) for
T50.8# the curves for higher waiting times coincide. This
means that the system is equilibrated at a certain waiting
time and the correlations take on their equilibrium values
which is due to the fact that the 2D model hasTg50 and
thus the equilibration time is finite. For lower temperatures
the equilibration time is larger than the simulation time
which makes the resulting curves qualitatively indistinguish-
able from the ones in the 3D model.

As in the 3D model an effective correlation length can be
calculated fromG(r ,tw) by

j~ tw!5E
0

`

G~r ,tw!dr. ~23!

The factor 2 present in~11! is left out here because the cor-
relation function defined in~22! is similar to a ferromagnetic
correlation function. Our results forj(tw) are shown in Fig.
12 and for somewhat higher temperatures in Fig. 13. Again
logarithmic fits according to~14! and algebraic fits according
to ~15! have been done. Only the low temperatures have been
considered since for higher temperatures the correlation
length saturates for small waiting times thus limiting the time
range for the fits. Obviously our data can nicely be fitted to
the logarithmic growth law as well as to the algebraic law.
Comparing the values of the correlation length to the earlier
investigation13 where the replica method has been used, we
obtain smaller values for the correlation length. However, the
exponents a(T50.2)50.046, a(T50.3)50.068, and
a(T50.4)50.090 describing the algebraic growth of the
correlation length and also the roughly temperature indepen-
dent value ofc50.6160.05 agree within the errorbars with
those obtained from the replica method. Furthermore it
should be mentioned that the exponentsa(T) grow linearly
with temperature.

The scaling behavior ofG(r ,tw) is shown in Fig. 14. As
in ~16! for the 3D model the exponentsã(T) for the charac-
teristic length scalej(tw);tw

ã(T) have been determined such
that best scaling was achieved. Analogous to the 3D model

FIG. 12. Algebraic~left! and logarithmic
~right! fits of the correlation lengthj(tw) of
the 2D EA model for different temperatures.

FIG. 11. The spatial correlation function
G(r ,tw) of the 2D EA model spin glass and
temperaturesT50.3 andT50.8. The waiting
times aretw55n (n51, . . . ,9).
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the values for the resulting exponentsã(T) also agree within
the errorbars with those obtained from the integration
method.

VI. SUMMARY AND DISCUSSION

Concluding we examined the nonequilibrium dynamics of
the two- and three-dimensional spin-glass model in detail by
calculating correlation functions in time and space. In the 3D
model algebraic decay of the autocorrelation function includ-
ing the remanent magnetization was found. The exponents of
the decay of the remanent magnetization are in quantitative
agreement with experimental values. The autocorrelation
function was found to scale witht/tw and a typical aging
scenario was established. A comparison of the exponents de-
scribing the quasiequilibrium decay ofC(t,tw) for a Gauss-
ian and a binary distribution of the couplings showed that

they take on roughly the same values but it is hard to decide
whether they are universal quantities or not since the critical
temperature for the model with Gaussian couplings is not
known to adequate accuracy.

The investigation of the spatial correlations showed that
the average domain size depends algebraically on the waiting
time. These results can be explained consistently within a
modified droplet theory where the original barrier law
B(L);Lc is replaced byB(L); lnL. The investigation of
the sensitivity of the spatial correlations with respect to tem-
perature changes did not show evidence for the existence of
a finite overlap length on time scales accessible in the simu-
lations. For the two dimensional we investigated the growth
of spatial correlations by calculating the overlap of the spin
configurations with the exact ground state state of the system
~determined via combinatorial optimization methods!. The
correlations defined in this way give rise to a quasiferromag-
netic correlation function. It turns out that in this way one
gets the same waiting time dependence of the domain size as
that obtained previously using the spin-glass correlation
function or replica overlap. We believe that the situation is
very similar in three dimensions.

At this point we would like to make a few remarks, which
reflect our interpretation of the numerical results that we ob-
tained. Therefore the following discussion has to remain
speculative to some extent, which might provide motivation
for future work. It is worth noting that the two-replica cor-
relation function is sensible to the presence of a large number
of nearly degenerate states, whereas the ground state overlap
measure only correlations of the spin configurations with the
global minimum of the energy function. Thus, having the
concept of many pure states in spin glasses in mind, this
observation seems to be pretty important: in two dimensions
the nonequilibrium dynamics is surprisingly similar to the
one-dimensional case, where no frustration is present, and if
the same observation could be made in the three-dimensional
EA ~Edwards-Anderson! model, it behaves like a disguised
ferromagnet with the ferromagnetic ground state replaced by
some other state and the magnetization as an order parameter
replaced by the global overlap with this state and identical to
the ~now trivial! EA-order parameter. The dynamics is
slowed down by the presence of many metastable states and
~free! energy barriers between them that obey an extremely
broad distribution — but otherwise nothing dramatical might
be observable: neither chaos in spin glasses9,27 nor aging in
various asymptotic regimes.21,36

One conclusion might be that the characteristics of the
spin-glass dynamics, which discriminates itself from a slow
quasiferromagnetic domain growth, become observable only
on much larger length~and time! scales than those attainable
by Monte Carlo simulations. The same, as we think, is also
true with respect to experiments: although the number of
decades~in time! that can be explored in a single experiment
is approximately 5~e.g., from 1 to 104 seconds in a typical
aging setup30,31,22! and thus even smaller than in our simula-
tions, the time scales themselves can vary over a much
broader range. However, assuming a microscopic time of
10212 seconds, which we deliberately identify for the mo-
ment with 1 Monte Carlo step in our simulations, the above
mentioned experimental time scale could only be reached by
performing 1012 to 1016 MC steps, which looks hopeless at

FIG. 13. The correlation lengthj(tw) of the 2D EA model for
higher temperatures.

FIG. 14. Scaling plot ofG(r ,tw) of the 2D EA model for
T50.3.
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the moment. The length scales that are physically relevant
are indeed comparable, though, simply for the reason of the
extremely sluggish domain growth: if the latter would be
logarithmic, as proposed by the droplet theory,9 the correla-
tion length reached in the experiments will be not much
larger ~depending on the exponentc) than twice the corre-
lation length of the Monte Carlo simulations. We do not
think that the physics is much different then.

The lesson that we have to learn from it is the following:
Most of the existing theories for the nonequilibrium dynam-
ics of spin glasses, which are claimed to be valid onasymp-
totic time scales, seem to be inappropriate for the description
of the physics onintermediatelength scales that are relevant
for the experiments and for the results obtained in this paper
~quite recently some ideas that might be relevant in this con-
text have been proposed37!. We have suggested a modified
scaling picture, whose basic assumption is a logarithmic

growth of energy barriers as a function of the domain size,
which describes consistently the physics of the two- and
three-dimensional spin-glass models on the length scales we
were able to explore. Obviously a more complete theory is
asked for, which might reveal the deeper reason for thisad
hocscaling assumption, which we leave open as a challenge
to future research.
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~ZPR! in Köln and the HLRZ at the Forschungszentrum Ju¨-
lich for the generous allocation of computing time on the
transputer cluster Parsytec–GCel1024 and on the Intel Para-
gon XP/S 10. This work was performed within the SFB 341
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