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We study numerically the critical region and the disordered phase of the random transverse-field Ising chain.
By using a mapping of Lieb, Schultz, and Mattis to noninteracting fermions, we can obtain a numerically exact
solution for rather large system sizes,L<128. Our results confirm the striking predictions of earlier analytical
work and, in addition, give results for some probability distributions and scaling functions.

I. INTRODUCTION

It has recently become clear that quantum phase
transitions1 in disordered systems are rather different from
phase transitions driven by thermal fluctuations. In particular,
Griffiths2 showed that the free energy is a nonanalytic func-
tion of the magnetic field in part of the disordered phase
because of rare regions, which are more strongly correlated
than the average and which arelocally ordered. However, in
a classical system, this effect is very weak, all the derivatives
being finite.3 By contrast, in a quantum system at zero tem-
perature, these effects are much more pronounced.

One model where these effects can be worked out in de-
tail, and where rare, strongly coupled regions dominate not
only the disordered phase but also the critical region, is the
one-dimensional~1D! random transverse-field Ising chain
with Hamiltonian

H52(
i51

L

Jis i
zs i11

z 2(
i51

L

his i
x . ~1!

Here the$s i
a% are Pauli spin matrices, and the interactions

Ji and transverse fieldshi are both independent random vari-
ables, with distributionsp(J) and r(h), respectively. The
lattice size isL, which we take to be even, and periodic
boundary conditions are imposed. The ground state of this
model is closely related to the finite-temperature behavior of
a two-dimensional classical Ising model with disorder per-
fectly correlated along one direction, which was first studied
by McCoy and Wu.4 Subsequently, the quantum model, Eq.
~1!, was studied by Shankar and Murthy,5 and recently, in
great detail, by Fisher.6 From a real space renormalization
group analysis, which becomes exact on large scales, Fisher
obtained, with his results, considerable physical insight. The
purpose of the present study is to investigate the model in
Eq. ~1! numerically, using a powerful technique7 which is
special to one-dimensional systems, to verify the surprising
predictions of the earlier work,4–6 and to determine certain
distributions and scaling functions which have not yet been
calculated analytically.

In one dimension one can perform a gauge transformation
to make all theJi andhi positive. Unless otherwise stated,
the numerical work used the following rectangular distribu-
tion:

p~J!5H 1 for 0,J,1,

0 otherwise,

r~h!5H h021 for 0,h,h0 ,

0 otherwise.
~2!

The model is therefore characterized by a single control pa-
rameter,h0 . As discussed in Sec. II, the critical point is at
h051 ~so the distributions ofh andJ are then the same! and
the deviation from criticality is conveniently measured by
the parameterd in Eq. ~6!, where, for the distribution in Eq.
~2!,

d5
1

2
lnh0 . ~3!

Section II discusses the analytical results obtained previ-
ously, and Sec. III reviews the work of Lieb, Schultz, and
Mattis,7 Katsura,8 and Pfeuty9 which relates the Hamiltonian
to free fermions, and also explains how this technique can be
implemented numerically for the random case. In Sec. IV the
numerical results for the distribution of the energy gap are
shown, while Sec. V discusses results for the correlation
functions. Results for the local susceptibility on smaller
sizes, obtained by the Lanczos method, are discussed in Sec.
VI, while data for theq50 structure factor, which could be
measured in a scattering experiment, are considered in Sec.
VII. Finally, in Sec. VIII, we summarize our conclusions and
discuss the possible relevance of the results to models in
higher dimensions.

II. ANALYTICAL RESULTS

In this section we summarize the results obtained earlier
by McCoy and Wu,4 Shankar and Murthy5 and particularly
by Fisher.6 Defining
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Dh5@ lnh#av,

DJ5@ lnJ#av, ~4!

where@•••#av denotes an average over disorder, the critical
point occurs when

Dh5DJ . ~5!

Clearly this is satisfied if the distributions of bonds and fields
are equal, and the criticality of the model then follows from
duality. A convenient measure of the deviation from critical-
ity is given by

d5
Dh2DJ

var @h#1var @J#
. ~6!

At a quantum critical point one needs to consider the dy-
namical critical exponentz, even when determining static
critical phenomena, because statics and dynamics are
coupled. The relation between a characteristic length scale
l and the corresponding time scalet is thent; l z. For the
present model one has, at the critical point,

z5` ~d50!, ~7!

or, more precisely, the time scale varies as the exponential of
the square root of the corresponding length scale. In addition,
the distribution of local relaxation times is predicted to be
very broad. One of the goals of the present work is to deter-
mine the form of the distribution of a related quantity, the
gap to the first excited state.

Moving into the disordered phase, there is still a very
broad distribution of relaxation times because of Griffiths
singularities, and one can still, as a result, define a dynamical
exponent but this now varies withd, diverging as

z5
1

2d
1C1O~d!, ~8!

for d→0, whereC is a nonuniversal constant. Moving far-
ther away from the critical point, if one reaches a situation
where all the fields are bigger than all the interactions, then
Griffiths singularities no longer occur and the distribution of
relaxation times becomes narrow. Denoting the value ofd
where this happens bydG , Griffiths singularities occur in
that part of the disordered phase where10

0,d,dG . ~9!

Approaching the end of the Griffiths phase, one has

lim
d→dG

2

z50. ~10!

For the distribution used in the numerical calculations, Eq.
~2!, dG5`, and so Griffiths singularities occur throughout
the disordered phase. In the disordered phase, the magneti-
zation in thez direction has a singular piece if a uniform
field, H, coupling tosz, is added, namely,

msing;uHu1/z, ~11!

and so the linear susceptibility diverges over part of the dis-
ordered phase, a result first found by McCoy and Wu.4

Next we turn to predictions for the correlation functions

Ci j5^s i
zs j

z&. ~12!

Again there are very big fluctuations, and, as a result, the
average and typical correlations behave quite differently. The
average correlation function

Cav~r !5
1

L (
i51

L

@^s i
zs i1r

z &#av ~13!

varies as a power ofr at criticality,

Cav~r !;
1

r 22f ~d50!, ~14!

where

f5
11A5
2

51.61804 . . . ~15!

is the golden mean, and so the power in Eq.~14! is approxi-
mately 0.38. Away from criticality,Cav(r ) decays exponen-
tially at a rate given by thetrue correlation lengthj where

j'
l V
dn , ~16!

with

n52. ~17!

The amplitude of the correlation length,l V , is also known
and given by

l V5
2

var @h#1var @J#
. ~18!

For the distribution in Eq.~2! one has

l V51. ~19!

Scaling theory predicts that

Cav~r ;d!

Cav~r ;d50!
5C̄av~r /j!, ~20!

where C̄av is a universal scaling function andn is the true
correlation function exponent, predicted6 to equal 2. Fisher6

has calculated the asymptotic form of the scaling function in
Eq. ~20! for r@j and finds

C̄av~x!5D
e2x24.055x1/3

x0.451
~x@1!, ~21!

whereD is an unknown constant, and 0.451 is the numerical
value of 5/62(22f). The averagecorrelation function is,
however, dominated by rare pairs of spins which have a cor-
relation function of order unity, much larger than the typical
value, and so it is necessary to consider the distribution of
lnC(r) to get an idea of thetypical behavior. At the critical
point

2 lnC~r !;Ar ~d50!, ~22!
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with the coefficient in Eq.~22! having a distribution which is
independent ofr . A goal of the present study is to investigate
this distribution numerically. In the disordered phase,
2 lnC(r)} r with a coefficient which isself-averagingfor
r→`, i.e.,

2 lnC~r !'r / j̃, ~23!

for large r , where the typical correlation lengthj̃ has the
behavior

j̃;
1

dñ
, ~24!

with

ñ51. ~25!

The scaling equation corresponding to Eq.~20!, but for
the average of the logarithm of the correlation function, is

F ln C~r ;d!

C~r ;d50!G
av

5 lnC̄typ~r / j̃ !, ~26!

where C̄typ is a universal scaling function. From Eqs.~22!
and ~23! one has, forr@ j̃,

lnC̄typ~r / j̃ !'2r / j̃. ~27!

For correlations of quantities such as the energy, which
are local in the fermion operators@see Eqs.~33! and ~34! of
the next section#, Shankar and Murthy5 obtained more de-
tailed information. They calculated not only the exponent for
the typical correlation length in Eq.~24! but also the ampli-
tude, finding

j̃215@ lnh#av2@ lnJ#av ~28!

exactly. For r@ j̃ the mean of lnCen(r ) is defined to be
2r / j̃, and so

@ lnCen~r !#av'2$@ lnh#av2@ lnJ# av%r ~29!

in this limit. The variance of the distribution is also known11

for r@j:

var @ lnCen~r !#'$var @ lnh#1 var @ lnJ#%r . ~30!

Note that the standard deviation of lnCen(r ) is proportional
to r 1/2 whereas the mean is proportional tor , and so
lnCen(r ) becomes self-averaging forr@ j̃.

Fisher11 has suggested that Eqs.~28!–~30! might also be
true asymptotically for quantities such assz which arenot
local in fermion operators. If this is true, then, for the distri-
bution in Eq.~2!, we have

@ lnC~r ;d!#av'22dr , ~31!

var @ lnC~r ;d!#'2r , ~32!

for r@ j̃.
Note that an important feature of these results is that the

true correlation length~which describes the average correla-
tion function! has a different exponent from that of the typi-
cal correlation length.

III. MAPPING TO FREE FERMIONS

The numerical calculations are enormously simplified by
relating the model in Eq.~1! to noninteractingfermions. This
technique was developed for some related quantum spin
chain problems in a beautiful paper by Lieb, Schultz, and
Mattis,7 and then applied to thenonrandomtransverse field
Ising chain by Katsura8 and Pfeuty.9

The starting point is the Jordan-Wigner transformation,
which relates the spin operators to the fermion creation and
annihilation operatorsci

† andci by the following transforma-
tion:

s i
z5ai

†1ai ,

s i
y5 i ~ai

†2ai !, ~33!

s i
x5122ai

†ai5122ci
†ci ,

where

ai
†5ci

†expF2 ip(
j51

i21

cj
†cj G ,

~34!

ai5expF2 ip(
j51

i21

cj
†cj Gci .

This works because the Pauli spin matrices anticommute on
the same site but commute on different sites. The ‘‘string
operator’’ in the exponentials in Eq.~34! is just what is
needed to insert an extra minus sign, converting a commuta-
tor to an anticommutator for different sites. The Hamiltonian
can then be written

H5(
i51

L

hi~ci
†ci2cici

†!2 (
i51

L21

Ji~ci
†2ci !~ci11

† 1ci11!

1JL~cL
†2cL!~c1

†1c1!exp~ ipN !, ~35!

where

N 5(
i51

L

ci
†ci ~36!

is the number of fermions. The last term in Eq.~35! is dif-
ferent from the other terms involving theJi since the string
operator in Eq.~34! acts all the way around the lattice be-
cause of periodic boundary conditions. Although the number
of fermions is not conserved, the parity of that numberis
conserved, and so exp(ipN ) is a constant of the motion and
has the value 1 or21. Hence, the fermion problem must
have antiperiodic boundary conditions if there is an even
number of fermions and periodic boundary conditions if
there is an odd number of fermions. Note that the fermion
Hamiltonian, Eq~35!, is bilinear in fermion operators, and so
describesfree fermions.

For the nonrandom model7–9 one solves for the single-
particle eigenstates of Eq.~35! by ~i! a Fourier transform to
operatorsck

† andck , wherek is the wave vector, followed by
~ii ! a Bogoliubov-Valatin transformation in which new ferm-
ion creation operatorsgk

† are formed as a linear combination
of ck

† andc2k in order to remove the terms inH which do
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not conserve particle number. In the random case, we pro-
ceed in an analogous way. We define a column vectorC and
its Hermitian conjugate row vectorC†, each of length 2L,
by

C†5~c1
† ,c2

† , . . . ,cL
† ,c1 ,c2 , . . . ,cL!. ~37!

Note that theC and C† satisfy the fermion commutation
relations

C i
†C j1C jC i

†5d i j ,

C i
†C j

†1C j
†C i

†5C iC j1C jC i50, ~38!

irrespective of whetherC i refers to a creation or annihilation
operator. For reasons that will become clear below, the
Hamiltonian is written in a symmetrical form, replacing
cici11 by (cici112ci11ci)/2, ci

†ci11 by (ci
†ci112ci11ci

†)/
2, etc. It can then be written in terms of a real-symmetric
2L32L matrix H̃ as

H5C†H̃C, ~39!

whereH̃ has the form

H̃5F A B

2B 2AG , ~40!

whereA andB areL3L matrices with elements given, for
periodic boundary conditions, by

Ai ,i5hi , Ai ,i1152Ji /2,

Ai11,i52Ji /2, Bi ,i115Ji /2, ~41!

Bi11,i52Ji /2,

where i11 is replaced by 1 fori5L. Note thatA is sym-
metric andB is antisymmetric, and soH̃ is indeed symmetric
as claimed. For antiperiodic boundary conditions, one
changes the sign of the terms connecting sitesL and 1 in Eq.
~41!.

Next we diagonalizeA numerically, using standard
routines,12 to find the single-particle eigenstates with eigen-
valuesem , m51,2, . . . ,2L and eigenvectorsFm

† which are
linear combinations of theC i

† with real coefficients. We re-
quire that theFm

† have the same commutation relations as the
C i

† ,@see Eq.~38!#, which is satisfied provided the transfor-
mation from theC i to theFm is orthogonal, which in turn is
guaranteed by the symmetry ofH̃ that we enforced above. If
we interchange theci

† with theci in Eq. ~37!, thenH̃ changes
sign. Hence the eigenstates come in pairs, with eigenvectors
that are Hermitian conjugates of each other and eigenvalues
which are equal in magnitude and opposite in sign. We can
therefore defineFm

†5gm
† if em.0 andFm8

†
5gm if m8 is the

state with energy2em . The Hamiltonian can then be written
just in terms ofL ~rather than 2L) modes as

H5 (
m51

L

em~gm
†gm2gmgm

† !, ~42!

where all theem are now taken to be positive. From Eqs.~35!
and~42!, one sees that if all theJi are zero, then theem equal

the hi , as expected. We shall denote by ‘‘quasiparticles’’
excitations created by thegm

† , whereas excitations created by
the ci

† will be called ‘‘bare particles.’’
The many-particle states are obtained by either having or

not having a quasiparticle in each of the eigenstates. One has
to be careful, though, because, with periodic boundary con-
ditions, the number of bare particles,N in Eq. ~36!, must be
odd, while for states with antiperiodic boundary conditions
the number must be even. Thus, to generate all the many-
body states one needs to solve the fermion problem forboth
periodic and antiperiodic boundary conditions, and keep only
half the states in each case.

In order to determine which states correspond to the
ground state and the first excited state it is useful to consider
first the nonrandom case.7,9 There the ground state is in the
sector with antiperiodic boundary conditions, and has no
quasiparticles, which corresponds toN even as required.
Hence the ground state energy is given by

E052 (
m51

L

em
ap , ~43!

where we indicate that the energies are to be evaluated with
antiferromagnetic boundary conditions. The first excited
state is in the the sector with periodic boundary conditions.
In the disordered phase, there is one quasiparticle, in the
eigenstate with lowest energy, and this state has an odd num-
ber of bare particles, as required. Hence the energy of the
first excited state of the pure system in the disordered phase
is given by

E15e1
p2 (

m52

L

em
p ~d.0!, ~44!

where we have ordered the energies such thate1 is the small-
est. At the critical point of the nonrandom model,e1 be-
comes zero. In the conventional point of view, one then says
that e1 becomes negative in the ordered phase. From our
perspective of numerical calculations, it is more convenient
to define all theem to be positive, which means that we are
effectively interchanging the role of the creation and annihi-
lation operatorsg1

† andg1 . Hence, from our point of view,
there are now no quasiparticles, but this still corresponds to
an odd number of bare particles. From either point of view,
the energy of the first excited state of the pure system in the
ordered phase is given by

E152 (
m51

L

em
p ~d,0!, ~45!

with all the em
p taken to be positive. Note that in the disor-

dered phase there is a finite gap 2e1 in the thermodynamic
limit, whereas in the ordered phase the gap tends exponen-
tially to zero asL→`. This is the manifestation of broken
symmetry. Note also that we can rephrase the result forE1 of
the pure system by saying that it is given by Eq.~44! if the
state with no quasiparticles has an even number of bare par-
ticles and by Eq.~45! if it has an odd number~taking all the
em to be positive!.

For the random problem the picture turns out to be very
similar. We find that the ground state energy is given by Eq.
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~43! and the lowest excited state has energy given either by
Eq. ~44! or Eq.~45!, depending on whether the state with no
quasiparticles has an even or an odd number of bare
particles,13N . The parity ofN is determined from Eq.~57!
below.

We have checked that our the code is correct by compar-
ing results forE0 andE1 for small sizes obtained from this
fermion method with results obtained for the original prob-
lem, Eq. ~1!, using both complete diagonalization and also
the Lanczos method. In all cases the results agreed to within
machine precision.

We now proceed to the calculation of the correlation func-
tions in the ground state.7 As discussed above, this is in the
sector with antiperiodic boundary conditions, which will be
assumed in the rest of this section, unless otherwise stated.
Assuming, without loss of generality, thatj. i , Ci j can be
expressed in terms of fermions by

Ci j5K ~ci
†1ci !expF2 ip(

l5 i

j21

cl
†cl G ~cj

†1cj !L , ~46!

where the averages are to be evaluated in the ground state.
Now

exp@2 ipcl
†cl #52~cl

†2cl !~cl
†1cl ! ~47!

5~cl
†1cl !~cl

†2cl !, ~48!

and so defining

Al5cl
†1cl ,

~49!
Bl5cl

†2cl ,

and noting thatAi
251, one has

Ci j5^Bi~Ai11Bi11•••Aj21Bj21!Aj&. ~50!

This rather complicated looking expression can be evaluated
using Wick’s theorem. To see this, note first that

^AiAj&5^d i j2cj
†ci1ci

†cj&

5d i j ~51!

~sincecj
†ci andci

†cj are Hermitian conjugates of each other
and a real diagonal matrix element is being evaluated! and
similarly

^BiBj&52d i j . ~52!

Hence the only nonzero contractions are^AjBi& and
^BiAj&, since^BiBi& and ^AiAi& never occur. Defining

^BiAj&52^AjBi&5Gi j , ~53!

the correlation function is given by a determinant

Ci j5U Gi ,i11 Gi ,i12 ••• Gi j

Gi11,i11 Gi11,i12 ••• Gi11,j

A A � A

Gj21,i11 Gj21,i12 ••• Gj21,j

U , ~54!

which is of sizej2 i .

Gi j can be expressed in terms of the eigenvectors of the
matrix H̃ in Eq. ~40!. Let us write

ci
†1ci5(

m
fm i~gm

†1gm!,

~55!

ci
†2ci5(

m
cm i~gm

†2gm!,

wherec andf can be shown to be orthogonal matrices. It
follows that

Gi j5^~ci
†2ci !~cj

†1cj !&5(
m

cm ifm j^~g i
†2g i !~g j

†1g j !&

52~cTf! i j , ~56!

since ^g†g†&5^gg&50 and there are no quasiparticles in
the ground state, and so^g†g&50.

Numerically it is straightforward to compute theGi j from
Eq. ~56! and then insert the results into Eq.~54! to determine
theCi j for all i and j .

Finally we note that the parity of the number of bare
particles,N , in the state with no quasiparticles can also be
obtained,for either boundary condition, from theGi j since

^exp~ ipN !&5K )
i51

L

BiAi L 5detG, ~57!

where we assumed thatL is even; otherwise, from Eq.~47!,
there would be an additional minus sign.

IV. RESULTS FOR THE ENERGY GAP

For the pure system, the energy gap

DE5E12E0 ~58!

is finite in the disordered phase, and tends to zero exponen-
tially with the size of the system in the ordered phase. Con-
sider now the random case in the disordered phase, so that
@ lnh#av.@ lnJ#av. Because of statistical fluctuations, there are
finite regions which are locally ordered; i.e., if one were to
average just over one such region, then the inequality would
be the other way round. These regions will have a very small
gap. Hence one expects large sample-to-sample fluctuations
in the gap, especially for big systems.

Data for the distribution of lnDE at the critical point
h051 are shown in Fig. 1 for sizes between 16 and 128. One
sees that the distribution gets broader with increasing system
size. This is clear evidence thatz5` as predicted. The pre-
cise prediction is that the logarithm of the characteristic en-
ergy scale should vary as the square root of the length scale.
With this in mind, Fig. 2 shows a scaling plot for the distri-
bution of lnDE/L1/2, which works quite well.

In the disordered phase, the data look rather different.
Figure 3 shows the distribution of lnDE, for h053. Unlike
Fig. 1, the curves for different sizes now look very similar
but shifted horizontally relative to each other. This implies
that the data scale with afinite value ofz, as predicted.

Note that in the region of small gaps, the data in Fig. 3 are
a straight line, indicating a power law distribution of gaps.
This power law behavior is not special to the 1D problem
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discussed here, but is expected quite generally14 in the Grif-
fiths phase for systems with discrete symmetry. The power is
related toz as we shall now see. Well into the disordered
phase, excitations which give a small gap are well localized,
and so we assume that the probability of having small gap is
proportional to the size of the system,L. This assumption is
confirmed by the data in Fig. 3. Hence, the probability of
having a gap betweenDE and DE(11e) ~for some e)
should have the scaling form,eLDE1/z, and so the distribu-
tion of gaps,P(DE), must vary as

P~DE!;DE2111/z, ~59!

in the region of small gaps. It is tidier to use logarithmic
variables, and the corresponding expression for the distribu-
tion of lnDE is

ln@P~ lnDE!#5
1

z
lnDE1 const. ~60!

From the slopes in Fig. 3 we estimatez.1.4, which gives
a satisfactory scaling plot as shown in Fig. 4. The data do not
collapse so well for large gaps, but this may be outside the
scaling region.

We have carried out a similar analysis for other values of
h0 . Close to the critical point, it is difficult to determinez
because the distribution broadens with increasing size for
small sizes~presumably whereL<j), but then the slope of
the straight line region starts to saturate, corresponding to a
large but finitez. The sizes that we can study are therefore in
a crossover region between conventional dynamical scaling
(z finite! and activated dynamical scaling (z infinite!, and so
the data do not scale well with any choice ofz.

FIG. 1. A plot of the distribution of the logarithm of the energy
gapDE at the critical pointh051 for lattice sizes between 16 and
128. The distribution was obtained from the value of the gap for
50 000 samples for each size. For the larger sizes, the distribution is
cut off at small values because, in this region, the gap is essentially
zero within double precision accuracy. One sees that the distribution
gets broader and broader asL increases.

FIG. 2. A scaling plot of the data in Fig. 1, assuming that the
logarithm of the energy scale~here the gap! varies as the square
root of the corresponding length scale~here the size of the system!.

FIG. 3. A plot of the distribution of the logarithm of the energy
gapDE in the disordered phase ath053 for lattice sizes between
16 and 128. The distribution was obtained from the value of the gap
for 50 000 samples for each size. The different curves are very
similar and just shifted relative to each other.

FIG. 4. A scaling plot of the data in Fig. 3, assuming scaling
with a finite value ofz. The fit here hasz51.4.
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Fisher6 has predicted thatz is equal to 1/2d1C, near the
critical point, whereC is nonuniversal constant@see Eq.~8!#.
We show our estimates for 1/z plotted againstd@which is
related toh0 by Eq. ~3!# in Fig. 5. Also shown is a fit of
1/z to 2d(122dC), which corresponds to Eq.~8! and which
works quite well withC50.311.

The exponents are predicted to be universal, i.e., indepen-
dent of the distributionsp(J) andr(h) ~as long as these do
not have anomalously long tails!. To test universality, we
also did some calculations for a bimodal distribution, in
which J andh take one of two values,

p~J!5
1

2
@d~J21!1d~J23!#,

~61!

r~h!5
1

2
@d~h2h0!1d~h23h0!#.

The critical point is ath051. The data forDE at the critical
point are shown in Fig. 6 and the scaling plot is presented in
Fig. 7. The data scale reasonably well, indicating thatz5`
at the critical point, just as for the continuous distribution in
Eq. ~2!. The data collapse is not as good as for the continu-
ous distribution, presumably indicating that the approach to
the scaling limit is slower.

V. RESULTS FOR CORRELATION FUNCTIONS

We start by looking at the correlation functions at the
critical point and then discuss our results in the disordered
phase.

The average correlation function at the critical point is
shown in a log-log plot in Fig. 8 for several sizes. The data
for the larger sizes lie on a straight line, and the dashed line,
which is a fit to theL5128 data for 7<r<35, has a slope of
20.38, in excellent agreement with Fisher’s6 prediction in
Eq. ~14!.

A graph of the average of the logarithm of the correlation

function ~which corresponds to the logarithm of atypical
correlation function! is shown in Fig. 9 plotted againstAr .
As expected5,6 from Eq. ~22! the data fall on a straight line.
The data in Figs. 8 and 9 indicate that the average and typical
correlation functions do behave very differently at the critical
point, as predicted.

The reason for this difference is that the distribution of
lnC(r) is very broad, as can be seen in the plot in Fig. 10.
Fisher6 has predicted that the distribution of@ lnC(r)#/Ar
should be universal and independent ofr , and so we show
the corresponding scaling plot in Fig. 11. Note that the dis-
tribution monotonically decreases asC(r ) becomes smaller.
The data scale well for larger values ofC, including even the
upturn near the right-hand edge of the graph. This is the
region whereC(r ) is anomalously large and which gives the
dominant contribution to the average correlation function.
An interesting question, then, is whether the value for the

FIG. 5. Results for 1/z againstd, where z is the dynamical
exponent andd is related toh0 by Eq.~3!. The solid curve is a fit to
1/z52d(122dC) @which corresponds to the expected form~Ref.
6, Eq. ~8!# with C50.311. The dashed line is 1/z52d, the pre-
dicted asymptotic form ford→0.

FIG. 6. A plot of the distribution of the logarithm of the energy
gapDE at the critical pointh051 for the bimodal distribution in
Eq. ~61!. The distribution was obtained from the value of the gap
for 50 000 samples for each size.

FIG. 7. A scaling plot of the data in Fig. 6. The collapse of the
data indicates thatz5`, the same as for the continuous distribution
of Eq. ~2! ~see Fig. 2!.
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average correlation function is included in the scaling func-
tion for lnC(r)/Ar . If so, the scaling function willdivergeas
a power near the origin.11 To see this, note that if the prob-
ability of having a correlationC at a distancer only depends
on the combination

y5~ lnC!/Ar ~62!

and that if

P~y!;
1

yl ~63!

for small y, then the average value ofC(r ) is given by

@C~r !#av;E
e

1

dCS lnCr 1/2D
2l 1

r 1/2
, ~64!

assuming that the integral is dominated by the region of
small lnC. Integrating overC gives a finite number so that

@C~r !#av;
1

r
1
2 ~12l!

~65!

and comparing with Eq.~14! yields

l52f23.0.24. ~66!

An enlarged log-log plot of the region of the upturn in
Fig. 11 is shown in Fig. 12. The data do lie on a rough
straight line whose slope decreases~in magnitude! with in-
creasingr . A fit to the data forr524 in the middle region of
the graph has a slope of about 0.45~in magnitude!, larger
than 0.24, but since the effective slope decreases with in-
creasingr the data do not rule out the possibility that the

FIG. 8. A log-log plot of the average correlation function against
distance at the critical point. The straight line behavior for larger
sizes indicates a power law variation. The dashed line is a fit to the
data forL5128 with 7<r<35 and has slope of20.38 in excellent
agreement with the prediction in Eq.~14!. The results are obtained
by averaging over all pairs of points separated by a distancer for
10 000 samples.

FIG. 9. A plot of the average of the logarithm of the correlation
function againstAr at the critical point. The straight line behavior
for larger sizes supports the prediction~Refs. 5,6! of Eq. ~22!. The
results are obtained by averaging over 10 000 samples.

FIG. 10. The distribution of the log of the correlation function
for different values ofr at the critical point. The data are obtained
from 10 000 samples of sizeL5128.

FIG. 11. A scaling plot of the data in Fig. 10 according to the
theoretical prediction~Ref. 6! The data collapse well in the region
of fairly high probability, including the upturn near the right-hand
edge~which may indicate a divergence as the abscissa tends to 0;
see the text!. There are systematic deviations in the tail which may
be due to corrections to scaling.
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distribution of@ lnC(r)#/Ar diverges with an exponent of 0.24
for r→`. Even if the scaling function for@ lnC(r)#/Ar gives
the correctpowerfor the average correlation function, it does
not necessarily mean that theamplitudeis correct, since there
could also be additional nonuniversal contributions to the
amplitude, outside the scaling function.11

We suspect that the systematic deviation in the tail of the
distribution in Fig. 11 at small values ofC(r ) indicates cor-
rections to scaling for this range of sizes and distances.

We now discuss our results for the disordered phase. The
scaling plot corresponding to Eq.~20! is shown in Fig. 13.
The plot hasn51.8 which gave the best fit, and which
agrees fairly well with the predictionn52. A plot using
n52 works somewhat less well, presumably indicating that
there are corrections to scaling for this range of lattice sizes
and distances. Figure 14 is a scaling plot using the theoretical
value n52 which also shows the asymptotic form in Eq.
~21! with D535. Both the data and the prediction of Eq.
~21!, have substantial curvature: much more than in the cor-
responding data for lnC(r) shown in Figs. 15 and 16. Over

the range of accessible values ofrd2, the data and the
asymptotic prediction do not track each other closely, though
it is possible that they would do so for larger values of
rd2.

The data for the logarithm of the scaling function scale
well according to Eq.~26! , though the best fit has a slightly
different exponent of 1.1~see Fig. 15!. Presumably this dif-
ference again indicates that there are corrections to scaling
for the sizes and distances studied. Note that the data in Fig.
15 arecloseto a straight line but thereis statistically signifi-
cant curvature.

Figure 16 tests the more stringent prediction5,11 for the
average of lnC(r) in the limit r@ j̃ obtained by combining
Eq. ~27! with the assumption that the expression forj̃ in Eq.
~28! is exact for correlations ofsz. One sees that it works
quite well. Although our best estimates of the critical expo-
nentsn and ñ do not quite agree with the theoretical predic-

FIG. 12. An enlarged log-log plot of the region of the upturn in
Fig. 11 where the abscissa approaches zero.

FIG. 13. A scaling plot of the average correlation function in the
disordered phase according to Eq.~20!. The best fit~shown! is for
n51.8, fairly close to the prediction~Ref. 6! n52. The data rep-
resent an average over 10 000 samples.

FIG. 14. A scaling plot of the average correlation function, ac-
cording to Eq.~20! with the predicted valuen52. The curve is a
plot of Eq.~21! ~expected to be valid forrd2@1) withD535. Note
that from Eqs.~16! and~19!, one hasj215d2 for the distribution of
Eq. ~2!.

FIG. 15. A scaling plot of the average of the logarithm of the
correlation function in the disordered phase according to Eq.~26!.
The best fit~shown! is for ñ51.1, close to the prediction~Refs. 5,6!
ñ51. The data are an average over 10 000 samples.
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tions, they are fairly close to those predictions, and they dif-
fer substantiallyfrom each other, providing clear evidence
that there are different correlation length exponents for the
average and typical correlation functions.

Finally, in this section, we look at thedistribution of
lnC(r) for r larger than either the average or typical correla-
tion lengths. It is predicted5,6 that the distribution of
@ lnC(r)#/r should becomesharpat larger in this limit. Fig-
ure 17 shows data for the distribution of lnC(r) ath053. One
sees that both the peak position and the width increase with
increasingr , but the peak position increases faster as can be
seen in Fig. 18 which shows the distribution of@ lnC(r)#/r. In
Fig. 19 we test the more precise predictions5,11 for the mean

and variance of lnC(r) given in Eqs. ~31! and ~32!, for
h053. The fits give reasonable agreement with Eqs.~31! and
~32!, but assume a form of corrections to scaling that we
have been unable to justify.

VI. LOCAL SUSCEPTIBILITY

In this section we discuss thelocal susceptibility rather
than the uniform susceptibility, because it has somewhat sim-
pler behavior. Since it it just involves correlations on a single

FIG. 16. A scaling plot of the average of the logarithm of the
correlation function in the disordered phase according to Eq.~26!,
assuming the theoretical valueñ51. The solid line is the prediction
of Eq. ~27!, which expected to be valid at larger , but also works
well down to r50. It appears that by dividing by the correlation
function at criticality, we incorporate most of the corrections to the
asymptotic form in Eq.~27!. Note that from Eq.~28! one has
j̃2152d.

FIG. 17. The distribution of the logarithm of the correlation
function for different values ofr at h053 in the disordered phase.
The data represent an average over 10 000 samples forL564. Both
the most probable value and the width of the distribution increase
with r but the most probable value increases faster~see Fig. 18!.

FIG. 18. A scaling plot of the data in Fig. 17. The width of the
distribution is seen to narrow with increasingr , as expected.

FIG. 19. The mean and variance of the distribution of lnC(r) in
the disordered phase ath053 for different values ofr . Both the
mean and variance are expected to be proportional tor at larger .
The lines are least squares fits of the forma1br1/21cr. This form
is motivated by the behavior at criticality, for which the mean varies
as r 1/2, and, in fact, ther 1/2 correction to scaling was effectively
removed in Fig. 16 by factoring out the behavior at criticality. How-
ever, it is not clear that the constant and ther 1/2 term give all the
corrections to scaling in the disordered phase. The fit to the mean
has a520.140,b51.145,c51.014, while the fit to the variance
hasa51.025,b521.736,c52.029. According to the suggestion of
Fisher,~Ref. 11! following Shankar and Murthy~Ref. 5!, the lead-
ing behavior for larger should be given by Eqs.~31! and ~32!.
Noting that here 2d5 ln3.1.099, we see that the larger behavior
obtained from the fits is in rather good agreement with theory.

53 8495NUMERICAL STUDY OF THE RANDOM TRANSVERSE-FIELD . . .



site, any singularity must come only from long-time correla-
tions, whereas the uniform susceptibility involves correla-
tions both in space and time. Our results for the uniform
susceptibility away from the critical point do not scale in a
simple manner, and we suspect that there are logarithmic
corrections, as occurs for bulk behavior at finite
temperature.6

Since it is difficult to compute the susceptibility from the
fermion method, particularly with periodic boundary condi-
tions, we have used the Lanczos diagonalization technique
on the original spin Hamiltonian, Eq.~1!. Of course the price
we pay is that the lattices are much smaller,L<16. The local
susceptibility atT50 is given by

x loc52(
nÞ0

u^0us i
zun&u2

En2E0
, ~67!

whereun& denotes a many-body state of the system andu0&
is the ground state. Because of the form of Eq.~67! we
expect that the scaling ofx loc will be very similar to that of
1/DE. This is indeed the case as seen in Fig. 20, which plots
the distribution of lnxloc at the critical point. The distribution
broadens with system size, consistent withz5`. The data
scale in the expected manner, as shown in Fig. 21, which is
very similar to the corresponding plot for the energy gap in
Fig. 2.

Even though the range of sizes used in the Lanczos
method is rather small, it is, nonetheless, capable of distin-
guishingz5` scaling at the critical point from finitez scal-
ing z away from the critical point. This can be seen by com-
paring Fig. 20 with Fig. 22, which plots the distribution of
lnxloc at h053. In Fig. 22 the curves no longer broaden with
increasingL but the distributions areindependentof size.
The reason why there is no size dependence here but there is
in the distributions of lnDE in Fig. 3 is easy to understand.
ForDE, we compute the probabilityper sampleof getting a
certain value, and this is proportional toL in the disordered
phase for smallDE, since the rare strongly correlated region
can occur anywhere. We used this result in Sec. IV to relate
the exponent in the distribution to 1/z @see Eqs.~59! and

~60!#. With x loc , however, we compute the probabilityper
site, and so there is no factor ofL and the distribution is
independent of size. This is, of course, the normal state of
affairs when the lattice size is much larger than the correla-
tion length. The slope of the straight line region in Fig. 22
agrees with the slopes in Fig. 3 and so gives the same value
of z as obtained from the gap, i.e.,z.1.4.

VII. STRUCTURE FACTOR

A scattering experiment measures directly the structure
factorS(q), defined by

S~q!5
1

L (
j ,l

Cjl e
iq~ j2 l !. ~68!

Although the distribution of individual terms in the sum is
broad, it is interesting, and relevant for experiment, to ask
whether there are large sample-to-sample fluctuations in the
total. We have attempted to answer this forq50, where fluc-

FIG. 20. The distribution of the logarithm of the local suscepti-
bility at the critical point for different sizes obtained by the Lanczos
method. The number of samples is 50 000/L, so that 50 000 values
for x loc were obtained for each size.

FIG. 21. A scaling plot of the data in Fig. 20. The data scale in
the same way as that for the log of the gap~see Fig. 2!.

FIG. 22. The distribution of the logarithm of the local suscepti-
bility in the disordered phase for different sizes obtained by the
Lanczos method. The number of samples is 50 000/L.

8496 53A. P. YOUNG AND H. RIEGER



tuations are expected to be largest. Figure 23 shows a log-log
plot of the average of the structure factor,Sav(0), and the
standard deviation among different samples,dS(0), plotted
againstL at the critical point. From Eq.~14! one expects the
average to vary asL0.62 and the best fit to the numerical data
has a slope of 0.64, in reasonably good agreement. One sees
that dS(0),Sav(0), but theratio of the width to the mean
stays finite. One expects11 that the distribution of
S(0)/Sav(0) will be broad and independent ofL at largeL,
and our data are consistent with this. Note that although the
equal time structure factor is not self-averaging atT50, its
distribution is much less broad that that of the susceptibility,
which involves correlations in time. Since the structure fac-
tor at the critical point behaves like the average, rather than
the typical correlation function, we expect that its behavior
away from criticality will be controlled by the average cor-
relation length.

VIII. CONCLUSIONS

We have been able to confirm the many surprising predic-
tions of the random transverse-field Ising spin chain by ap-
plying the mapping to free fermions numerically. In particu-
lar we find very broad distributions of the energy gap and
correlation functions, different exponents for the average and
the typical correlation functions, and an infinite value of the
dynamical exponentz at the critical point. Perhaps the most
interesting result is the scaling function for the distribution of
the logarithm of the correlation function at criticality, shown
in Fig. 11, which is monotonic and has an upturn as the
abscissa approaches zero. If this indicates the divergence
shown in Eqs. ~63! and ~66!, the scaling function for
@ lnC(r)#/r1/2 would also give the correct exponent~though
perhaps not the correct amplitude! for the average correlation
function. We have seen that the width of the distribution of
the the equal time structure factor seems to be comparable to
the mean atT50, though presumably it becomes self-
averaging at finiteT. By contrast, theT50 susceptibility

and local susceptibility have enormously broad distributions.
One expects that the susceptibility will also become self-
averaging at finiteT for sufficiently largeL, but whether the
necessary size diverges as power law or exponentially as
T→0 is unclear. We leave this interesting question for future
study.

Crisanti and Rieger15 have studied the random transverse
Ising chain by Monte Carlo methods. They took a generali-
zation of the bimodal distribution in Eq.~61! rather than the
continuous distribution used here. From the behavior of vari-
ous correlation functions they found a finitez at criticality,
which, however, appeared to increase with increasing ran-
domness. We saw in Sec. IV that corrections to finite-size
scaling appear to be larger for this distribution than for the
the continuous one and, furthermore, it is harder to estimate
the asymptotic value ofz from correlation functions than
from distributions. This is presumably why Crisanti and
Rieger15 did not findz5` in their study.

After this work was largely completed we became aware
of related work by Asakawa and Suzuki,16 who also used the
mapping to free fermions but used the same distribution as
Crisanti and Rieger. In contrast to our results, they claim that
the exponents depend on the parameters in the distribution.
This is lack of universality isnotpredicted by theory5,6 and a
possible explanation of the discrepancy is that not all their
data are in the asymptotic scaling regime, which is likely to
be reached for different lattice sizes for different distribu-
tions.

It is interesting to speculate to what extent the results of
the one-dimensional system go over to higher dimensions. In
particular, one would like to know ifz is infinite at the criti-
cal point or takes a finite value ford.1. The results for the
local susceptibility in Sec. VI indicate that this questioncan
be answered even for moderately small lattice sizesprovided
appropriate quantities are studied. The distribution of
lnx loc ~or the logarithm of the gap! seems to be particularly
convenient, since, for finitez, data for different sizes look
essentially the same, whereas forz5` the curves get
broader and broader. Of course it is still difficult to distin-
guish a large but finitez from z5`, since the two would
look the same for small sizes. With finite-z scaling, the dis-
tribution has power law behavior, the power being related to
z as shown in Eq.~60!. It is more difficult to determinez by
looking at the decay of correlation functions, because the
asymptotic behavior is only seen at very large times or dis-
tances. Numerical studies in higher dimensions are likely to
use quantum Monte Carlo simulations, because diagonaliza-
tion methods, such as Lanczos, can only be carried out on
very small systems and the mapping to free fermions only
works in one dimension. Unfortunately, there is an additional
difficulty with quantum Monte Carlo, not present here, be-
cause one generally works in imaginary time, which has to
be discretized. The quantum problem is recovered when the
number of time slices tends to infinity, but in practice one
can only simulate a finite number. It is unclear whether the
extrapolation to an infinite number of time slices will pose
serious difficulties for the study of Griffiths singularities and
critical phenomena in higher-dimensional systems.

We have seen that the disordered Griffiths phase can be
conveniently parametrized by a continuously varying dy-
namical exponentz. This characterizes the distribution of the

FIG. 23. A log-log plot of the averageq50 structure factor,
Sav(0), and thestandard deviation of the structure factor among
different samples,dS(0), for different sizes. The dashed line is a fit
to the data forSav(0) and has slope 0.64, in fairly good agreement
with the theoretical expectation, obtained by integrating Eq.~14!, of
f21.0.62. The solid line is just a guide to the eye. The results are
obtained by averaging over 10 000 samples.
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energy gap or local susceptibility for lattice sizes which sat-
isfy the conditionL@j. By contrast, at the critical point, the
correlation length diverges and so the value ofz at criticality
involves physics in the opposite limitL!j. It is therefore
possible that the limit ofz(d) for d→0 is not equal to the
value ofz at criticality. Both these quantities are infinite for
the transverse-field Ising chain, but it would be interesting to
see if there is a difference between them in higher dimen-
sions. We expect that the results and method of analysis pre-
sented here will provide guidance for such a study.
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