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Numerical study of the random transverse-field Ising spin chain
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We study numerically the critical region and the disordered phase of the random transverse-field Ising chain.
By using a mapping of Lieb, Schultz, and Mattis to noninteracting fermions, we can obtain a numerically exact
solution for rather large system sizéss128. Our results confirm the striking predictions of earlier analytical
work and, in addition, give results for some probability distributions and scaling functions.

[. INTRODUCTION In one dimension one can perform a gauge transformation
to make all theJ; and h; positive. Unless otherwise stated,

It has recently become clear that quantum phas¢he numerical work used the following rectangular distribu-
transition$ in disordered systems are rather different fromtion:
phase transitions driven by thermal fluctuations. In particular,

Griffiths® showed that the free energy is a nonanalytic func- 1 for0<J<1,

tion of the magnetic field in part of the disordered phase W(J):[O

because of rare regions, which are more strongly correlated

than the average and which doeally ordered However, in 1

a classical system, this effect is very weak, all the derivatives (h)= ho for 0<h<ho, )
being finite> By contrast, in a quantum system at zero tem- P 0 otherwise.

perature, these effects are much more pronounced.

One model where these effects can be worked out in delhe model is therefore characterized by a single control pa-
tail, and where rare, strongly coupled regions dominate noftameter,hy. As discussed in Sec. Il, the critical point is at
only the disordered phase but also the critical region, is théo=1 (so the distributions ofi andJ are then the samend
one-dimensionak1D) random transverse-field Ising chain the deviation from criticality is conveniently measured by
with Hamiltonian the parameted in Eq. (6), where, for the distribution in Eq.

(),

otherwise,

L L
1
%/=—|21 Ji()'izcriz+1—21 hiof. (1) 5:§|nh0- ()

Section Il discusses the analytical results obtained previ-
Here the{os{"} are Pauli spin matrices, and the interactionsously, and Sec. Il reviews the work of Lieb, Schultz, and
J; and transverse fields are both independent random vari- Mattis,” Katsura® and Pfeuty which relates the Hamiltonian
ables, with distributionsr(J) and p(h), respectively. The to free fermions, and also explains how this technique can be
lattice size isL, which we take to be even, and periodic implemented numerically for the random case. In Sec. IV the
boundary conditions are imposed. The ground state of thisumerical results for the distribution of the energy gap are
model is closely related to the finite-temperature behavior oshown, while Sec. V discusses results for the correlation
a two-dimensional classical Ising model with disorder per-functions. Results for the local susceptibility on smaller
fectly correlated along one direction, which was first studiedsizes, obtained by the Lanczos method, are discussed in Sec.
by McCoy and WUt Subsequently, the quantum model, Eq. VI, while data for theq=0 structure factor, which could be
(1), was studied by Shankar and Murthgnd recently, in measured in a scattering experiment, are considered in Sec.
great detail, by Fishér.From a real space renormalization VII. Finally, in Sec. VIII, we summarize our conclusions and
group analysis, which becomes exact on large scales, Fishdiscuss the possible relevance of the results to models in
obtained, with his results, considerable physical insight. Thdnigher dimensions.
purpose of the present study is to investigate the model in
Eq. (;) numerica}lly, usjng a powerful techniq7uwhich is. _ Il ANALYTICAL RESULTS
special to one-dimensional systems, to verify the surprising
predictions of the earlier work;® and to determine certain In this section we summarize the results obtained earlier
distributions and scaling functions which have not yet beerby McCoy and Wi, Shankar and Murthyand particularly
calculated analytically. by Fisher® Defining
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An=[Inh],,, Next we turn to predictions for the correlation functions
Ay=[InJ]ay, (4) Cij=(afa)). (12)
where[ - - - ],, denotes an average over disorder, the critica/Again there are very big fluctuations, and, as a result, the
point occurs when average and typical correlations behave quite differently. The
average correlation function
Ah: AJ . (5) L
Clearly this is satisfied if the distributions of bonds and fields Call)= % ;1 [(oZ0%, Y av (13)

are equal, and the criticality of the model then follows from
QUinty._Aconvenient measure of the deviation from critical—varies as a power df at criticality,
ity is given by
1
s Bn78y © Calr)~ =5 (8=0), (14)
var[h]+var[J]
n _ _ where
At a quantum critical point one needs to consider the dy-
namical critical exponeng, even when determining static
critical phenomena, because statics and dynamics are ¢= 5 - l.618@ ... (19
coupled. The relation between a characteristic length scale
| and the corresponding time scateis then7~1% For the s the golden mean, and so the power in Bl is approxi-
present model one has, at the critical point, mately 0.38. Away from criticalityC,(r) decays exponen-
tially at a rate given by thé&rue correlation lengthé where

z=» (6=0),
or, more precisely, the time scale varies as the exponential of i~ I_V (16)
the square root of the corresponding length scale. In addition, "’
the distribution of local relaxation times is predicted to beWith
very broad. One of the goals of the present work is to deter-
mine the form of the distribution of a related quantity, the p=2. (17)

gap to the first excited state.

Moving into the disordered phase, there is still a veryThe amplitude of the correlation length,, is also known
broad distribution of relaxation times because of Griffithsand given by
singularities, and one can still, as a result, define a dynamical

exponent but this now varies with, diverging as [o—= 2 (18)
. V™ var[h]+var[J]"
z=55+C+0(9), (8  For the distribution in Eq(2) one has
for 5—0, whereC is a nonuniversal constant. Moving far- ly=1. (19

ther away from the critical point, if one reaches a situation ) )

where all the fields are bigger than all the interactions, then Scaling theory predicts that
Griffiths singularities no longer occur and the distribution of Colr:5)
relaxation times becomes narrow. Denoting the value’ of _an
where this happens byg, Griffiths singularities occur in Cadr;6=0)
that part of the disordered phase wH8re

=Car/g), (20)

whereC,, is a universal scaling function and is the true

0< 65< 6~ . (9) correlation function exponent, predicted equal 2. Fishér
¢ has calculated the asymptotic form of the scaling function in
Approaching the end of the Griffiths phase, one has Eq. (20) for r>¢ and finds
lim z=0. (10 _ g X~ 40557
5585 Cal¥)=D—ozmr— (x>1), (21

(Fz(;r téhe_(ilsmblét'on és'ef?trl]n the nlljmincal Calcﬂlstlonsﬁ E?WhereD is an unknown constant, and 0.451 is the numerical
» 0=, and so GrMMinS singufarties occur hroughout , o 5/6-(2— ¢). The averagecorrelation function is,

the_ disprdered phasg. In the disprdered phasg, the r.nagnq\ﬁ'éwever, dominated by rare pairs of spins which have a cor-
zation in thez direction has a singular piece if a uniform

. . . relation function of order unity, much larger than the typical

field, H, coupling tos?, is added, namely, value, and so it is necessary to consider the distribution of

(11) InC(r) to get an idea of théypical behavior. At the critical
point

and so the linear susceptibility diverges over part of the dis-

ordered phase, a result first found by McCoy and ‘\u. —InC(r)~+r (8=0), (22

Msing™ | H | 1/Z-



8488 A. P. YOUNG AND H. RIEGER 53

with the coefficient in Eq(22) having a distribution which is Ill. MAPPING TO FREE FERMIONS
independent of . A goal of the present study is to investigate
this distribution numerically. In the disordered phase,
—InC(r)e r with a coefficient which isself-averagingfor

The numerical calculations are enormously simplified by
relating the model in Eq1) to noninteractingfermions. This
technique was developed for some related quantum spin

Foe e, chain groblems in a beautiful paper by Lieb, Schultz, and
_ —r/? Mattis,” and then applied to theonrandomtransverse field
INC(r)=~r/é¢, 23 o
(n=rl¢ B 3 Ising chain by Katsufhand Pfeuty’
for larger, where the typical correlation length has the The starting point is the Jordan-Wigner transformation,
behavior which relates the spin operators to the fermion creation and
annihilation operators;r andc; by the following transforma-
~ 1 tion:
&~ 2 (24)
of=al+a;,
with )
. ol=i(a/—a), (33)
v=1. (25) o

X—1—92afa =1—2cfc
The scaling equation corresponding to ERQ), but for oi=1-2a;a=1-2cici,

the average of the logarithm of the correlation function, is where

C(r;9) C : T_ A S T
n Cri5=0) aV:InCtyp(r/S), (26) a/=clex —Mrj}::l c/cil,
where C_:typ is a universal scaling function. From Ed22) i-1 (34
and(23) one has, for>¢, ai:eXF{ > C;Cj}ci
— - - =1
INCyyp(r/é)~—rlé. (27

This works because the Pauli spin matrices anticommute on

For correlations of quantities such as the energy, whicfihe same site but commute on different sites. The "string
are local in the fermion operatofsee Eqs(33) and(34) of ~ Operator” in the exponentials in E¢34) is just what is
the next Sectioh Shankar and Murtﬁyobtained more de_ needed to insert an extra minus S|gn, ConVer“ng a commuta-
tailed information. They calculated not only the exponent fortor to an anticommutator for different sites. The Hamiltonian
the typical correlation length in Eq24) but also the ampli- ¢an then be written

tude, finding L L1

. oy to _nehy_ (ot—en(ef _

£ 1=[Inh],—[IN]a (28) »7—//‘—21 hi(cici—cicy) Zl Ji(ci —ci) (¢ 1+ Civa)
exactly. Forr>§ the mean of I€,(r) is definedto be ) )
ik yand o el +J.(cf —c)(cl+cpexpims), (35)

where
[INCer(r) Jav~ —{[INh]ay—[INJ] ay}r (29) )

]icn this Iimit. The variance of the distribution is also knottn = 2 CiTCi (36)
or r>¢: =

var[InCq{r)]~{var[Inh]+ var[InJ]}r. (30) is the number of fermions. The last term in E85) is dif-
o ] ) ferent from the other terms involving thk since the string
Notellghat the standard deviation ofdg(r) is proportional  gperator in Eq(34) acts all the way around the lattice be-
to r”* whereas the mean is proportional 19 and so  cayse of periodic boundary conditions. Although the number
InCe(r) becomes self-averaging foe> . of fermions is not conserved, the parity of that numizer
Fishef has suggested that Eq28)—(30) might also be  conserved, and so esp(/) is a constant of the motion and
true asymptotically for quantities such as$ which arenot  has the value 1 or1. Hence, the fermion problem must
local in fermion operators. If this is true, then, for the distri- have antiperiodic boundary conditions if there is an even
bution in Eq.(2), we have number of fermions and periodic boundary conditions if
there is an odd number of fermions. Note that the fermion
[INC(r;8)]a~—20r, 3D Hamiltonian, Eq(35), is bilinear in fermion operators, and so
describedree fermions
var[InC(r;8)]~2r, (32 For the nonrandom modeP one solves for the single-
for r>%. particle eigenstates of E¢B5) by (i) a Fourier transform to
Note that an important feature of these results is that th@peratory andcy , wherek is the wave vector, followed by
true correlation lengtiiwhich describes the average correla- (i) @ Bogoliubov-Valatin transformation in which new ferm-
tion function has a different exponent from that of the typi- ion creation operatoryl are formed as a linear combination
cal correlation length. of cl andc_, in order to remove the terms i which do



53 NUMERICAL STUDY OF THE RANDOM TRANSVERSE-FIELD ... 8489

not conserve particle number. In the random case, we prahe h;, as expected. We shall denote by “quasiparticles”

ceed in an analogous way. We define a column vedt@nd  excitations created by thg! , whereas excitations created by

its Hermitian conjugate row vectob T, each of length P, the ciT will be called “bare particles.”

by The many-particle states are obtained by either having or
o+t + not having a quasipatrticle in each of the eigenstates. One has

Wi=(Cc1.C2, - CL,C1,C2y - CL)- (37 to be careful, though, because, with periodic boundary con-
Note that the? and ¥ satisfy the fermion commutation ditions, the number of bare particles, in Eq. (36), must be

relations odd, while for states with antiperiodic boundary conditions
the number must be even. Thus, to generate all the many-
\IfiT\Ifj +\Ifj\1fiT= Sij » body states one needs to solve the fermion probleniddin
periodic and antiperiodic boundary conditions, and keep only
Vv + Wl =v v+ 9, ¥,=0, (38)  half the states in each case.

In order to determine which states correspond to the
round state and the first excited state it is useful to consider
irst the nonrandom cagé€. There the ground state is in the

irrespective of whetheW; refers to a creation or annihilation
operator. For reasons that will become clear below, th

Hamllt(gnlan IS vzrltten "}Za fymmgtrlca}rl forr11, repITa(;mg sector with antiperiodic boundary conditions, and has no
o o b b e USSP, WG cortesponds 1 e s rguied
2i_ 2.L i bl y Hence the ground state energy is given by

X 2L matrixH as

H=VTHY, (39) Eo=— >, € 43)

whereH has the form o ) )
where we indicate that the energies are to be evaluated with

- { A B} antiferromagnetic boundary conditions. The first excited

(40)  state is in the the sector with periodic boundary conditions.
-B —-A . . - . .
In the disordered phase, there is one quasiparticle, in the
whereA andB arelL X L matrices with elements given, for eigenstate with lowest energy, and this state has an odd num-

periodic boundary conditions, by ber of bare particles, as required. Hence the energy of the
first excited state of the pure system in the disordered phase
Aii=hi, A= —3i02, is given by
Aiv1i=—3112, By ;+1=3i/2, (41) L
Ei=el— 2 € (5>0), (44)
Bi1i=—3i/2, He2

wherei+1 is replaced by 1 foi=L. Note thatA is sym- where we have ordered the energies such¢ha the small-
~ est. At the critical point of the nonrandom model, be-

metric andB is antisymmetric, and s is indeed symmetric comes zero. In the conventional point of view, one then says
as claimed. For antiperiodic boundary conditions, one ) P ’ y

changes the sign of the terms connecting ditesd 1 in Eq. that €, b_ecomes negative in the_ orde_re_d phase. From_our
(41). perspective of numerical calculations, it is more convenient

Next we diagonalizeA numerically, using standard to defjne a_II thee,, to be positive, which means that we are
routines'? to find the single-particle eigenstates with eigen-eﬁ.ect'ver mtercf):angmg the role of the creation and annihi-
valuese,, u=1,2,...,4 and eigenvector@L which are ![ﬁt'on operatorsy; and Y1 It-_lelnce,bfr?m_ourt_lpl)omt of V|ev(\j/, ¢
linear combinations of th& with real coefficients. We re- ere are now Nno quasiparticies, but this St corresponds 1o

. + : . an odd number of bare particles. From either point of view,
quire that theb , have the same commutation relations as they, o energy of the first excited state of the pure system in the
v, ,.[see Eq.(38)], which is s_atlsfled prowdedi thg transfpr- ordered phase is given by
mation from the¥; to the® , is orthogonal, which in turn is
guaranteed by the symmetry kifthat we enforced above. If
we interchange the! with thec; in Eq. (37), thenH changes Ei=-— Z el (6<0), (45)
sign. Hence the eigenstates come in pairs, with eigenvectors
that are Hermitian conjugates of each other and eigenvaluasith all the EZ taken to be positive. Note that in the disor-
which are equal in magnitude and opposite in sign. We camlered phase there is a finite gap,2n the thermodynamic
therefore defin@;z ‘yL if €,>0 andCDL,z Y. if u” is the  limit, whereas in the ordered phase the gap tends exponen-
state with energy- €, . The Hamiltonian can then be written tially to zero asL—. This is the manifestation of broken
just in terms ofL (rather than 2) modes as symmetry. Note also that we can rephrase the result faf

the pure system by saying that it is given by E4g) if the

L state with no quasiparticles has an even number of bare par-

H= ;l €YY YuYh), (42 ticles and by Eq(45) if it has an odd numbeftaking all the
€, to be positive.
where all thee,, are now taken to be positive. From E¢35) For the random problem the picture turns out to be very

and(42), one sees that if all tha are zero, then the, equal  similar. We find that the ground state energy is given by Eq.
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(43) and the lowest excited state has energy given either by G;; can be expressed in terms of the eigenvectors of the

Eq. (44) or Eq.(45), depending on whether the state with no matrix H in Eq. (40). Let us write

quasipa;rltécles has an even or an odd number of bare
articles,”./". The parity of /" is determined from Eq5

EEIOW. p y q 7) C|T+ Ci = 2 ¢,u,i( 7L+ 7;&)’

We have checked that our the code is correct by compar- g (55)
ing results forEy andE; for small sizes obtained from this
fermion method with results obtained for the original prob- CiT_CiZE %i(?’L— Vi)
lem, Eqg.(1), using both complete diagonalization and also "
the Lanczos method. In all cases the results agreed to withiwhere 4 and ¢ can be shown to be orthogonal matrices. It
machine precision. follows that

We now proceed to tPe calculation of the correlation func-
tions in the ground stateAs discussed above, this is in the PR + _ T +
sector with antiperiodic boundary conditions, which will be Gij=((ei—a(c; +Ci)>_% Vi bui{ (v = W ()
assumed in the rest of this section, unless otherwise stated.

Assuming, without loss of generality, that-i, C;; can be == (¢ )i (56)

expressed in terms of fermions by

-1
Cij=<(CiT+Ci)eXF{—i7T; clc (c}‘+cj)>, (46)

where the averages are to be evaluated in the ground sta{e.

Now
exf —imc/c]=—(c/—¢)(c +c) (47)

=(c/+c)(cf—¢), (48

and so defining

A|:C|T+C| s
(49
Bi=c¢/—c,
and noting tha\?=1, one has
Cij=(Bi(Ai+1Bis1- - Aj_1Bj_1A)). (50)

since (y"'y") =(yy)=0 and there are no quasiparticles in
the ground state, and $g/'y)=0.

Numerically it is straightforward to compute tig; from
Eq. (56) and then insert the results into E§4) to determine
heC;; for all i andj.
Finally we note that the parity of the number of bare
particles, /", in the state with no quasiparticles can also be
obtained for either boundary conditignfrom theG;; since

L
(exp(im/l/)>=<[[l BiAi> =deG, (57)

where we assumed thhtis even; otherwise, from E¢47),
there would be an additional minus sign.

IV. RESULTS FOR THE ENERGY GAP
For the pure system, the energy gap

AE=E;—E, (58)

This rather complicated looking expression can be evaluatel§ finite in the disordered phase, and tends to zero exponen-

using Wick's theorem. To see this, note first that
(AA)=(8;—clci+c]c))
=9 (51)

(sincec]

and a real diagonal matrix element is being evaluated
similarly

(BiBj)=—1¢j; - (52

Hence the only nonzero contractions a(é;B;) and
(BiA;), since(B;B;) and(AjA;) never occur. Defining

(BiA))=—(AB)=Gjj, (53

the correlation function is given by a determinant

Giit1 Giiv2 - Gj
Git1jr1 Gigrjvz - Giygy

Cij= N N
Gj-1j+1 Gj-1j+2 Gj-1j

which is of sizej —i.

¢; and cich are Hermitian conjugates of each other

tially with the size of the system in the ordered phase. Con-
sider now the random case in the disordered phase, so that
[Inh],>[Ind],,. Because of statistical fluctuations, there are
finite regions which are locally ordered; i.e., if one were to
average just over one such region, then the inequality would
be the other way round. These regions will have a very small
gap. Hence one expects large sample-to-sample fluctuations
in the gap, especially for big systems.

Data for the distribution of IAE at the critical point
ho=1 are shown in Fig. 1 for sizes between 16 and 128. One
sees that the distribution gets broader with increasing system
size. This is clear evidence that«~ as predicted. The pre-
cise prediction is that the logarithm of the characteristic en-
ergy scale should vary as the square root of the length scale.
With this in mind, Fig. 2 shows a scaling plot for the distri-
bution of IAE/LY2, which works quite well.

In the disordered phase, the data look rather different.
Figure 3 shows the distribution of A, for hg=3. Unlike
Fig. 1, the curves for different sizes now look very similar
but shifted horizontally relative to each other. This implies
that the data scale with fanite value ofz, as predicted.

Note that in the region of small gaps, the data in Fig. 3 are
a straight line, indicating a power law distribution of gaps.
This power law behavior is not special to the 1D problem
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0.001F - 1
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FIG. 1. Aplot of the distribution of the logarithm of the energy k1. 3. A plot of the distribution of the logarithm of the energy
9apAE at the critical pointho=1 for lattice sizes between 16 and a5 AE in the disordered phase hy=3 for lattice sizes between
128. The distribution was obtained from the value of the gap forjg ang 128. The distribution was obtained from the value of the gap

50 000 samples for each size. For the larger sizes, the distribution i%r 50 000 samples for each size. The different curves are very
cut off at small values because, in this region, the gap is essentiallyimiiar and just shifted relative to each other.

zero within double precision accuracy. One sees that the distribution
gets broader and broader lasncreases.

1
discussed here, but is expected quite genéfaitythe Grif- IN[P(INAE)]= E'”AE“L const. (60)
fiths phase for systems with discrete symmetry. The power is
related toz as we shall now see. Well into the disordered o ) ) )
phase, excitations which give a small gap are well localized, From the slopes in Fig. 3 we estimate 1.4, which gives
and so we assume that the probability of having small gap i8 Satisfactory scaling plot as shown in Fig. 4. The data do not
proportional to the size of the systein, This assumption is collapse so well for large gaps, but this may be outside the
confirmed by the data in Fig. 3. Hence, the probability ofScaling region.

having a gap betweedE and AE(1+¢) (for some e) We have carried out a similar analysis for other values of
should have the scaling forreL AEY?, and so the distribu- No- Close to the critical point, it is difficult to determire
tion of gaps,P(AE), must vary as because the distribution broadens with increasing size for
small sizegpresumably wher& < ¢), but then the slope of
P(AE)~AE 117 (590  the straight line region starts to saturate, corresponding to a

in the region of small gaps. It is tidier to use logarithmic Iagisbsuc:\j::r'treg' iI) Eebzf\;zgzaé;?/gﬁgosnt;% anrgr::cegle?crglilr?
variables, and the corresponding expression for the distriblf €' g ) onay oy 9
tion of INAE is (z finite) and activated dynamical scaling infinite), and so

the data do not scale well with any choicezof

1;IIII|||||||||||||||I|I||||| |||||||||Illlllllllllllllé
E E EHIllllllll||||||||IIII||II||IIIIIIIII LU N ALY LU LR LLLLLLS
C hy = 1 3 C
_ - 1 " h,=3
g 0.1 3 = 0.1 3 E
s E 3 o =
~ - 1 = B ]
— B 7 % r T
= — _|
4 0.01 £ 3 5 0.01¢
£ F 1 = :
" K . T g i
0.001 o E
% = 0.001
C + 128 ] E
IIIIIIII||IIIIIIIII|IIIIIIIII|IIIIIIIlIIIIIIIIIIIlIIIIIIIII :
0‘0001_6 _5 _4 _3 _2 _1 O INENRNERN] IIIIIlIIIIIIIIIIII|IIIlII|IIlIIIIIIIIIlIIIIIIIII|IIIIIIIII|III
(In AE) / LV2 00001 5" g "6 24 2 0 2 4 6

In (L= AE)
FIG. 2. A scaling plot of the data in Fig. 1, assuming that the
logarithm of the energy scaléhere the gapvaries as the square FIG. 4. A scaling plot of the data in Fig. 3, assuming scaling
root of the corresponding length scdlere the size of the system  with a finite value ofz. The fit here hag=1.4.
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/ 0.1 ° 32 —

I I E - 64 ;

L ) 4 - [ = 128 7

// = - -

{ 05 [ I/ — <

/ o 0.01F <

//, E: E E
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FIG. 5. Results for ¥ againstd, wherez is the dynamical
exponent and is related tdhg by Eq.(3). The solid curve is a fit to
1/z=268(1—25C) [which corresponds to the expected fo(Ref.
6, Eq. (8)] with C=0.311. The dashed line isz# 25, the pre-
dicted asymptotic form fos— 0.

FIG. 6. A plot of the distribution of the logarithm of the energy
gap AE at the critical pointhy=1 for the bimodal distribution in
Eq. (61). The distribution was obtained from the value of the gap
for 50 000 samples for each size.

function (which corresponds to the logarithm of tgpical

Fishef has predicted that is equal to 1/+ C, near the . Co g ’
P . correlation function is shown in Fig. 9 plotted agalnsﬁ.

critical point, whereC is nonuniversal constafisee Eq(8)].

We show our estimates for ZLplotted againsts] which is AS expecfceae_ from Eq.(2_2) the data fall on a straight Iine._
related toh, by Eq. (3)] in Fig. 5. Also shown is a fit of The data in Figs. 8 and 9 indicate that the average and typical

1/z to 28(1— 25C), which corresponds to E¢8) and which correlation functions do behave very differently at the critical
works quite well withC=0.311. point, as predicted. - . C
The exponents are predicted to be universal, i.e., indepen- The reason for this difference is that the distribution of
dent of the distributionsr(J) andp(h) (as long as these do IqC(r) IS very bro.ad, as can be sger.] |n.the plot in Fig. 10.
not have anomalously long tallsTo test universality, we Fishef has predicted that the distribution e (ING
also did some calculations for a bimodal distribution, inShould be universal and independentrofand so we show
which J andh take one of two values the corresponding scaling plot in Fig. 11. Note that the dis-
' tribution monotonically decreases @¢r) becomes smaller.
1 The data scale well for larger values®f including even the
w(J)=§[5(J—1)+ 6(J—3)], upturn near the right-hand edge of the graph. This is the
region whereC(r) is anomalously large and which gives the
1 (61) dominant contribution to the average correlation function.
p(h)= 5[5(h—h0)+5(h—3h0)]. An interesting question, then, is whether the value for the

The critical point is ahy=1. The data foAE at the critical
point are shown in Fig. 6 and the scaling plot is presented in
Fig. 7. The data scale reasonably well, indicating thate

at the critical point, just as for the continuous distribution in
Eq. (2). The data collapse is not as good as for the continu-
ous distribution, presumably indicating that the approach to
the scaling limit is slower.
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V. RESULTS FOR CORRELATION FUNCTIONS 0.01

P((In AE) / LV/2)

16
32
64

T Illlllll

1 IIIIIII|

We start by looking at the correlation functions at the
critical point and then discuss our results in the disordered
phase. 0.001

The average correlation function at the critical point is . |
shown in a log-log plot in Fig. 8 for several sizes. The data 35 -3-25-2—-15-1-05 0
for the larger sizes lie on a straight line, and the dashed line, (In AE) / L\/2
which is a fit to theL = 128 data for &=r =35, has a slope of
—0.38, in excellent agreement with Fishérjsrediction in FIG. 7. A scaling plot of the data in Fig. 6. The collapse of the

Eq. (14). data indicates that=«, the same as for the continuous distribution
A graph of the average of the logarithm of the correlationof Eq. (2) (see Fig. 2

& - O e
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FIG. 8. Alog-log plot of the average correlation function against
distance at the critical point. The straight line behavior for larger F1G. 10. The distribution of the log of the correlation function

sizes indicates a power law variation. The dashed line is a fit to they, gifferent values of at the critical point. The data are obtained
data forl =128 with 7<r=35 and has slope of 0.38 in excellent  from 10 000 samples of side=128.

agreement with the prediction in E€L4). The results are obtained

by averaging over all pairs of points separated by a distanfce assuming that the integral is dominated by the region of
10 000 samples. small InC. Integrating ovelC gives a finite number so that

average correlation function is included in the scaling func-

tion for InC(r)/\r. If so, the scaling function wiltlivergeas [C(r)]av~ T (65)
a power near the origit. To see this, note that if the prob- r2
ability of havi'ng a correlatiorC at a distance only depends and comparing with Eq(14) yields
on the combination
AN=2¢—3=0.24. 66
y=(InC)/\F 62 ¢ ©9
and that if An enlarged log-log plot of the region of the upturn in
Fig. 11 is shown in Fig. 12. The data do lie on a rough
1 straight line whose slope decreag@s magnitudé with in-
P(y)~ — (63)  creasing . Afit to the data for =24 in the middle region of
y the graph has a slope of about 0.46 magnitude, larger
for smally, then the average value 6Xr) is given by than 0.24, but since the effective slope decreases with in-
' creasingr the data do not rule out the possibility that the
1 [InC\™™1
[C<r>]av~f dC| 1| (64) m
_1;“||I||I||l|l|||||||||||I|||I|||||l >;_. 0.1 ?
= ~ -
g —~ 0.01 &
-2 2 S £
5 E &) B
— = -3 (-
T -3 g 07k
& g E_:/ c
= -4
E -af 107
-5 ;_ 10-°
c -8-7-6-5-4-3-2-10
_6_III|IIII|IIII|IIII|IIII|IFII|IIHI .. (ln C(r))/rl/z
0 1 2 3 4 5 6 7 8
ri/z FIG. 11. A scaling plot of the data in Fig. 10 according to the

theoretical predictioriRef. 6 The data collapse well in the region
FIG. 9. A plot of the average of the logarithm of the correlation of fairly high probability, including the upturn near the right-hand
function against\/F at the critical point. The straight line behavior edge(which may indicate a divergence as the abscissa tends to O;
for larger sizes supports the predicti(Refs. 5,6 of Eq. (22). The  see the text There are systematic deviations in the tail which may
results are obtained by averaging over 10 000 samples. be due to corrections to scaling.
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FIG. 12. An enlarged log-log plot of the region of the upturn in

. ) FIG. 14. A scaling plot of the average correlation function, ac-
Fig. 11 where the abscissa approaches zero. gp 9

cording to Eq.(20) with the predicted valuer=2. The curve is a
plot of Eq.(21) (expected to be valid faré?>>>1) with D=235. Note
distribution of[ InC(r)/\/r diverges with an exponent of 0.24 that from Eqs(16) and(19), one hast~*= & for the distribution of

for r—oo. Even if the scaling function fo[rInC(r)]/\/F gives Eq. (2.

the correcpowerfor the average correlation function, it does

not necessarily mean that thenplitudeis correct, since there the range of accessible values b#?, the data and the
could also be additional nonuniversal contributions to theasymptotic prediction do not track each other closely, though

amplitude, outside the scaling functidh. it is possible that they would do so for larger values of
We suspect that the systematic deviation in the tail of the §2.
distribution in Fig. 11 at small values &(r) indicates cor- The data for the logarithm of the scaling function scale

rections to scaling for this range of sizes and distances.  well according to Eq(26) , though the best fit has a slightly
We now discuss our results for the disordered phase. Thelifferent exponent of 1.1see Fig. 15 Presumably this dif-

scaling plot corresponding to E¢0) is shown in Fig. 13. ference again indicates that there are corrections to scaling

The plot hasy=1.8 which gave the best fit, and which for the sizes and distances studied. Note that the data in Fig.

agrees fairly well with the predictionn=2. A plot using 15 arecloseto a straight line but theris statistically signifi-

v=2 works somewhat less well, presumably indicating thatcant curvature.

there are corrections to scaling for this range of lattice sizes Figure 16 tests the more stringent predictibhfor the

and distances. Figure 14 is a scaling plot using the theoreticalverage of I€(r) in the limit r>¢ obtained by combining

value v=2 which also shows the asymptotic form in Eq. Eq. (27) with the assumption that the expression §an Eq.

(21) with D=35. Both the data and the prediction of Eq. (2g) is exact for correlations of2. One sees that it works

(21), have substantial curvature: much more than in the corguite well. Although our best estimates of the critical expo-

responding data for @(r) shown in Figs. 15 and 16. Over nentsy and? do not quite agree with the theoretical predic-
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FIG. 13. A scaling plot of the average correlation function inthe  FIG. 15. A scaling plot of the average of the logarithm of the
disordered phase according to E0). The best fit(shown is for correlation function in the disordered phase according to(Z6).
v=1.8, fairly close to the predictiofRef. 6 v=2. The data rep- The best fitshown is for v=1.1, close to the predictiofiRefs. 5,6
resent an average over 10 000 samples. v=1. The data are an average over 10 000 samples.
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FIG. 16. A scaling plot of the average of the logarithm of the k1 18, A scaling plot of the data in Fig. 17. The width of the

correlation function in the disordered phase according to(B8.  gistribution is seen to narrow with increasingas expected.
assuming the theoretical valwe= 1. The solid line is the prediction

of Eq. (27), which expected to be valid at large but also works . . .

well down tor=0. It appears that by dividing by the correlation @nd variance of I8(r) given in Egs.(31) and (32), for
function at criticality, we incorporate most of the corrections to theNo=3. The fits give reasonable agreement with £g$) and
asymptotic form in Eq.(27). Note that from Eq.(28) one has (32), but assume a form of corrections to scaling that we
E1=25. have been unable to justify.

tions, they are fairly close to those predictions, and they dif- VI. LOCAL SUSCEPTIBILITY
fer substantiallyfrom each other providing clear evidence

that there are different correlation length exponents for the In this section we d'S_Cl_J_SS thecal sugceptlblllty rather :
average and typical correlation functions than the uniform susceptibility, because it has somewhat sim-

Finally, in this section, we look at theistribution of pler behavior. Since it it just involves correlations on a single

InC(r) for r larger than either the average or typical correla-
tion lengths. It is predictéf that the distribution of 25
[INC(r)]/r should becomeharpat larger in this limit. Fig-

ure 17 shows data for the distribution ofdr) ath,=3. One

sees that both the peak position and the width increase with 20
increasing, but the peak position increases faster as can be
seen in Fig. 18 which shows the distribution[&dC(r)]/r. In

Fig. 19 we test the more precise predictidHgor the mean

4 var [In C(r)]
o —[ln C(r)],,

!IIIIII]IIII’I\I!

15
].ElIIIIlllIII|‘IIII|II|||I|II|III
c 10
0.1
e 5 10 15
oy B r
=) 0.01 =
L; - FIG. 19. The mean and variance of the distribution @(lr) in
Z 0.001 = the disordered phase ht=3 for different values of. Both the
A S mean and variance are expected to be proportionaldblarger .
N The lines are least squares fits of the fambr?+cr. This form
0.0001 ¢ is motivated by the behavior at criticality, for which the mean varies
asr'? and, in fact, ther¥2 correction to scaling was effectively
10-5 Bl removed in Fig. 16 by factoring out the behavior at criticality. How-
-30-25-20-15-10-5 O ever, it is not clear that the constant and tH& term give all the

In C(r) corrections to scaling in the disordered phase. The fit to the mean
hasa=—0.140p=1.145¢c=1.014, while the fit to the variance
FIG. 17. The distribution of the logarithm of the correlation hasa=1.025b=—1.736c=2.029. According to the suggestion of
function for different values of athy=3 in the disordered phase. Fisher,(Ref. 11) following Shankar and MurthyRef. 5, the lead-
The data represent an average over 10 000 samplés<6#. Both  ing behavior for larger should be given by Eq931) and (32).
the most probable value and the width of the distribution increaséNoting that here 2=1n3=1.099, we see that the largebehavior
with r but the most probable value increases fatee Fig. 18 obtained from the fits is in rather good agreement with theory.
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FIG. 20. The distribution of the logarithm of the local suscepti-  FIG. 21. A scaling plot of the data in Fig. 20. The data scale in
bility at the critical point for different sizes obtained by the Lanczosthe same way as that for the log of the gape Fig. 2.
method. The number of samples is 50 @000 that 50 000 values

for xio. were obtained for each size. (60)]. With x,,c, however, we compute the probabiliper

. . . ) site, and so there is no factor df and the distribution is
;lte, any singularity mu.st come only frqm ang-tlme CorrGIa'independent of size. This is, of course, the normal state of
tions, whereas the uniform susceptibility involves correla-ytairs when the lattice size is much larger than the correla-
tions both in space and time. Our results for the uniforMon jength. The slope of the straight line region in Fig. 22

sgsceptibility away from the critical point do not scale .in A agrees with the slopes in Fig. 3 and so gives the same value
simple manner, and we suspect that there are logarithmigs , o< obtained from the gap, i.e=1.4.

corrections,é as occurs for bulk behavior at finite

temperature.

Sli)nce it is difficult to compute the susceptibility from the VII. STRUCTURE FACTOR

fermion method, particularly with periodic boundary condi- A scattering experiment measures directly the structure
tions, we have used the Lanczos diagonalization techniqu%ctors(q), defined by

on the original spin Hamiltonian, EqL). Of course the price

we pay is that the lattices are much smalles 16. The local

1 -
susceptibility afT=0 is given by S(a)= C;eai-h, (68)
I
(0] afIm)|? S . .
Yioe=2 2 =, (67) Although the distribution of individual terms in the sum is
nzo En—Eg broad, it is interesting, and relevant for experiment, to ask

whether there are large sample-to-sample fluctuations in the

where|n) denotes a many-body state of the system jid total. We have attempted to answer this dgr 0, where fluc-

is the ground state. Because of the form of Egj7) we
expect that the scaling of . will be very similar to that of
1/AE. This is indeed the case as seen in Fig. 20, which plots

the distribution of Iry,. at the critical point. The distribution

broadens with system size, consistent with. The data

scale in the expected manner, as shown in Fig. 21, which is 0.1
very similar to the corresponding plot for the energy gap in
Fig. 2.

Even though the range of sizes used in the Lanczos
method is rather small, it is, nonetheless, capable of distin-
guishingz= scaling at the critical point from finite scal-
ing z away from the critical point. This can be seen by com-
paring Fig. 20 with Fig. 22, which plots the distribution of 0.001
INxi0c athg=3. In Fig. 22 the curves no longer broaden with
increasingL but the distributions aréndependenbf size.

The reason why there is no size dependence here but there is

in the distributions of IAE in Fig. 3 is easy to understand. 0.0001 — 0 5 10
For AE, we compute the probabilitger sampleof getting a In X0.

certain value, and this is proportional toin the disordered

phase for smalAE, since the rare strongly correlated region  FIG. 22. The distribution of the logarithm of the local suscepti-
can occur anywhere. We used this result in Sec. IV to relateility in the disordered phase for different sizes obtained by the
the exponent in the distribution to ZL[see Eqs.59) and  Lanczos method. The number of samples is 501000/

0.01

P(ln x.)
T TT ||||||
1t 1 ||||l|

» O & O
-
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T T and local susceptibility have enormously broad distributions.
One expects that the susceptibility will also become self-
averaging at finitel for sufficiently largeL, but whether the
necessary size diverges as power law or exponentially as
T—0 is unclear. We leave this interesting question for future
study.

Crisanti and Riegé? have studied the random transverse
Ising chain by Monte Carlo methods. They took a generali-
zation of the bimodal distribution in E461) rather than the
continuous distribution used here. From the behavior of vari-
ous correlation functions they found a finiteat criticality,
which, however, appeared to increase with increasing ran-
1 Lo | domness. We saw in Sec. IV that corrections to finite-size

10 100 scaling appear to be larger for this distribution than for the
L the continuous one and, furthermore, it is harder to estimate
the asymptotic value of from correlation functions than
from distributions. This is presumably why Crisanti and
Rieger® did not findz= in their study.

FIG. 23. A log-log plot of the averagg=0 structure factor,
S.(0), and thestandard deviation of the structure factor among

different samples¢S(0), for different sizes. The dashed line is a fit )
to the data forS,(0) and has slope 0.64, in fairly good agreement _ After this work was largely Completée_d we became aware
with the theoretical expectation, obtained by integrating(Ed), of  ©f related work by Asakawa and SuzdRiwho also used the

$—1~0.62. The solid line is just a guide to the eye. The results ardN@pPIng to free fermions but used the same distribution as
obtained by averaging over 10 000 samples. Crisanti and Rieger. In contrast to our results, they claim that
the exponents depend on the parameters in the distribution.
tuations are expected to be largest. Figure 23 shows a log-loBhis is lack of universality isiot predicted by theory’and a
plot of the average of the structure fact8,(0), and the possible explanation of the discrepancy is that not all their
standard deviation among different sampléS(0), plotted ~ data are in the asymptotic scaling regime, which is likely to
againstL at the critical point. From Eq14) one expects the be reached for different lattice sizes for different distribu-
average to vary as®®?and the best fit to the numerical data tions. )
has a S|ope of 0.64, in reasonab|y good agreement_ One Seeslt IS Interesting to SpeCUlate to what extent the results of
that §S(0)<S,(0), but theratio of the width to the mean the one-dimensional system go over to higher dimensions. In
stays finite. One expedfs that the distribution of Particular, one would like to know it is infinite at the criti-
S(0)/S,(0) will be broad and independent bfat largeL, ~ cal point or takes a finite value fat>1. The results for the
and our data are consistent with this. Note that although th¥cal susceptibility in Sec. VI indicate that this questican
equal time structure factor is not self-averagingrat0, its e answered even for moderately small lattice spresided
distribution is much less broad that that of the susceptibility2PPropriate quantities are studiedThe distribution of
which involves correlations in time. Since the structure fac-nx 1oc (Or the logarithm of the gapseems to be particularly
tor at the critical point behaves like the average, rather thafonvenient, since, for finite, data for different sizes look
the typical correlation function, we expect that its behavioressentially the same, whereas fer=~ the curves get

away from criticality will be controlled by the average cor- broader and broader. Of course it is still difficult to distin-
relation length. guish a large but finite from z=%«, since the two would

look the same for small sizes. With finitescaling, the dis-
tribution has power law behavior, the power being related to
z as shown in Eq(60). It is more difficult to determine by

We have been able to confirm the many surprising prediclooking at the decay of correlation functions, because the
tions of the random transverse-field Ising spin chain by apasymptotic behavior is only seen at very large times or dis-
plying the mapping to free fermions numerically. In particu- tances. Numerical studies in higher dimensions are likely to
lar we find very broad distributions of the energy gap anduse quantum Monte Carlo simulations, because diagonaliza-
correlation functions, different exponents for the average antion methods, such as Lanczos, can only be carried out on
the typical correlation functions, and an infinite value of thevery small systems and the mapping to free fermions only
dynamical exponere at the critical point. Perhaps the most works in one dimension. Unfortunately, there is an additional
interesting result is the scaling function for the distribution of difficulty with quantum Monte Carlo, not present here, be-
the logarithm of the correlation function at criticality, shown cause one generally works in imaginary time, which has to
in Fig. 11, which is monotonic and has an upturn as thebe discretized. The quantum problem is recovered when the
abscissa approaches zero. If this indicates the divergenceimber of time slices tends to infinity, but in practice one
shown in Egs.(63) and (66), the scaling function for can only simulate a finite number. It is unclear whether the
[InC(r))/r'? would also give the correct exponetthough extrapolation to an infinite number of time slices will pose
perhaps not the correct amplityder the average correlation serious difficulties for the study of Griffiths singularities and
function. We have seen that the width of the distribution ofcritical phenomena in higher-dimensional systems.
the the equal time structure factor seems to be comparable to We have seen that the disordered Griffiths phase can be
the mean atT=0, though presumably it becomes self- conveniently parametrized by a continuously varying dy-
averaging at finiteT. By contrast, theT=0 susceptibility = namical exponert. This characterizes the distribution of the

VIIl. CONCLUSIONS
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