
Vortex lines in the three-dimensionalXY model with random phase shifts

Mai Suan Li
Faculty of Engineering and Design, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606 Japan

and Institute of Physics, 02-668 Warsaw, Poland

Thomas Nattermann
Institut für Theoretische Physik, Universita¨t zu Köln, D-50937 Köln, Germany
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The stability of the ordered phase of the three-dimensionalXYmodel with random phase shifts is studied by
considering the roughening of a single stretched vortex line due to disorder. It is shown that the vortex line may
be described by a directed polymer Hamiltonian with an effective random potential that is long-range corre-
lated. A Flory argument estimates the roughness exponent toz53/4 and the energy fluctuation exponent to
v51/2, thus fulfilling the scaling relationv52z21. The Schwartz-Edwards method as well as a numerical
integration of the corresponding Burger’s equation confirms this result. Sincez,1, the ordered phase of the
original XY model is stable.@S0163-1829~96!00945-9#

I. INTRODUCTION

Systems with a continuous symmetry of the order param-
eter are particularly susceptible to the influence of frozen-in
disorder.1 In this paper we investigate the stability of the
ordered phase of the three-dimensionalXY model with ran-
dom phase shifts with respect to topological defects. Strictly
speaking, in order to distinguish between a quantum spin
model, in which only theX andY components of the spins
interact ~the true XY model!, and the classical two-
component spin model we consider here, it would be more
appropriate to refer to our model as a planar rotator model.
However, since this distinction is not often followed in the
literature, we keep the notationXY model throughout this
paper.

The Hamiltonian of this model may be written in the form

H52J(̂
i j &

cos~u i2u j2Ai j !, ~1!

where J is an effective coupling, the phase variablesu i
P@0,2p# are placed on a three-dimensional~3D! hypercubic
lattice, and the sum runs over all nearest-neighbor pairs
^ i j &. The variablesAi j are quenched random phase shifts~or
random gauges! on the bonds connecting nearest neighbors.
For simplicity we assume that theAi j on different bonds are
uncorrelated and Gaussian distributed with mean zero and
variances. Below it will be useful to go over to the con-
tinuum description in whichAi j is replaced by the field
AW (rW).

Model ~1! describes XY magnets with a random
Dzyaloshinskii-Moriya interaction.2 Other realizations of this
model are 3D-Josephson-junction arrays with positional
disorder3 and vortex glasses.4

In the case of the so-called gauge glass model4 one as-
sumesAi j to be uniformly distributed between 0 and 2p but
we expect that our model with Gaussian disorder is equiva-
lent to the gauge glass model whens is large enough.

In d52 dimensions the model~1! shows a low-
temperature weak-disorder phase with quasi-long-range or-
der ~QLRO! and, for s50, a vortex-driven Kosterlitz-
Thouless-like transition5,2,6 to the disordered phase. A finite
amount of disorder shifts the transition to lower temperatures
and reduces the universal jump in the spin-spin correlation
exponent fromh51/4 for s50 to h51/16 atsc5p/8. As
was shown recently,6,7 this transition is not reentrant, con-
trary to earlier findings,2 but in agreement with results of
Nishimori for a model with slightly different correlations of
the random phase shifts.8

In d53 dimensions, it is easy to show that spin-wave
excitations, which couple only to¹W •AW , do not destroy true
long range order at all temperatures and disorder strengths.
To address the question of whether this picture is qualita-
tively changed even for weak disorder and low temperatures
by allowing vortex configurations we consider asingle
stretched vortex line in the presence of the disorder fieldAW .
Such a vortex line can be forced into the system e.g., by
appropriate boundary conditions. As long as the vortex line
remains self-affine, i.e., as long as its typical transverse dis-
placementu scales asLz ~whereL denotes the length of the
line! with a roughness exponentz,1, which implies~for
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weak disorder and lowT) a finite line tension, we conclude
that the ordered phase remains stable. It turns out that this
problem can be mapped approximatively onto a directed
polymer problem with long-range correlated disorder. We
find both from analytical and numerical calculations that the
roughness exponent is indeed about 0.75, such that the or-
dered phase remains stable. This is in agreement with results
of Nishimori8 for a slightly different probability weight for
the disorder.

Although these arguments are not rigorous and strictly
speaking further instabilities cannot be excluded, experience
with other random systems, in particular the random field
Ising model, suggests9 that it is the instability of large-scale
topological defects which lead to a destruction of the ordered
phase below a certain critical dimensions.

II. SPIN WAVES AND VORTICES

In order to separate between spin-wave and vortex de-
grees of freedom we start from the continuum description of
model ~1!:

H5
J

2E d3r u¹W u~rW !2AW ~rW !u2. ~2!

The quenched vector fieldAW (rW) is assumed to be Gaussian
distributed with zero average and correlations (a,b 5 1, 2,
3!

^Aa~rW !Ab~r 8W !&5sdabd~rW2r 8W !, ~3!

where^•••& denotes the disorder average.
The original model~1! is periodic inu i2u j with the pe-

riodicity 2p. In order to preserve this periodicity in the con-
tinuum version~2! we have to allow for singularities along
which¹u jumps by 2p. These singular surfaces are bounded
by vortex linesl which are characterized by their topological
chargeml and their position vectorRW l(s). It is convenient to
decompose theuW field into a spin-wave part¹W usw and a
vortex part¹W uv . The spin-wave part is vortex free. The
vortex part of the vector field¹¢ uv is defined by the saddle
point equations

¹W •@¹W uv2AW ~rW !#50 ~4!

and

¹W 3~¹W uv!52pmW ~rW !, ~5!

wheremW (rW) denotes the vortex density field, which is non-
zero only along the singular linesRW l(s),

mW ~rW !5(
l
mlE ds

dRW l~s!

ds
d~3!

„rW2RW l~s!…. ~6!

Equation~5! and ~6! can be solved easily by introducing a
vector potentialaW (rW), ¹W 3aW (rW)5¹W uv2AW (rW). The solution is

¹W uv~rW !5E d3r 8G~rW2r 8W !$2¹8W @¹8W •AW ~r 8W !#

12p¹8W3mW ~r 8W !%, ~7!

with ¹W •mW 50. Here¹8W denotes a derivative with respect to
the primed variabler 8W and3 represents a vector product.
The Green functionG(rW) satisfies¹2G(rW)52d(rW). In three
dimensionsG(rW) takes the formG(rW)5(4pr )21.

Representingu(rW) as a sum of a vortex partuv(rW) and a
spin-wave partusw(rW) one can show that Hamiltonian~2! is
decomposed into two independent spin-wave and vortex
parts. In what follows we will be interested only in the vor-
tex partHv which may be written in the form

Hv5Hvv1Hvd ,

Hvv5
Jp

2 E E d3rd3r 8
mW ~rW !•mW ~r 8W !

urW2r 8W u
, ~8!

Hvd5
J

2E E d3rd3r 8
mW ~rW !•@¹8W3AW ~r 8W !#

urW2r 8W u
.

The lattice version of such a vortex Hamiltonian for gauge
glass has been derived recently.10 Obviously,Hvv andHvd
correspond to the vortex-vortex and vortex-disorder interac-
tions, respectively. As ind52 dimensions, the vortices
couple only to the¹W 3AW (rW)52pQW (rW), which can be consid-
ered as a quenched random vector charge field with
¹W •QW 50.

As follows from Eq.~3!, ^QW (rW)&50 and

^Qa~rW !Qb~r 8W !&5
s

4p
@]a]b2dab¹2#d~rW2r 8W !. ~9!

Equations~8! and ~9! would be the starting point for the
statistical treatment of model~1!. In the partition function we
had to integrate over all possible configurations of vortex
loops and vortex lines spanning the system. However, this
task is much too difficult and remains to be done even for the
pure system.

Instead, we follow here a much more modest approach
and consider the case of a very strong dilution of vortex
lines. In order to test the stability of the vortex-free state with
respect to vortex formation, it is indeed sufficient to consider
an isolated large vortex loop. Without disorder, such a vortex
loop costs an energy of the order;S0L lnL ~see below! if
L is the radius of the loop andS0;Jm2 denotes the bare line
tension of the vortex line. The configurational entropy of the
loop is also of the orderL lnL and hence will produce a
negative free energy only at sufficiently high temperatures.
At these temperature the system is then disordered, and the
state of the system is characterized by multiply entangled
vortex lines and loops.

However, at low temperatures this mechanism does not
work. A possible source for the condensation of vortex loops
here is the disorder. To check this possibility, we consider in
the next section a single stretched vortex line which we al-
low to become rough under the influene of the disorder. As
long as the typical transverse distortionu;tz of a piece of
length t of the vortex line is characterized by a roughness
exponentz,1, the contributiondS t of the disorder to the
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total vortex line tension,S, from distortions on this length
scale is of the order2S0u

2/t2}2t2(z21) and hence small
for large t.

Summation over the contributionsdS t from all length
scalesbna (a being the microscopic length scale or small-
scale lattice cutoff andb the usual renormalization factor!
betweennmin50 andn max5 ln(L/a)/lnb yields a finite value
for dS total which can be made arbitrarily small for decreasing
disorder strength. Thus the line tensionS5S01dS total re-
mains positive and the system is stable with respect to the
condensation of vortex lines.

However, forz51 the disorder contributions to the line
tension are independent oft and hence the energy per unit
length will vanish on a sufficiently large length scaletc . As
a result, vortex loops of sizeL.tc will appear spontaneously
and hence destroy the ordered phase. In this way we traced
back the existence of a vortex-free low-temperature phase to
the determination of the roughness exponentz of a single
stretched vortex line. We expect no difference in the case of
a vortex loop as long astc is sufficiently large, which can be
always achieved for weak disorder.

III. SINGLE-VORTEX-LINE HAMILTONION

We consider in the following only asinglestretched vor-
tex line with no overhangs, which means that we may set
RW (s)→RW (t)5„r 1(t),r 2(t),t…, wherer (t)5„r 1(t),r 2(t)… de-
scribes the transverse distortion of the vortex line from a
straight configuration. ThenmW (rW) may be parametrized as
follows:11

mW ~rW !5mE dt
dRW

dt
d~3!

„rW2RW ~ t !…,

dRW

dt
5S ]r 1

]t
,
]r 2
]t

,1D . ~10!

Hvv decribes now the elastic self-interaction of the vortex
line Hvv→Hel :

Hel5
Jp

2
m2E E dRW ~ t !dRW ~ t8!

uRW ~ t !2R~ t8!u
,

dRW ~ t !dRW ~ t8!5S ]r

]t
•

]r

]t8
11Ddtdt8. ~11!

ExpandingHvv in Eq. ~8! up to quadratic terms inr and
]r /]t and omitting an irrelevant constant corresponding to
the energy of straight lines one has

Hel5
Jp

2
m2E E dtdt8

ut2t8u F]r]t • ]r

]t8
2

@r ~ t !2r ~ t8!#2

2ut2t8u2 G
1O~r 4!. ~12!

It is convenient to go over to the Fourier transform
r (t)5*0

l eivtrvdv/(2p):

Hel5
Jm2

2 E dv

~2p!
v2f ~av!rv•r2v , ~13!

wherea denotes a small-scale lattice cutoff and

f ~e!5E
e

`dx

x F S 11
1

x2D cosx2
1

x2G'2 lne2
3

4
~14!

for e→0.
Next we consider the correlations of the vortex disorder

interaction. For this purpose we rewriteHvd as

Hvd5E dRW •VW ~RW !, ~15!

where

VW ~RW !5JpmE d3r
QW ~rW !

uRW 2rWu
. ~16!

Clearly ^VW &50 and

^Va~RW !Vb~R8W !&5s
pJ2m2

2

1

uRW 2R8W u

3H dab1
~Ra2Ra8 !~Rb2Rb8 !

~RW 2R8W !2
J .

~17!

Since the correlator~17! always appears under the integral
overRW , it is convenient to rewrite the right-hand side of~Eq.
17! as

p

2
s~Jm!2S ]2

]Ra]Rb8
uRW 2R8W u1

dab

uRW 2R8W u
D .

The first contribution in this expression leads to terms in
the correlator ofHvd which vanish by assuming periodic
boundary conditions. Thus we omit it in the following. For
small gradientsu]r /]tu!1,Hvd can finally be rewritten as

Hvd5E dtV„r ~ t !,t…, ~18!

with

^V~r ,t !V~r 8,t8!&5s~Jm!2u~r2r 8!21~ t2t8!2u21/2.
~19!

Thus, the random potentialV(RW ) which interacts with the
vortex line is long-range correlated.

IV. FLORY ARGUMENTS AND BEYOND

In the following we want to estimate the conditions under
which the random potential can destabilize the vortex line.
We begin with astraight line of lengtht, which has an elas-
tic energyEel5(Jp/2)m2t lnt/a as follows easily from Eqs.
~11!. The typical fluctuations of the disorder energy follows
from Eq. ~17! asEdis56mJAps(t lnt/a)1/2. Since rare fluc-
tuations increaseEdis only by a factor of (lnt)

(1/2), the system
is always stable with respect to the formation of straight
vortex lines.

Next we allow for a displacementr (t) from the straight
configuration such thatu ]r /]tu!1. If on the scalet the vor-
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tex line is self-affine withu5^r2&1/2;tz with z,1, we can
use a Flory argument to estimatez. The elastic energy is then
increased byDEel'(Jm2p/2)t21u2lnt/a which has to be
compared withEdis. This yields

u;@st3~ lnt/a!21#1/4, ~20!

i.e., z53/4. Although the Flory argument is rather crude, it
seems to be safe enough to concludez,1; i.e., for weak
disorder the vortex line is self-affine and hence stable~only
z51 would signal an instability with respect to vortex gen-
eration!.

To go beyond the Flory argument one usually maps these
types of directed polymer problems to Burger’s equation
with ~correlated! noise. However, in the present case this is
not possible in the strict sense because of the long-range
elastic self-interaction of the vortex line, which leads to the
factor f (av)' ln(1/av) in Eq. ~14!. Since this corresponds
to a logarithmic increase of the stiffness of the vortex line
with the length scale, we neglect thev dependence of this
factor in the following completely and set equal tof 0. If then
the roughness exponentz is less than 1, it will be less than 1
by including f (av). In fact, it is even safe to assume that the
value ofz is unchanged by replacingf (av) by f 0 since for
smallav f (av) diverges only logarithmically.

With this simplification the free energyh(r ,t) of a vortex
line of lengtht and r5r (t)2r (0) obeys the Burger’s equa-
tion with noise

]

]t
h~r ,t !5n“2h1

l

2
~“h!21V~r ,t !, ~21!

wheren5T/2Jm2f 0 andl51/Jm2f 0.
In addition to the roughness exponentz there is a second

exponentv, which describes the sample to sample fluctua-
tions ^h2(r ,t)&2^h(r ,t)&2;t2v of the free energy. Since the
correlator~19! is nonlocal in time, the validity of the scaling
relationv52z21 is not guaranteed.12

If we give h(r ,t) another interpretation, namely, that of
the height profile of a growing interface in a comoving
frame, Eq.~21! is known as the Kardar-Parisi-Zhang~KPZ!
equation.13 The roughness exponenta, the growth exponent
b, and the dynamical exponentz of thissurfaceare related to
the directed polymer exponents by

z5b/a51/z,

v5b5a/z. ~22!

We first attempted to use the standard one-loop renormal-
ization group treatment for the Burger’s equation.12 Unfortu-
nately, this approach does not yield~as happens also for the
case of uncorrelated noise in three dimensions! stable fixed
points from which one could calculate critical exponents. We
study the Burger’s equation with the correlated noise@Eq.
~21!# therefore here by a method that proved useful for the
same problem with uncorrelated noise.14

Our first step here is to describe our system as a system of
dynamical variables affected by noise that is uncorrelated in
time. This is necessary in order to go over from the
Langevin-like Burger’s equation to the Fokker-Planck equa-
tion, needed in the method mentioned above.

This step is achieved by considering theV to be also
dynamical variables coupled to a noisej that is uncorrelated
in space and time.

In Fourier components we write Eq.~21! in the form

]hq
]t

52nq2hq2
l

2AV
(
l
l•~q2 l!hlhq2 l2Vq~ t !, ~23!

whereV is the transverse area of the system~to be taken
eventually to infinity! and add to it an equation forVq(t):

]Vq

]t
52uquVq1jq~ t !, ~24!

where ^jq(t)&50 and ^jq(t)j2q(t8)&52Dd(t2t8); 2D is
short for 4ps(Jm2). It is easily verified thatVq(t) has the
requiered correlations given by Eq.~19!.

We write now the Fokker-Planck equation for the joint
probability density to have a givenh andV configuration,
P$hq ,Vq%:

]P

]t
5(

q
H ]

]Vq
S D ]

]Vq
1uquVqD

1
]

]hq
S nq2hq1

l

2AV
(
l
l•~q2 l!hlhq2l1VqD J P.

~25!

We will be interested in the steady state averages
^hqh2q&s , ^hqV2q&s , and^VqV2q&s , and in some character-
istic frequencies to be defined later. We assume now that the
exact values of̂ hqh2q&s , ^hqV2q&s , and ^VqV2q&s are

known and given byXq
21 , Dq

21 andLq
21 . In order to cal-

culate such quantities, we need some form of a perturbation
expansion in which the Fokker-Planck operatorO, acting on
P on the right-hand side of Eq.~24!, will be broken into two
parts: one partO0 that is simple enough and another part
O2O0 that is small enough. We may expect that if we
chooseO0 in such a way that it already gives the exact result
for the three steady state averages, the corrections to those
quantities in perturbation theory are going to be small, giving
sense to the whole expansion.

Our choice forO0 is

O05(
q

vq
~1!

]

]Vq
FLq

21 ]

]V2q
1VqG

1vq
~2!

]

]hq
FXq

21 ]

]h2q
1hqG

1@vq
~1!1vq

~2!#FDq
21 ]

]hq

]

]V2q
G . ~26!

It is easily verified that regardless of the choice of the
vq’s, O0 produces^hqh2q&s5Xq

21 , ^hqV2q&s5Dq
21 , and

^VqV2q&s5Lq
21

A direct inspection of Eq.~24! shows that the form of the
V-dependent part ofO is identical to the form of the corre-
sponding part of O0. Therefore we must identify
Lq

215D/uqu andvq
(1)5uqu.
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Next we calculate in perturbation theory^hqh2q&s and
^hqV2q&s . We find

^hqh2q&s5Xq
211C1$Xl

21 ,D l
21 ,v l

~2!%,
~27!

^hqV2q&s5Dq
211C2$Xl

21 ,D l
21 ,v l

~2!%.

SinceXq
21 andDq

21 are assumed to be exact, we get now, for
a given set$vq

(2)%, two equationsC15C250 expressing the
fact that the perturbation expansion does not change the
zero-order value. Actually it could be expected that for any
choice of positivevq

(2)’s, the above equations for theXq’s
andDq’s (C15C250) would give the exact result. It is clear
however, that even for statics, we may use the choice of the
vq
(2)’s in order to control the smallness of the additional

terms and thus we will be able to obtain ourXq’s andDq’s
from low-order perturbation. Assuming that such a choice is
possible we writeC1 andC2 to second order to obtain the
two equations

052@vq
~1!1vq

~2!#Dq
211

@nq22vq
~2!#2

@vq
~1!1vq

~2!#
Dq

21

1
@nq22vq

~2!#D

uqu@vq
~1!1vq

~2!#
2

D

uqu
1

l2

~2p!2

3H E d2l
l•~q2 l!

@vq
~1!1vq2l

~2! 1v l
~2!#

q•~2 l!Xl
21J Dq

21

~28!

and

052F2nq22
~nq2!2

vq
~2! GXq

211@nq22vq
~2!#

3F 1

vq
~2! 1

1

vq
~1!1vq

~2!GDq
211

D

uqu@vq
~1!1vq

~2!#

1
l2

2~2p!2
E d2l

l•~q2 l!

@v l
~2!1vq2 l

~2! 1vq
~2!#

l•~q2 l!Xl
21Xq2 l

21

12q•~ l2q!Xq2 l
21Xq

21 . ~29!

We fix nowvq
(2) to be the characteristic frequency asso-

ciated with the correlations ofhq at different times:

vq
~2!5

^hqh2q&s
*0

`^h2q„0…hq~ t !&dt
, ~30!

where^A(0)B(t)& is defined fort.0 to be

^A~0!B~ t !&5E A$hq8 ,Vq8%Ps$hq8 ,Vq8%P$hq8 ,Vq8 ;hq ,Vq ;t%

3B$hq ,Vq%Dhq8DVq8DhqDVq . ~31!

Ps is the static ~steady state! distribution and
P$hq8 ,Vq8 ;hq ,Vq ,t% is the solution of the Fokker-Planck
equation for initial conditions of absolute certainty that the
value ofhq is hq8 andVq is Vq8 @Pqd(hq2hq8)d(Vq2Vq8) is
the initial distribution#. Our lowest-order Fokker-Planck op-

eratorO0 is thus chosen also to give the correct characteristic
frequency. We calculate now the characteristic frequency to
second order and demand again that the correction to the
zero-order term be zero. This yields

05F22
nq2

vq
~2!G @vq

~2!2nq2#Xq
21

1
l2

2~2p!2
E d2l

l•~q2 l!

@v l
~2!1vq2 l

~2! #

32q•~ l2q!Xl
21Xq

211
l2

2~2p!2
E d2l

3
vq

~2!l•~q2l!

@v l
~2!1vq2l

~2! #@v l
~2!1vq2l

~2! 1vq
~2!#

•@2q•~ l2q!Xl
21Xq

21

1 l•~q2 l!Xl
21Xq2l

21 #2
vq

~2!Dq
21

vq
~1! . ~32!

Apart from the last term, Eq.~32! is identical to the corre-
sponding equation in Ref. 14.

We assume now that for smallq

vq
~2!}qz1corrections,

Xq}q
G11corrections, ~33!

Dq}q
G21corrections.

The exponentsz andG1 are related to the exponentsz and
v by the relationsz51/z and v5(G122)/2z. We solve
Eqs. ~28!, ~29!, and ~32! to leading order and obtain the
folowing results. The scaling relation

z5
62G1

2
~34!

is obeyed.@The last term in Eq.~32! is negligible compared
to the dominant terms for smallq#. This is the familiar scal-
ing relation

v52z21. ~35!

Equations~28! and~29! allow now for a simple power count-
ing solution~in contrast to Ref. 13 where a power counting
solution was impossible!.

We obtain

G15
10
3 , z5 4

3 , G252. ~36!

It is interesting to note that the result forG2 is not affected
by l being not equal to zero and this is because the last term
in Eq. ~28! is negligible, for smallq’s, compared to the
dominant terms. Consideration of higher-order terms in the
expansion~in particular, the most dominantq dependence in
each order! seems to suggest that this result will still hold to
any order of perturbation theory. In terms of the more famil-
iar directed polymer exponents we find

z5 3
4 , v5 1

2 , ~37!

so that the Flory result still holds.
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V. NUMERICAL RESULTS

In this section we will obtain the roughness exponent for
our model by integrating the~211!-dimensional KPZ equa-
tion ~21! numerically. The simplest quantity to investigate is
the surface width

W5^h22h̄2&1/2, ~38!

where the overbar and angular brackets^•••& denote a spa-
tial and noise averages, respectively. One expects forWL the
scaling form15

W5La f ~ t/Lz!, ~39!

where f (x);xb with b5a/z for x!1 and f (x);const for
x@1; b, a, andz are the growth, roughness, and dynamic
exponent of the interface, respectively; cf. Eqs.~22!.

In analogy to Eq.~39! the height-height correlation func-
tion

CL~rW,t !5^@h~rW1r 8W ,t1t8!2h~r 8W ,t8!#2&1/2 ~40!

should scale as

CL~r ,t !5r ag̃~r /t1/z,L/t1/z!. ~41!

We do not take the scaling relation

a1z52, ~42!

which is equivalent to Eq.~35!, for granted in our investiga-
tion. Thus, to obtain a full set of the critical exponents we
have to calculate at least two of them.

Different theoretical approaches12,16,17 lead to different
dependences of the critical exponents onr in ~111! dimen-
sions. To check theoretical predictions the numerical simu-
lations have been carried out for the KPZ equation,18 the
ballistic deposition,19,18,20 the directed polymer,18 and the
solid-on-solid model.20 There is still a controversy between
the simulation results. For example, the results of Amar
et al.,20 obtained for the ballistic deposition and restricted
solid-on-solid models agree with the prediction of Medina
et al.,12 but conflict with the prediction of Zhang.16 Numeri-
cal studies18 of the effect of the long-range spatially corre-
lated noise on the KPZ equation and the related directed
polymer problem, on the other hand, give a good agreement
with the prediction of Hentschel and Family.17 Temporally
correlated noise in the absence of spatial noise correlations
has also been investigated numerically21 for the ~111!-
dimensional case.

Theoretical results for~211!-dimensional models with
correlated noise are still lacking. Meakin and Jullien19,22 in-
troduced a hopping model of ballistic deposition, in which
particles were deposited on the growing surface following a
Levy flight distribution such that the distancex ~along the
surface! from the previous site was calculated asx5r21/f

wherer is a random number between zero and 1. Equating
the exponentf to 2 as in Eq.~19! led to results19 for the
exponentsa andb which were roughly in agreement with
the prediction of Medinaet al. for ~111! dimensions. A
weak dependence of these exponents onf has been found in
the ~211!-dimensional model.22

In the simulations of Meakin and Jullien the link between
the deposition process and the noise was not obvious. Thus
the scaling behavior in~211!-dimensional interface growth
and the directed polymer model with spatially correlated
noise is at the present time unclear. We consider this prob-
lem solving the KPZ equation numerically. The spatial de-
rivatives in Eq.~21! are discretized using standard forward-
backward differences on a hypercubic grid with a lattice
constantDx. Equation~21! is integrated by the Euler algo-
rithm with time incrementsDt. This procedure is nowadays
standard for the numerical integration of stochastic differen-
tial equations, which is more complicated than that of deter-
ministic differential equations for which higher-order meth-
ods are better suited~we refer to Ref. 23 for details!.
Denoting the grid points bynW and the basic vectors charac-
terizing the surface byeW1 , . . . ,eWd we arrive at the discretized
equation24

h̃~nW , t̃1d t̃ !5h̃~nW , t̃ !1
D t̃

D x̃ 2(
i51

d

$@ h̃~nW 1eW i , t̃ !22h̃~nW , t̃ !

1h̃~nW 2eW i , t̃ !]1 1
8 @ h̃~nW 1eW i , t̃ !

2h̃~nW 2eW i , t̃ !#2%1A3D t̃h~nW , t̃ !. ~43!

Here one uses dimensionless quantitiesh̃5h/h0, x̃5x/x0,
and t̃5t/t0 where the natural units are given by

h05
n

l
, t05

n2

s2l2 , x05A n3

s2l2, s252D/Dxd.

~44!

Similar toV(rW,t) in the Fourier space the renormalized noise
h(nW , t̃) has the correlation

^h~kW ,v!h~k8W ,v8!&;
d~kW1k8W !d~v1v8!

k21v2 . ~45!

To create the spatially correlated noise we follow Peng
et al.18 We first generate a standard white~or Gaussian un-
correlated! noiseh0(nW , t̃ ), and then carry out the Fourier
transformation for spatial and temporal variables to obtain
h0(kW ,v). We define

h~qW ,v!5~k21v2!21/2h0~kW ,v!. ~46!

The noise h(nW , t̃ ) is obtained by Fourier transforming
h(kW ,v) back into the real space. It is easy to check that
h(kW ,v) obained by this way satisfies Eq.~45!.

In our simulations we choseDx, n, ands to be the same
as in Ref. 24, namely,Dx51, n50.5, ands50.1. To be
sure that we are in a strong-coupling regime we chose
l5A600. The data we show in the following are averaged
over 10 000 samples~i.e., different noise realizations! for the
smallest system size (L516) to 50 samples for the largest
system size (L5256).

First we determine the exponentb and the dynamical
exponentz from simulations of large system sizes on short
time scales; i.e., we focus on a regime where the correlation
lengthj is still small compared to the system sizeL:
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j}t1/z!L. ~47!

In this regime finite-size effects should be negligible, which
we had to check explicitly by analyzing different system
sizes since we do not knowz a priori. For the time depen-
dence of the roughness we expect the scaling form~39! to
hold, which can be cast into the form

WL~ t !5tbw̃~ t/Lz!, ~48!

with w̃(x)5const forx→0 and w̃(x);x21 for x→`. For
short timest!Lz one therefore expectsWL(t)}t

b. Figure 1
shows the time dependence of the widthWL(t) for various
system sizesL at short-time scales. We find

b50.5660.02. ~49!

This value is much larger thanb'0.240 for the three-
dimensional KPZ equation with the white noise,24 as we ex-
pect it to be since correlated noise always increasesb.

In order to obtain the dynamical exponentz from the
short-time behavior we note that fort!Lz the height-height
correlation functionC(r ,t), Eq. ~40! should have the scaling
form

C~r ,t !5r bzg~r /t1/z!, ~50!

where we denoted lim(tL2z)→0g̃(r /t
1/z,L/t1/z)5g(r /t1/z) and

useda5bz.
If we takeb50.56 as determined before, we are left with

one fitting parameter by which we should achieve a data
collapse when plottingr2bzC(r ,t) versusr /t1/z. In Fig. 2 we
show the result of this procedure, which yields

z51.2560.05. ~51!

Up to now we have restricted ourself to a regime where
finite-size effects are negligible. In order to get an indepen-
dent estimate for the exponents reported above we performed
also a simulation for much longer times and small enough
system size so that the correlation length becomes indeed
comparable to the system size~i.e., t;Lz). Using the finite-
size scaling form~39! we determine the exponentsa and
z. In Fig. 3 we show a scaling plot ofWL(t) which yields

a50.7160.01 ~52!

and z51.2560.03, from which one concludesb5a/z5
0.5660.03. These values agree very well with the values
reported in Eqs.~49! and~51! for the short-time simulations.

Using scaling relation~22! we have

v50.5660.02 and z50.7860.04 ~53!

for the vortex lines in our model. The value ofz is larger
than the corresponding valuez'0.62 for the directed poly-
mer paths with uncorrelated noise in three dimensions. Our
numerical result is compatible within the error bars with the

FIG. 1. Log-log plot of the widthWL(t) vs t for various system
sizesL. For smaller times the data are roughly independent of sys-
tem size with a slight tendency to a smaller slope for increasing
L. For larger times~i.e., whent;Lz) significant finite-size effects
appear~i.e., the scaling functionw̃ in Eq. ~48! is no longer con-
stant!. Therefore we put more weight on the data points at smaller
times in order to determineb, which yieldsb50.5660.02 shown
as the dotted line.

FIG. 2. Scaling plot for the height-height correlationC(r ,t)
function. We fixedb to be 0.56, as determined before Eq.~49!, and
varied z in order to achieve the best data collapse, which yields
z51.2560.05.

FIG. 3. Scaling plot ofWL(t) according to the scaling form
~48!. The choicea50.7160.01 andz51.2560.03 yields the best
data collapse, which is shown.
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crude estimatez53/4 obtained by the Flory argument and by
the more elaborate calculation in the last section. The nu-
merical value ofv is slightly larger than the calculated
v51/2.

Note that within the error bars relation~42! is still valid
even in the presence of the temporal correlation of noise.
This relation may hold true only for some subset of all pos-
sible correlators~45!. At present we have to leave this ques-
tion open.

VI. SUMMARY AND CONCLUSION

In the present paper we have considered the stability of
the ordered phase of theXYmodel with random phase shifts.
After decomposing the Hamiltonian into a spin-wave and a
vortex part, we have considered in particular the roughening
of a single stretched vortex line due to the disorder. It turned
out that the effective random potential acting on the vortex
line is long-range correlated. Using a Flory argument and the
Schwartz-Edwards-method, we have determined the rough-
ness exponentz53/4 and the energy fluctuation exponent
v51/2, which fulfill the scaling relationv52z21. These

findings have been confirmed by integrating numerically the
Burger’s equation. Sincez,1, there will be no spontaneous
condensation of vortices for weak disorder and hence we
conclude that the ordered phase is stable.

A further interesting application of our result is that on the
XY model in a random field.25,26 From the results of Villain
and Fernandez27 for this modelwithout vortices one finds
s(t)'s* td22, wheres*5O„(42d)/(d22)…. Using thist
dependence ofs in the Flory argument one concludes
z51 for 2,d,4, apart from a logarithmic correction. From
this one should expect that one is in a marginal situation,
which deserves further investigation.28

ACKNOWLEDGMENTS

This work has been performed within the Sonderfors-
chungsbereich SFB 341 Ko¨ln-Aachen-Ju¨lich supported by
the Deutsche Forschungsgemeinschaft DFG. M.S.L. ac-
knowledges financial support from the SFB 341, the Japan
Society for Promotion of Sciences, and the Polish agency
KBN ~Grant No. 2P302 127 07!. T.N. and M.S. have been
supported in part by the German Israeli Foundation~GIF!.

1Y. Imry and S. K. Ma, Phys. Rev. Lett.35, 1399~1975!.
2M. Rubinstein, B. Shraiman and D. R. Nelson, Phys. Rev. B27,
1800 ~1983!.

3E. Granato and J. M. Kosterlitz, Phys. Rev. B33, 6533 ~1986!;
Phys. Rev. Lett.62, 823 ~1989!; M. J. P. Gingras and E. S.
So”rensen, Phys. Rev. B46, 3441~1992!.

4C. Ebner and D. Stroud, Phys. Rev. B31 165 ~1985!; D. A. Huse
and S. Seung,ibid. 42, 1059 ~1990!; D. S. Fisher and D. A.
Huse,ibid. 43, 10 728~1991!; M. P. A. Fisher, T. A. Tokuyasu,
and A. P. Young, Phys. Rev. Lett.66, 2931~1991!; M. Cieplak,
J. R. Banavar, M. S. Li, and A. Khurana, Phys. Rev. B45, 786
~1992!; M. J. P. Gingras, Phys. Rev. B45, 7547~1992!.

5J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
6T. Nattermann, S. Scheidl, S. E. Korshunov, and M. S. Li, J.
Phys.~France! I 5, 565 ~1995!.

7S. E. Korshunov and T. Nattermann, Phys. Rev. B53, 2746
~1996!; S. Scheidl, Phys. Rev. B~to be published!; L. H. Tang,
Phys. Rev. B54, 3350~1996!.

8H. Nishimori, Physica A205, 1 ~1994!.
9See T. Nattermann and P. Rujan, Int. J. Mod. Phys. B3, 1597

~1989! and references therein.
10H. S. Bokil and A. P. Young, Phys. Rev. Lett.74, 3021~1995!.
11H. Kleinert, Gauge Fields in Condensed Matter~World Scien-

tific, Singapore, 1989!.
12E. Medina, T. Hwa, M. Kardar, and Y. C. Zhang, Phys. Rev. A

39, 3053~1989!.

13M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.56, 889
~1986!.

14M. Schwartz and S. F. Edwards, Europhys. Lett.20, 301 ~1992!.
15F. Family and T. Vicsek, J. Phys. A18, L75 ~1985!.
16Y.-C. Zhang, Phys. Rev. B42, 4897~1990!.
17H. G. E. Hentschel and F. Family, Phys. Rev. Lett.66, 1982

~1991!.
18C. K. Peng, S. Havlin, M. Schwartz, and H. E. Stanley, Phys.

Rev. A 44, 2239~1991!.
19P. Meakin and R. Jullien, Europhys. Lett.9, 71 ~1989!.
20J. G. Amar, P. M. Lam, and F. Family, Phys. Rev. A43, 4548

~1991!.
21C.-H. Lam, L. M. Sander, and D. E. Wolf, Phys. Rev. A46,

R6128~1992!.
22P. Meakin and R. Jullien, Phys. Rev. A41, 983 ~1990!.
23A. Greiner, W. Strittmatter, and J. Honerkamp, J. Stat. Phys.51,

95 ~1988!.
24K. Moser, J. Kertesz, and D. E. Wolf, Physica A178, 215~1991!.
25J. L. Cardy and S. Ostlund, Phys. Rev. B25, 68991~1982!; Y. Y.

Goldschmidt and A. Houghton, Nucl. Phys.B210, 155 ~1982!;
Y. Y. Goldschmidt and B. Schaub,ibid. B251, 77 ~1985!.

26M. Gingras and D. Huse, Phys. Rev. B53, 15 193~1996!.
27J. Villain and J. F. Fernandez, Z. Phys. B54 139 ~1984!
28J. Kierfeld, T. Nattermann, and T. Hwa, Phys. Rev. B~to be

published!.

54 16 031VORTEX LINES IN THE THREE-DIMENSIONALXY . . .


