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The stability of the ordered phase of the three-dimensi¥yamodel with random phase shifts is studied by
considering the roughening of a single stretched vortex line due to disorder. It is shown that the vortex line may
be described by a directed polymer Hamiltonian with an effective random potential that is long-range corre-
lated. A Flory argument estimates the roughness exponefit®@/'4 and the energy fluctuation exponent to
w=1/2, thus fulfilling the scaling relatiom=2¢—1. The Schwartz-Edwards method as well as a humerical
integration of the corresponding Burger's equation confirms this result. $kide the ordered phase of the
original XY model is stable[S0163-182@06)00945-9

I. INTRODUCTION Model (1) describes XY magnets with a random
Dzyaloshinskii-Moriya interactiof Other realizations of this
Systems with a continuous symmetry of the order parammodel are 3D-Josephson-junction arrays with positional
eter are particularly susceptible to the influence of frozen-indisordef and vortex glasses.
disorder! In this paper we investigate the stability of the |n the case of the so-called gauge glass nfbdek as-
ordered phase of the three-dimensiokal model with ran-  sumesA;; to be uniformly distributed between 0 andrdut
dom phase shifts with respect to topological defects. Strictlyye expect that our model with Gaussian disorder is equiva-

speaking, in order to distinguish between a quantum spiflant to the gauge glass model wheris large enough.
model, in which only theX andY components of the spins In d=2 dimensions the modell) shows a low-

interact (the true XY mode), and the classical Wo- temperature weak-disorder phase with quasi-long-range or-
component spin model we consider here, it would be morey (QLRO) and, for ¢=0, a vortex-driven Kosterlitz-

appropriate to refer to our model as a planar rotator modely, ;105 jike transitid?® to the disordered phase. A finite

However, since this distinction is not often followed in the . . "

; . . amount of disorder shifts the transition to lower temperatures

literature, we keep the notatiodY model throughout this . ; . : X .
and reduces the universal jump in the spin-spin correlation

aper.
P l'Dl'he Hamiltonian of this model may be written in the form &XPonent fromy=1/4 for ¢ =0 10 7=1/16 ato=m/8. As
was shown recentl§/ this transition is not reentrant, con-
trary to earlier findingg, but in agreement with results of
Nishimori for a model with slightly different correlations of
H= —JZ cog 6, — 6;— Ay)), (1)  the random phase shiffs.
(i In d=3 dimensions, it is easy to show that spin-wave
excitations, which couple only t§ - A, do not destroy true
where J is an effective coupling, the phase variablés long range order at all temperatures and disorder strengths.
€[0,27] are placed on a three-dimensiofdD) hypercubic  To address the question of whether this picture is qualita-
lattice, and the sum runs over all nearest-neighbor pairtively changed even for weak disorder and low temperatures
(ij). The variable\;; are quenched random phase shifts by allowing vortex configurations we consider single
random gaugeson the bonds connecting nearest neighborsstretched vortex line in the presence of the disorder field
For simplicity we assume that th; on different bonds are Sych a vortex line can be forced into the system e.g., by
uncorrelated and Gaussian distributed with mean zero angppropriate boundary conditions. As long as the vortex line
varianceo. Below it will be useful to go over to the con- remains self-affine, i.e., as long as its typical transverse dis-
tinuum description in whichd;; is replaced by the field placemenu scales as.? (whereL denotes the length of the
,&(F). line) with a roughness exponert<l1, which implies(for
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weak disorder and low) a finite line tension, we conclude wijth V.m=0. HereV' denotes a derivative with respect to

that the ordered phase remains stable. It turns out that th(s?e primed variablg’ and X represents a vector product.

problem can be mapped approximatively onto a directe

polymer problem with long-range correlated disorder. We

he Green functiOIG(F) satisfiesVzG(F)= - 5(?). In three

find both from analytical and numerical calculations that thedimensionsG(r) takes the formG(r)=(4mr) . i
roughness exponent is indeed about 0.75, such that the or- Representing(r) as a sum of a vortex paft,(r) and a

dered phase remains stable. This is in agreement with resulg?)in-wave parwsm,(F) one can show that Ham"torudﬁ) is

of Nishimor® for a slightly different probability weight for
the disorder.

decomposed into two independent spin-wave and vortex
parts. In what follows we will be interested only in the vor-

Although these arguments are not rigorous and strictltex part#, which may be written in the form
speaking further instabilities cannot be excluded, experience

with other random systems, in particular the random field

Ising model, suggestghat it is the instability of large-scale

topological defects which lead to a destruction of the ordered

phase below a certain critical dimensions.

Il. SPIN WAVES AND VORTICES

In order to separate between spin-wave and vortex de-
grees of freedom we start from the continuum description of

model (1):

J s e s
H= EJ d3r|Ve(r)—A(r)|2 2
The quenched vector fielﬁ(F) is assumed to be Gaussian
distributed with zero average and correlationsg = 1, 2,

3

(A(DALIT))=08,58(r—T17),

where(- - -) denotes the disorder average.

The original model1) is periodic in#;— ¢; with the pe-
riodicity 2. In order to preserve this periodicity in the con-
tinuum version(2) we have to allow for singularities along

)

HU:HUU+HUd’

J m(r)-m(r’
Huv=§ffd3rd3r'—(|) ()

1|
J
Hvdzzf fd3rd3r’

The lattice version of such a vortex Hamiltonian for gauge
glass has been derived recenflyObviously, H,, and H, 4
correspond to the vortex-vortex and vortex-disorder interac-
tions, respectively. As ind=2 dimensions, the vortices
couple only to the/ x A(r) =27Q(r), which can be consid-
ered as a quenched random vector charge field with
V.-Q=0.

As follows from Eq.(3), (Q(r))=0 and

, ®

m(r)-[V' XA(r")]

r=r’]

(QuNQU() = 7[da5= 8,6V2100 7). (9)

which V ¢ jumps by 2r. These singular surfaces are bounded Equations(8) and (9) would be the starting point for the

by vortex lined which are characterized by their topological
chargem, and their position vectdﬁ,(s). It is convenient to
decompose the field into a spin-wave par¥ 6y, and a
vortex partﬁav. The spin-wave part is vortex free. The

vortex part of the vector field 6, is defined by the saddle
point equations

>

V-[V6,—A(r)]=0 (4

and
5

where ﬁ(F) denotes the vortex density field, which is non-
zero only along the singular lingg(s),

VX (V6,)=2mm(r),

dR(s)
ds

rﬁ(F)=Z m, | ds ST —Ry(9)). (6)

Equation(5) and (6) can be solved easily by introducing a
vector potentiaf(r), Vxa(r)=V6,—A(r). The solution is

ﬁav(F)=f dBr'G(r—r ) {-V' [V -A(r")]

+27V xm(r)},

(@)

statistical treatment of modél). In the partition function we
had to integrate over all possible configurations of vortex
loops and vortex lines spanning the system. However, this
task is much too difficult and remains to be done even for the
pure system.

Instead, we follow here a much more modest approach
and consider the case of a very strong dilution of vortex
lines. In order to test the stability of the vortex-free state with
respect to vortex formation, it is indeed sufficient to consider
an isolated large vortex loop. Without disorder, such a vortex
loop costs an energy of the order> LInL (see below if
L is the radius of the loop an¥l,~Jm? denotes the bare line
tension of the vortex line. The configurational entropy of the
loop is also of the ordetInL and hence will produce a
negative free energy only at sufficiently high temperatures.
At these temperature the system is then disordered, and the
state of the system is characterized by multiply entangled
vortex lines and loops.

However, at low temperatures this mechanism does not
work. A possible source for the condensation of vortex loops
here is the disorder. To check this possibility, we consider in
the next section a single stretched vortex line which we al-
low to become rough under the influene of the disorder. As
long as the typical transverse distortior-t¢ of a piece of
lengtht of the vortex line is characterized by a roughness
exponent{<1, the contributions; of the disorder to the
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total vortex line tensiony,, from distortions on this length wherea denotes a small-scale lattice cutoff and
scale is of the order 3 qu?/t?«—t2¢~1) and hence small
for larget. fe)= f

Summation over the contributions?,; from all length
scalesb™a (a being the microscopic length scale or small-
scale lattice cutoff and the usual renormalization fachor
betweenn,;,=0 andn 5= In(L/a)/Inb yields a finite value
for 824t Which can be made arbitrarily small for decreasing
disorder strength. Thus the line tensi@in=2 o+ 62 o re- o
mains positive and the system is stable with respect to the Hya= f dR-V(R), (15
condensation of vortex lines.

However, for=1 the disorder contributions to the line where
tension are independent bfand hence the energy per unit
length will vanish on a sufficiently large length scale As
a result, vortex loops of side>t. will appear spontaneously
and hence destroy the ordered phase. In this way we traced
back the existence of a vortex-free low-temperature phase t6learly (V)=0 and
the determination of the roughness exponénif a single
stretched vortex line. We expect no difference in the case of - _ w’m? 1
a vortex loop as long a3 is sufficiently large, which can be (Va(R)V4(R")) =0 2 |I§— §>,|
always achieved for weak disorder.

<Ra—R;><RB—R;>]

(R-R")?
We consider in the following only aingle stretched vor- 17)

tex line with no overhangs, which means that we may set
R(S)—»R(t) (r1(1),15(1),1), wherer(t)=(r4(t),r,(t)) de- Since the correlatol7) always appears under the integral

scribes the transverse distortion of the vortex line from aOVerR, it is convenient to rewrite the right-hand side(&f.
straight configuration. Them(r) may be parametrized as 17) as
#? L 8,
7 |R— R’ | + %) .

follows:**
IR IR |IR—R’|

4

1 3
COX— } —lne—— (19

for e—0.
Next we consider the correlations of the vortex disorder
interaction. For this purpose we rewrité,4 as

Q(r)

V(R)=Jmm f d3r (16)

Ill. SINGLE-VORTEX-LINE HAMILTONION X{ Sapt

(Im)?
- —o(Jm
.. drR . . . 2
m(r)= mj dtr 53 (r—R(t)),
The first contribution in this expression leads to terms in

the correlator ofH,y which vanish by assuming periodic
dR (Wl arp ) (10) boundary conditions. Thus we omit it in the following. For

dt | gt ot small gradientgdr/dt| <1, H,q4 can finally be rewritten as
'H,, decribes now the elastic self-interaction of the vortex
e My, Mo Hoa= [ dve ., 19
J f dR(t)dR(t") with
& IR(t)—R(t")]’ (V(r,HV(r' "))y =a(Im)?|(r—r")2+(t—t")? "2
(19

dtdt’. (11 Thus, the random potenti&I(R) which interacts with the

o N ar or
dR(t)dR(t’)=(E W+1
vortex line is long-range correlated.
ExpandingH,,, in Eq. (8) up to quadratic terms in and

dr/dt and omitting an irrelevant constant corresponding to IV. FLORY ARGUMENTS AND BEYOND

the energy of straight lines one has
dtdt’ 0 T ;
f f — s We begin with astraightline of lengtht, which has an elas-
|t vl atat 2lt-t| tic energyEq = (Jm/2)m?tint/a as follows easily from Egs.
+O(r4). (12) (11). The typical fluctuations of the disordelr energy follows
from Eq. (17) asEge= + mJ{mo(tint/a)*2 Since rare fluc-
It is convenient to go over to the Fourier transform tuations |ncreasEdls 0n|y by a factor of (|m)(1/2) the system

In the following we want to estimate the conditions under
o or [r(t)—r(t’)]z} which the random potential can destabilize the vortex line.

r(t)=foe"'r ,do/(27): is always stable with respect to the formation of straight
5 vortex lines.
Jm do Next we allow for a displacemem{t) from the straight

w’f(aw)r, r_,, (13

Her=—5~ (27) configuration such thatar/dt|<1. If on the scale the vor-
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tex line is self-affine witm=<r2)1’2~t5 with <1, we can This step is achieved by considering theto be also
use a Flory argument to estimateThe elastic energy is then dynamical variables coupled to a noié¢hat is uncorrelated

increased byAEg~(Jm?x/2)t~tu?Int/a which has to be in space and time.
compared withE 4. This yields In Fourier components we write ER1) in the form

u~[ot3(Int/a)~1]¥4 20 oh A

| ot I 20 — = v@hg— =2 1 (@=Dhihg = Vg(t), (23)

i.e., {=3/4. Although the Flory argument is rather crude, it 207

seems to be safe enough to conclugel; i.e., for weak

disorder the vortex line is self-affine and hence stdbldy

=1 would signal an instability with respect to vortex gen-

eration. IV,
To go beyond the Flory argument one usually maps these = |a| Vgt &q(1), (24)

types of directed polymer problems to Burger's equation

with (correlated noise. However, in the present case this iswhere (£,(t))=0 and (&4(t)é_4(t'))=2D&(t—t'); 2D is

not possible in the strict sense because of the long-rangshort for 4ra(Jm?). It is easily verified that/,(t) has the

elastic self-interaction of the vortex line, which leads to therequiered correlations given by E(.9).

factor f(aw)~In(l/aw) in Eq. (14). Since this corresponds We write now the Fokker-Planck equation for the joint

to a logarithmic increase of the stiffness of the vortex lineprobability density to have a givelm andV configuration,

with the length scale, we neglect tlae dependence of this P{hg.Vg}:

factor in the following completely and set equalftp If then

the roughness exponefifis less than 1, it will be lessthan 1 gP

by includingf(aw). In fact, it is even safe to assume that the = %

value of¢{ is unchanged by replacinfaw) by f, since for

smallaw f(aw) diverges only logarithmically.

where ) is the transverse area of the systém be taken
eventually to infinity and add to it an equation faf(t):

d

g

J
D[?—Vq‘i‘|C]|Vq

J A
With this simplification the free energdy(r,t) of a vortex + - yqth+ —2 I-(q=Dhhg_+Vq | ( P.
line of lengtht andr=r(t)—r(0) obeys the Burger's equa- MNq 201
tion with noise (25)
d A We will be interested in the steady state averages
— - V2h4 — 2
at h(r,)=»V=h+ 2 (Vh)™HV(r., (21) (hgh_g)s, (hgV_g)s, and(VyV_g)s, and in some character-

istic frequencies to be defined later. We assume now that the

_ 2 _ 2
wherev=T/2Jmf, and A =1Jnmrf,. _ exact values of(hgh_g)s, (haV_g)s, and (VyV_g)s are
In addition to the roughness exponénthere is a second known and given byX-*, A-1 and A1 In order to cal-
a ' “q q *

exponentw, which describes the sample to sample fluctua- o .
tions (h2(r t)) — (h(r t))>~t2* of the free energy. Since the culate such quantities, we need some form of a perturbation

| 19) i local in ti h liditv of th i expansion. in which the Fokker-PIanpk opere(mra(_:ting on

f;gﬁozliqt(z)r(: g)glf ;?2 ﬁg?glﬂatgriézjc? validity of the scaling P on the right-hand side of Eq24), will be broken into two
If we give h(r,t) another interpretation, namely, that of ga_rtg: otnhe tpgroo tt:lat IS sm;]pl\e;venough and a;ntohthter_fpart
the height profile of a growing interface in a comoving o thal Is smafl enougn. We may expect that 1T we
frame, Eq.(21) is known as the Kardar-Parisi-Zhat§PZ) choose0, in such a way that it already gives the exact result

equationt® The roughness exponeat the growth exponent for the three steady state averages, the corrections to those
3, and the dynamical exponenbf this surfaceare related to quantities in perturbation theory are going to be small, giving

the directed polymer exponents b sense to th_e whole gxpansion.
poly P y Our choice forQy is

{=Bla=1lz,
0p=2, w(l)i%llﬂ/
w=pB=alz. (22 AV A
We first attempted to use the standard one-loop renormal- +w<2>i[x1 J +h
o ) q q a
ization group treatment for the Burger’s equatiétunfortu- dhq dh_q
nately, this approach does not yidlaks happens also for the p
case of uncorrelated noise in three dimensiiable fixed oM+ 0@ A —— (26)
; ; e q q a9 sh.av_.I°
points from which one could calculate critical exponents. We Ny q

study the Burger's equation with the correlated ndigq. ) ) . )

(21)] therefore here by a method that proved useful for the It is easily verified that regzilrldless of the chﬂce of the

same problem with uncorrelated noide. wg's, Og produces(hgh_g)s=Xq ", (heV_g)s=4, ", and
Our first step here is to describe our system as a system VoV —g)s= A§1

dynamical variables affected by noise that is uncorrelated in A direct inspection of Eq(24) shows that the form of the

time. This is necessary in order to go over from theV-dependent part oD is identical to the form of the corre-

Langevin-like Burger’s equation to the Fokker-Planck equasponding part of Oy. Therefore we must identify

tion, needed in the method mentioned above. Ag'=DIlq| andw(M=]q|.
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Next we calculate in perturbation theothzh_,)s and
(hqV_g)s- We find
(hqh,q>S=X;1+C1{X|_1,Arl,wfz)},
(27)

(hV_g)s= Aal'*’ CZ{Xrl ,Afl 1“’§2)}-

Sincexgl andA;1 are assumed to be exact, we get now, for
a given sef{w{)}, two equation<C,=C,=0 expressing the
fact that the perturbation expansion does not change the
zero-order value. Actually it could be expected that for any

(2)s

choice of positivew,

s, the above equations for thé,'s

andAg's (C,=C,=0) would give the exact result. It is clear
however, that even for statics, we may use the choice of the
wgz)’s in order to control the smallness of the additional

terms and thus we will be able to obtain ok's andA,'s

from low-order perturbation. Assuming that such a choice is
possible we writeC; and C, to second order to obtain the

two equations

2
[qu_(l)g )]2 .
[a)( )

—_r,.,@Q (294 -1
0= [wq + g ]Aq + ql"‘wgz)] q

[vq?— 01D D+ \?
lalw’+oP] lal  (2m)?

I-(q—1) R
XUdz}[wg”mgz_),mfz)]q'(_l)xl Aq
(28
and
(va®?]__
0=—| 200~ — 7z~ [Xq " +[ve?~ 0]
@q
X 1 + 1 1y
T ) T
\? -(q-1)
2 . _ -1v—-1
+2(2T’)2j [‘0|(2)+“’5123|+w82)]| (A=DX " Xq
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eratorQ, is thus chosen also to give the correct characteristic
frequency. We calculate now the characteristic frequency to
second order and demand again that the correction to the
zero-order term be zero. This yields

2

0=|2— — /[0 —va?]X*
“q

\2 l.(q—1)
2
+2@wﬂjd%w9+w9d

—1y—1 )\2 2
X2q-(I—q)X| Xq +W d-l

y w1 (g-1)
2 2 2 2 2
[0+ o2 N[0+ w1+ wf]

[29-(I=g)X; X,

(2) A -1
wg Aq

o

+1-(q= DX X 41— (32)

Apart from the last term, Eq32) is identical to the corre-
sponding equation in Ref. 14.
We assume now that for smajl

i g+ corrections,

Xq2q"1+ corrections, (33

Aqq"2+ corrections.

The exponentz andT'; are related to the exponengsand
o by the relations{=1/z and w=(I"1—2)/2z. We solve
Egs. (28), (29), and (32) to leading order and obtain the
folowing results. The scaling relation

_ G_Fl
2

z (34)

is obeyed[The last term in Eq(32) is negligible compared
to the dominant terms for smail]. This is the familiar scal-
ing relation

w=2{-1. (35

Equationg28) and(29) allow now for a simple power count-

We fix now wgz) to be the characteristic frequency asso-ing solution(in contrast to Ref. 13 where a power counting

ciated with the correlations dfq at different times:

0@ = (hgh—g)s
b Jo(h_q@hg(t))dt’
where(A(0)B(t)) is defined fort>0 to be

(30

<A(0)B(t)>:f AL}V PLhe VI PL, VG hy Vith

X B{hy,V4Dh{DVDhyDV,. (31)

P; is the static (steady state distribution and

P{hg.,V4:hq,Vg,t} is the solution of the Fokker-Planck
equation for initial conditions of absolute certainty that the

value ofhg is hy andV is Vg [T136(hg—hg) 8(Vy—Vy) is

solution was impossibje

We obtain

=%, z=3 TI,=2 (36)

It is interesting to note that the result B is not affected
by \ being not equal to zero and this is because the last term
in Eqg. (28) is negligible, for smallg’s, compared to the
dominant terms. Consideration of higher-order terms in the
expansior(in particular, the most dominantdependence in
each orderseems to suggest that this result will still hold to
any order of perturbation theory. In terms of the more famil-
iar directed polymer exponents we find
(37)

3 1
(=%, =3,

the initial distributior]. Our lowest-order Fokker-Planck op- so that the Flory result still holds.



54 VORTEX LINES IN THE THREE-DIMENSIONALXY ... 16 029

V. NUMERICAL RESULTS In the simulations of Meakin and Jullien the link between

In this section we will obtain the roughness exponent forthe deposition process and the noise was not obvious. Thus

our model by integrating thé+1)-dimensional KPZ equa- the scaling behavior if2+1)-dimensional interface growth

tion (21) numerically. The simplest quantity to investigate is and the directed polymer model with spatially correlated
the surface width y: P q y 9 noise is at the present time unclear. We consider this prob-

lem solving the KPZ equation numerically. The spatial de-
W= (hZ—2y12 38 rivatives in Eq.(21) are discretized using standard forward-
= > (38) backward differences on a hypercubic grid with a lattice

scaling fornt® standard for the numerical integration of stochastic differen-

tial equations, which is more complicated than that of deter-
W=L*f(t/L?), (39 ministic differential equations for which higher-order meth-
_ ods are better suitedwe refer to Ref. 23 for details
wheref (x)~x* with S=a/z for x<1 andf(x)~const for  penoting the grid points by and the basic vectors charac-

x>1; B, a, andz are the growth, roughness, and dynamlcterizin the surface bg eq4 We arrive at the discretized
exponent of the interface, respectively; cf. E(®2). equati?) g4 $1. - -8

In analogy to Eq(39) the height-height correlation func-
tion

e AU L L
) o _ h(n,t+5t)=h(n,t)+FE {[h(n+e,T)—2h(n,T)
Cur,)=([h(r+r"t+t")=h(r",t")]3* (40 XTi=t
should scale as +h(n—e,T)]+i[h(n+6&,7)
CL(r,t)=rog(r/ts,L/t"?). (41) ~h(n—¢, )13 +3ATn(n,T). (43)
We do not take the scaling relation Here one uses dimensionless quantiﬂTesh/ho, X=X/Xg,

andt=t/t, where the natural units are given by
atz=2, (42

2
14 14 14

which is equivalent to E¢(35), for granted in our investiga- ~ No=1, to=—z7, Xo= VW’ a?=2D/AXY,
tion. Thus, to obtain a full set of the critical exponents we (44)
have to calculate at least two of them.

Different theoretical approach€s®' lead to different  Similar toV/(r,t) in the Fourier space the renormalized noise
dppendences of the criti.cal expo_ne.ntSpo'nn (1+1) di.men-. 77(5,?) has the correlation
sions. To check theoretical predictions the numerical simu-
lations have been carried out for the KPZ equaffothe YR ,

- e . ’ . _ O(k+K")S(w+
ballistic deposition?'#2° the directed polymel® and the (n(k,w)n(k",0"))~ ( 2) ((Z @)
solid-on-solid modef® There is still a controversy between K+ w

the simulation results. For example, the results of Amarrg create the spatially correlated noise we follow Peng
etal,” obtained for the ballistic deposition and restricted gt 5118 We first generate a standard whi Gaussian un-
solid-on-solid models agree with the prediction of Medmacorrelated noise ﬂo(ﬁ T), and then carry out the Fourier

etal, t.JUt conflict with the prediction of Zharfgj‘.l_\lumerl- transformation for spatial and temporal variables to obtain
cal studie® of the effect of the long-range spatially corre- N i
(k,w). We define

lated noise on the KPZ equation and the related directedo°
polymer problem, on the other hand, give a good agreement NP T
with the prediction of Hentschel and Famfi{ Temporally 7(9,0)=(k+ %)~ ““no(k,@). (46)
correlated noise in the absence of spatial noise correlatio
has also been investigated numericdiljor the (1+1)-

(45)

“Phe noise n(ﬁ,?) is obtained by Fourier transforming

dimensional case. n(k,w) back into the real space. It is easy to check that
Theoretical results for2+1)-dimensional models with 7(k,®») obained by this way satisfies E@5).
correlated noise are still lacking. Meakin and Juftieff in- In our simulations we chos&x, », ando to be the same

troduced a hopping model of ballistic deposition, in whichas in Ref. 24, namelyAx=1, »=0.5, ando=0.1. To be
particles were deposited on the growing surface following ssure that we are in a strong-coupling regime we chose
Levy flight distribution such that the distanee(along the A =./600. The data we show in the following are averaged
surfacé from the previous site was calculated s~ /f over 10 000 sampleg.e., different noise realization$or the
wherer is a random number between zero and 1. Equatingmallest system sizeL& 16) to 50 samples for the largest
the exponentf to 2 as in Eq.(19) led to result® for the  system sizel(=256).

exponentse and 8 which were roughly in agreement with First we determine the expone and the dynamical
the prediction of Medineet al. for (1+1) dimensions. A exponentz from simulations of large system sizes on short
weak dependence of these exponents dias been found in  time scales; i.e., we focus on a regime where the correlation
the (2+1)-dimensional modet? length & is still small compared to the system size
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FIG. 1. Log-log plot of the widtiW, (t) vst for various system FIG. 3. Scaling plot ofwW, (t) according to the scaling form
sizesL. For smaller times the data are roughly independent of sys¢48). The choicea=0.71+0.01 andz=1.25+0.03 yields the best
tem size with a slight tendency to a smaller slope for increasinglata collapse, which is shown.

L. For larger timeqi.e., whent~L?) significant finite-size effects
appear(i.e., the scaling functiow in Eq. (48) is no longer con- B=0.56+0.02. (49
stan}. Therefore we put more weight on the data points at smaller_ .

times in order to determing, which yields=0.56+0.02 shown 1hiS value is much larger tha@~0.240 for the three-
as the dotted line. dimensional KPZ equation with the white noféeas we ex-
pect it to be since correlated noise always incregkes

In order to obtain the dynamical exponentfrom the
short-time behavior we note that forcL* the height-height
In this regime finite-size effects should be negligible, whichcorrelation functiorC(r,t), Eq. (40) should have the scaling
we had to check explicitly by analyzing different system form
sizes since we do not know a priori. For the time depen-
dence of the roughness we expect the scaling f(88) to
hold, which can be cast into the form

foctl<| . (47)

C(r,t)=rP%g(r/t*?), (50)

where we denoted lip -z _og(r/t¥#,L/t¥?)=g(r/t'?) and
useda= Bz.

If we take 8=0.56 as determined before, we are left with
one fitting parameter by which we should achieve a data
collapse when plotting™#?C(r,t) versusr/t*2. In Fig. 2 we
show the result of this procedure, which yields

W, (1) =tAW(t/L?), (48

with W(x) = const forx—0 andW(x)~x"1! for x—c. For
short timest<L? one therefore expeci®, (t)=t?. Figure 1
shows the time dependence of the withh (t) for various

system size$ at short-time scales. We find
z=1.25+0.05. (51

T

Up to now we have restricted ourself to a regime where

t= 64,L=256 x LT L .

v, t=128.L=256 x finite-size effects are negligible. In order to get an indepen-
® %y . t=192,L =256 = dent estimate for the exponents reported above we performed

ag t=256,L.=256 - also a simulation for much longer times and small enough

system size so that the correlation length becomes indeed
1t 1 comparable to the system sifiee., t~L?). Using the finite-
size scaling form(39) we determine the exponents and

z. In Fig. 3 we show a scaling plot &, (t) which yields

P25 crp

a=0.71+0.01 (52

and z=1.25+0.03, from which one concludeg= a/z=
0.56+0.03. These values agree very well with the values

0.1

0.00t

FIG. 2. Scaling plot for the height-height correlati@{(r,t)
function. We fixedB to be 0.56, as determined before E49), and

0.01 y 0.1
/e’

reported in Eqs(49) and(51) for the short-time simulations.
Using scaling relatiori22) we have

»w=0.56+0.02 and ¢=0.78+0.04 (53

for the vortex lines in our model. The value ¢fis larger
than the corresponding value=0.62 for the directed poly-

varied z in order to achieve the best data collapse, which yieldsmer paths with uncorrelated noise in three dimensions. Our

z=1.25+0.05.

numerical result is compatible within the error bars with the
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crude estimaté = 3/4 obtained by the Flory argument and by findings have been confirmed by integrating numerically the
the more elaborate calculation in the last section. The nuBurger's equation. Sincé<1, there will be no spontaneous
merical value ofw is slightly larger than the calculated condensation of vortices for weak disorder and hence we
w=1/2. conclude that the ordered phase is stable.

Note that within the error bars relatidd?2) is still valid A further interesting application of our result is that on the
even in the presence of the temporal correlation of noiseXY model in a random field®2® From the results of Villain
This relation may hold true only for some subset of all pos-and FernandéZ for this modelwithout vortices one finds
sible correlator$45). At present we have to leave this ques- o(t)~o*t972, wherec* =0((4—d)/(d—2)). Using thist
tion open. dependence ofr in the Flory argument one concludes

(=1 for 2<d<4, apart from a logarithmic correction. From
VI. SUMMARY AND CONCLUSION this one should expect that one is in a marginal situation,

_ _ which deserves further investigatiéh.
In the present paper we have considered the stability of

the ordered phase of theY model with random phase shifts.
After decomposing the Hamiltonian into a spin-wave and a
vortex part, we have considered in particular the roughening This work has been performed within the Sonderfors-
of a single stretched vortex line due to the disorder. It turnecdthungsbereich SFB 341 "KkwAachen-Jlich supported by
out that the effective random potential acting on the vortexhe Deutsche Forschungsgemeinschaft DFG. M.S.L. ac-
line is long-range correlated. Using a Flory argument and th&nowledges financial support from the SFB 341, the Japan
Schwartz-Edwards-method, we have determined the rougiSociety for Promotion of Sciences, and the Polish agency
ness exponen{=3/4 and the energy fluctuation exponent KBN (Grant No. 2P302 127 Q7T.N. and M.S. have been
w=1/2, which fulfill the scaling relationo=2¢—1. These supported in part by the German Israeli FoundatiGiF).
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