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Griffiths singularities in the disordered phase of a quantum Ising spin glass
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We study a model for a quantum Ising spin glass in two space dimensions by Monte Carlo simulations. In
the disordered phase @t=0, rare strongly correlated regions give rise to strong Griffiths singularities, as
originally found by McCoy for a one-dimensional model. We find that there are power law distributions of the
local susceptibility and local nonlinear susceptibility, which are characterized by a smoothly varying dynamical
exponentz. Over a range of the disordered phase near the quantum transition, the local nonlinear susceptibility
diverges. The local susceptibility does not diverge in the disordered phase but does diverge at the critical point.
Approaching the critical point from the disordered phase, the limiting value séems to equal its value
precisely at criticality, even though the physics of these two cases seems rather different.
[S0163-18296)04430-X

[. INTRODUCTION tration and so is a random ferromagnet rather than a spin
glass. In higher dimension, though, one can have frustration,
A feature of disordered systems which has no counterpamvhich, together with randomness, gives spin glass behavior.
in pure systems, is that rare regions, which are more stronglyhe main features of Griffiths singularities are expected to be
correlated than the average, can play a significant role. Fatimilar regardless of whether or not one has frustration. Our
classical magnetic systems, Griffithshowed that such re- motivation for studying a spin glass here, rather than a ran-
gions lead to a free energy which is a nonanalytic function olom ferromagnet, is experimental wrén a guantum spin
the magnetic field at temperatures below the transition temglass system. This did not find the expected strong diver-
perature of the pure system. However, for the static properde€nce in the nonlinear susceptibility at the quantum phase
ties of a classical system, the Griffiths singularities are venjransition. By contrast, subsequent numerical simulatfbis
weak; just essential singularitié®By contrast, Griffiths sin- did find a rather strong divergence, comparable with that at
gularities are much more spectacular for quantum phase trate classical spin glass transition. Hence it seems worth in-
sitions atT=0, especially for systems with a brokdiscrete ~ Vestigating whether this discrepancy might be due to Grif-
Symmetry_ This was first found by M(;C%yfor a one- fiths Singularities CaUSing the nonlinear Susceptlblllty to di-
dimensional model, the one-dimensional random transvers&€rge even in the disordered phase, thus making the location
field |Sing modeL which has recenﬂy been studied in moré)f the transition difficult in the eXperimentS. While the ear-
detail by Fishef. In this model Griffiths singularities domi- lier simulations® concentrated on theritical point, here we
nate not only the disordered phase but also the criticafocus mainly on thedisordered phaseSomewhat less de-
region®>~’ One finds very broad distributions of various tailed results on the two-dimensional spin glass have also
quantities including the local susceptibility and the energybeen reported in parallel work by Gut al,'? who, addi-
gap, and a dynamical exponemt, which is infinite at the tionally, performed calculations in three dimensions.
critical point. In the disordered phase, the distribution of lo-

cal susceptibilities is found to be a power law, in which the Il. THE MODEL
power can be relatédo a continuously varying dynamical . . . . .
exponent: which diverges at criticality. Thaveragesuscep- The two-dimensional quantum Ising spin glass in a trans-

tibility diverges whenz>1, i.e., over a finite region of the V€rse field® is has the following Hamiltonian:
disordered phase in the vicinity of t%e critical point, a result
first found many years ago by McCay. T N7,z 7z X

Many of these surprising results of the one-dimensional Tau @En Jijoi0] in i @
model, such as the power law distribution of susceptibilities _
in the disordered phase, are expected to hold morwhere the{s{"} are Pauli spin matrices, thk; are quenched
generally® However, it is not clear whether the average sus+andom interaction strengths, afids an external transverse
ceptibility will diverge in the disordered phase for dimen- field. A system described by this Hamiltonian undergoes a
sion, d, greater than 1, or whether this is a special feature ofjuantum phase transition at zero temperatlire0, from a
d=1. Here we investigate Griffiths singularities fortvao- paramagnetic¢or spin liquid phase to a spin glass phase for
dimensional quantum lIsingpin glasssystem by Monte some critical field strengthT..'° As is described
Carlo simulations. The one-dimensional model has no fruselsewher&:!! this model can be mapped onto an effective
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T I1l. THEORY
Ordered Griffiths Griffiths singularities arise from localized regions which
raere are more correlated than the average. They do not have large
. . spatial correlations, but give rise to singularities because of
SOOI

‘ | large correlations in imaginary time. To focus on these time
0 TS T; T (or T) correlations, it is simplest to study quantities that are com-
" pletelylocal in space, i.e., are just on a single site. We shall

FIG. 1. The phase diagram of the two-dimensional quanturrpe particularly interested in the local susceptibility,

Ising spin glass. The horizontal axis can be thought of & one 9

is using the effective classical Hamiltonian in Eg) or I if one is X(|OC)=_<UiZ>1 (5)
using the original quantum Hamiltonian in Ed,). There is a criti- ah;

cal point atT®=T¢ For T9<T there is a spin glass ordered phase. \yhere h: is a local field on sitd. In the imaginary time
For T9>TY there is no spin glass order but there are Grifﬁthsformalislm this can be evaluated from

singularities. In the regior'*r§'<T°'<T)°(I | the Griffiths singularities

are sufficiently strong that the average nonlinear susceptibility di- Ls

verges as thdrea) temperature tends to zero. FEBF'>T;'nI the yloo=> (Si(0)Si(7)). (6)
average nonlinear susceptibility stays finite in the zero temperature =1

limit.

Since the divergent response function at a conventional

spin glass transition is the nonlinear susceptibiiftit,is also

classical Hamiltonian in two space plus one imaginary imeneresting to study the local nonlinear susceptibility, given
dimensions, with disorder that is perfectly correlated anngDy

the imaginary time axis. This classical Hamiltonian is

(93
(loc)_ _— a__z , 7
H=-3 3 JS(NS(D-2 S(DS(7+1), @ o gns "
T 0 o which can be determined in the simulations from
where the Ising spins;(7), take valuest1,i andj refer to 1
th_e S|te_s on arh X L spatial lattice, W_hlleq- d_enotes_ a time Xglloc): _ _(<mi4>_3<mi2>2)’ 6)
slice,7=1,2, ... L,. The number of time slices, ., is pro- 6L,
portional to the inverse of the temperatufe,of the original

. = " where
guantum system in Eq1). Periodic boundary conditions are
applied in all directions. The model is simulated at an effec- L,
tive classical “temperatureT®, which controls the amount m=> S(7). 9)
=1

of order in the spins. Of cours&?, is not the real tempera-
tureT, which is zero at the transition, but is rather a measure
of the strength of theguantumfluctuations. Increasing®
therefore corresponds to increasing the transverseFigid
the quantum Hamiltonian, Eq1l). The nearest neighbor in-
teractions J;; are independent ofr, because they are
guenched random variables, and are chosen independently

We consider distributions o(°© and x,{°? obtained
both by measuring at different sites in a given sample, and
by taking many samples with different realizations of the
disorder.

from a Gaussian distribution with zero mean and standard A. Disordered phase
deviation unity, i.e., In the disordered phase the distributions y#°© and
x'°9 will be very broad with a power law variation at large
[JijJa=0, values. Physically this comes from regions which are locally
ordered. The probability of having such a region is exponen-
[I5]a=1, (3 tially small in its volume,V, but, when it occurs, there is an

_ _.exponentially large relaxation tinfebecause, to invert the
where[ - - - ], denotes an average over the disorder. Statistizing in this region at some imaginary time one has to insert
cal mechanics averages for a given sample will be denoted yomain wall of size, for which the Boltzmann factor is
by angular brackets, i.g---). The interactions between o, onentially small inv, as is sketched in Fig. 2. The com-
time slices are ferromagnetic and taken to be nonrandorginaion of an exponentially large result happening with ex-
with strength unity. ponentially small probability gives a broad distribution of

The phase diagram of the model is sketched in Fig. lyagits in complete analogy to the effect of the Griffiths
Because we are dealing with a two-dimensional lattice, ther%hase on the dynamics irfassicalrandom magnet$:6 In

is no finite-temperature spin glass transi_ti‘éra,nd the region  he |atter case the volume to surface ratio determines the
with spin glass order tlher%fore lies gntlrely along Me0 o5 ting probability distribution for the logarithm of relax-
axis in the region & T°<T: whereT¢ denotes the critical 4tjon times. In contrast to this the extra dimension present in
point. In earlier work® we found that the quantum problem gives rise to a volume to volume ratio
| instead(cf. Fig. 2), which leads to a power law distribution
T¢=3.275£0.025. (4 of correlation lengths in the imaginary time direction. The
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| d
- In[P(Iny(°9)]=— E'”X( °9+ const. (13

T M E~cV The nonlinear susceptibility involves three integrals over
time, whereas the linear susceptibility only involves one.
ET Hence we assume that the distributionydf’® is similar to
e -~ ér + that of (y (°9)2, which leads to the following power law tail
in the distribution:

d
___J--,Www_________ In[P(Inx;i?)]=— - Inxy*”+ const.  (14)
—v-l94— Hence there should be a factor of 3 between the powers in
_ the distributions of Ip(°® and Iny{*® We shall see that this
FIG. 2. The strongly coupled space regiauste) of volume  prediction is confirmed by the numerics. As a result, one can
V~L" tends to orde(locally) the spins along the imaginary time characterizeall the Griffiths singularities in the disordered

(7) direction, indicated by the plus and minus sign meaning a spirbhase by asingle dynamical exponentz, which varies
orientation paralle(plus) or antiparallel(minug with respect to the smoothly throughout the Griffiths phase.

ground state configuration of the isolated cluster. The insertion of a The averageuniform susceptibility will diverge, in the

domain wall costs an enerdy~ oV, Wherea Is a surface tension i ordered phase, at the same point as the average local sus-
(note that the couplings in the direction are all ferromagnetic I . .
ceptibility because spatial correlations are short range and so

This event occurs with a probability expE/T), resulting in the . .
exponentially largdimaginary correlation time¢,~exp@LYT). Ca.nnOt contribute to a divergence. From Etf) we see that
this happens when

power depends on the microscopic details and so is expected
to vary smoothly throughout the Griffiths phase.

We can relate the power in the distribution to a dynamicalSimilarly, according to Eq(14), the average nonlinear sus-
exponent, defined in the disordered phase, as folloWise  ceptibility will diverge when
excitations which give rise to a largg'®® at T=0 are well
localized and so we assume that their probability is propor- z>9 (16)
tional to the spatial volumel. Y. These excitations have a 3’
very small energy gag\E=E; — E,, whereE, is the ground
state energy of the quantum system &nds the first excited One can also infer the nature of the divergence
state. This small gap is responsible for the large susceptibiand x{°® as the(rea) temperaturel tends to zero, see Fig.
ity because the latter is essentially proportional to the inversad. For x(°® we expect that the distribution in E¢L3) will
of the gap because the matrix elements which epté? do  be cut off aty°*~T~! which gives
not have very large variations. Since there is no characteristic

z>d. (15

energy gap it is most sensible to use logarithmic variables. [X"°9Ja~ T2 (17)
Henk:;e, if the power in the distribution of Ak is N, say, then For x°9 we expect that the cutoff will be at of orddr 3,
we have which, together with Eq(14) gives
P(INAE)=AEP(AE -
(n ) ( ) [XE\I;)C)]aVNTd/Z 3. (18)
~LI9AEN The global nonlinear susceptibility will diverge in the same
way, possibly with logarithmic corrections, as occurs in the
=(LAEY®»)Y, (100 one-dimensional random ferromagfiet.

h he last line defi he d ical i th The dynamical exponent will tend to some limit as the
where the last line defines the dynamical exponeniy the ¢ i point is approached. It is interesting to ask whether

conventional way as the power relating a time scale to Fhis limit will be the same as the value af precisely at

length scale. Comparing the last two expressions we see thf}ﬁticality. On the face of it, there does not seem any reason

d why they should be equal, sineen the disordered phase is
A= —. (11)  determined by rare compact clusters, wherzas criticality
is determined by fluctuations on large length scales of order
of the (divergeni correlation length. Nonetheless, for the 1D
random ferromagnet, thegre both equal(to infinity). For
the 2D spin glass we shall also find that these two values are

IN[P(INAE)]= gmAEJr const. (120  humerically close, and may well be equ#tiough finits.
z

Hence the tail of the distribution afE has the form

Since the local susceptibility is proportional to the inverse B. The critical point

of the gap, the power law tail of its distribution should be ~We expect that the distribution ¢f(°® will also have a
given by power law at the critical point just as it does in the disor-
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dered phase. To deduce the exponent, note that the average

) TTTITTTITTITTITTTTITTTIT]TT I

time dependent correlation function at criticality is given by 1 §| | | | E

scaling a&>*! O o E

1 -2 E =

[<Si(o)si(7')>]av~mv (19 ;\x\ -3 g_* N —E

where o E

c _5 ;_9 8 i

B d+z—2+7y - -6 3; .38 =

P R 20 ~7E s 3

_a E 51213 3

is the order parameter exponent andis the correlation _g £ ©813 ™ E

lengj[h extrr)]onent. | | tibility is iust the int | of —10 gl\\||A||63|\1\?|\r\||H||||||||||X\X|
ince the average local susceptibility is just the integral o 05 1 15 2 25 3 35

this over 7, it follows that the distribution of Ig(°® must

. — (loc)
have the same power, i.e., x=In x

B FIG. 3. The log of the distribution of the log of the local sus-
In[P(Iny(°9)]=— (—) Iny°®+ const (21)  ceptibility for T%=3.7 for different values of. andL ,. There is no
vz significant dependence dn and the data are also independent of

at criticality. In earlier work? we foundz=1.5,7=0.5, so L, at smallx{®. IncreasingL , seems to simply extend the range
numerically 8/(vz) is about 2/3. over which the data lies on a straight line. The solid line is a fit to

Integrating Eq.(19) over 7 from 0 to T-1 one sees that the straight line region of the data and has slef92 which gives
the average susceptibilityvhich is the same as the average 2= 0-51 from Eq.(13).
local susceptibility for a model with a symmetric distribution

of interactions, such as that used Hetiwerges a§—0 like ~ Which is independent df, and the only dependence bnis

that the tail extends further for largket.. This is not surpris-
[X]a~TAZ 1, (22) ing since there is a cutoff due to the finite number of time
o , _slices aty(*@=L, and x{®=L3 At both temperatures one
Eitlifr't'c.ﬁl'(;}/' S'm'll‘."‘l:%}’?le average local nonlinear suscepti-go.o yhat the values obtained fromy(°® and {°® are in
y will diverge fike reasonably good agreement with each otherTA& 3.7, we
[ ylloo], ~T2Azv=3, (23 find thatz=0.51, from the data fox(°9 and z=0.54 from
data for x{°@ Hence, according to Eq16), the average
at criticality. The global n_o_nlin.ear susceptibility will have a Xgloc) does not diverge aff®=3.7 becausez<2/3. At
stronger divergence at criticaliy T=3.5, we find z=0.71 from the data fory(®® and
z=0.76 from data fory{|°® . Hence, the average{°® does

[nilay~ T 07273, (24 diverge atT®=3.5.
Note that Eqs(22)—(24) refer to the situation in whicii® is Figure 7 shows the values afat various points in the
set to the critical valugd g' and the real temperature tends to
zero, see Fig. 1. 0
_IH\l\I\[HI!‘I\Illl\\lll\l\ll\l\_
IV. RESULTS IN THE DISORDERED PHASE -1 = =
o o ]
We use standard Monte Carlo methods to simulate the o X T 37
model in Eq.(2). Except where noted, 2560 realizations of . . ¥y =
the disorder were averaged over. The simulations were done = =3 Egé L L —
on parallel computers: a Parsytec GCel1024 with 1024 nodes & 5 . 12 26 ]
(T805 transputejsand a Paragon XP/S10 with 140 nodes e 4% e 8 26 =
(i860XP microprocessoysMassively parallel machines with - & £ 6 26 =
many medium-sized noddin terms of memory are ideal -9 ° 12 13 =
for the problem considered here: as long as one physical C Z 2 13 3
system fits into the RAM of one processor one only has to 6 b !
set up a farm topology to distribute the initial seed for the _ B b b b sl aew
random number generators and to collect the results for the 1 2 3 4 5 6 7 8
different realizations at the end of the simulation. Apart from x=In x(eo)

that, no communication between processors is needed, so the

parallelization is perfectly efficient; the gain in speed is di- £ 4. similar to Fig. 3 but for the local nonlinear susceptibil-
rectly proportional to the number of nodes. ity. The straight line has slope 1.23 which giveg=0.54 from Eq.
The distributions of Iy and Iny{°? at T"=3.7 and  (14), in quite good agreement with the fit to the data in Fig. 3. Since
3.5 (both in the disordered phgsare shown in Figs. 3—6. the slope is more negative thanl, or equivalentlyz<2/3, the
There is a straight line region for large values as expectediverage nonlinear susceptibility does not diverge at this point.
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FIG. 5. Similar to Fig. 3 but foff®=3.5. The straight line has

slope —2.78 which givesz—0.71 from Eq.(13). FIG. 7. The dynamical exponemt obtained by fitting the dis-

tributions of x1°9 and x{° to Egs.(13) and (14), is plotted for
different values ofT®. The estimates obtained from data fgf°?

disordered phase. In all cases there i)s QOOd(I(?C?reemem b&e shown by the triangles and the estimates from the data for
tween the estimates from the data §8°® and x\°” . From x\°9 are shown by the hexagons. The two are in good agreement.

these data we find that the average nonlinear susceptibilityhe dotted vertical line indicates the critical point, obtained in Ref.

diverges, in the disordered phase, for 10 and the solid square indicates the estimate af the critical
point. The dashed line &= 2/3; the average nonlinear susceptibil-
Td<To<T¢ (25) ity diverges forz larger than this, i.e.',|'°'>Tf(I I:3.56. The solid
¢ Xl "

curve is just a guide to the eye.

where V. RESULTS AT THE CRITICAL POINT

T§|n|:3-56 (26) From finite size scaling, the average uniform susceptibil-

ity (which is the same as the average local susceptibility for

o . 0 : a model with a symmetric distribution of interactions, such
and T¢'=3.275 from earlier work Note that, according to as that used heyevaries withL andL, at the critical point

Fig. 7 and Eq(15), the average linear susceptibility does not according t6*11
diverge anywhere in the disordered phase. It appears that the
value ofz precisely at criticality may equal the value as the L
critical point is approached from the disordered phase, even [xXla= Lf)?(L—;) (27
though it is not clear that they have to be equal.

where
O_HIIIIIIIII‘kl\l‘\ll[llHl‘lHllllll_ B d+2
C 7 zZ— -7
-1 - = X=z = 5 . (28
C d -
-2 ¢ = In earlier work® we found z=1.5, »=0.5, v=1.0, and
= -8 h ] B=1.0 so g—d+2— 7)/2=1/2. The earlier work concen-
§ —3 :“g = trated on a fixed value df ./L? which we call the “aspect
4 B4 = ratio.” Here we investigate whether EQ7) is satisfied for a
£ ;g o ]5 ]56 g ] range of aspect ratios. The data, shown in Fig. 8, do indeed
-5 é « 6 26 ® = collapse well with the expected values of the exponents. For
J o 8 13 s XN L,./L*<1, which corresponds to a large system at finite tem-
—6 % a 8 13 Q perature, the dependence brshould drop out, and so, from
C ° L,<T~1, one recovers Eq22). Using the numerical values
7"7 1—\ 11 \;I I Ig\ L1 ILILI 11 I‘5I Ll Iél L1 I;I L1 Iél Il I9 Of the exponents glves

x=In xipo [Xla= T2 (29

FIG. 6. Similar to Fig. 5 but for the local nonlinear susceptibil- Thus the average susceptibility diverges at the critical point,
ity. The straight line has slope 0.87 which givez=0.76 from Eq.  though we have seen above that it does not diverge in the
(14), in fair agreement with the fit to the data in Fig. 5. Since thedisordered phase.
slope is greater thar 1, or equivalentlyz>2/3, the average non- The average local nonlinear susceptibility is expected to
linear susceptibility does diverge at this point. vary at the critical point as
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FIG. 8. A scaling plot of the data for the average susceptibility ~ FIG. 9. A finite size scaling plot of the average local nonlinear
atT%=3.30, which is the critical point, to within our errors; see Eq. susceptibility, according to E430), at T¢'=23.30, very close to the
(4). The plot assumes the form in EQ7) with the exponent values  critical point. The solid line, which fits the data for smhall/L? has
deduced in earlier workRef. 10, i.e.z=1.5,8/v=1. Itis seen that slope 2.7/1.51.8 as expected, since the average local nonlinear
the plot works well. The solid line, which fits the data for susceptibility should be independentlofin this limit. The power
L,/L*<0.8 has slope 0.5/1:51/3 as expected, since the average 1.8 gives the divergence &—0, and this value agrees well with
susceptibility should be independentlofin this limit. The power  estimates from the earlier estimates of expon@&sf. 10, see Eq.

1/3 gives the divergence d5—0 at criticality; see Eq(29). (32).
L,
[0, = L5 éu'OC)(F)- (30 VI. GLOBAL NONLINEAR SUSCEPTIBILITY
Experimentally one measures thglobal nonlinear sus-
wherg? ceptibility, for which the local magnetizatiofwr!) in (7) and
9 the local external fieldh; have to be replaced by the mean
y=32_7'8_ (31) global magnetizationL. ~9%,(0?) and a uniform field,H,

respectively. For the effective classical model this means that

. . one has to consider
With the numerical values of the exponents found

earlier!® one hasy=2.5. ForL./L?<1, which corresponds

to a large system at finite temperature, the dependence on 1
L should drop out, and so one recovers E2B). Using the

numerical values of the exponents gives 0

H\UHllHIIHH H\IIHII'\II\HII\‘HIHHI
\

111

\
N

Tet = 3.3

[0~ T~55 (32 - =
The data, shown in Fig. 9, collapse well for/L? not too = g E
large providedy/z=1.8, which gives aT ~® divergence, [ —2 =R L L E
close to the prediction in Eq32). However, the data col- c 3 = x 12 120 3
lapse is not as good for larger valueslafwith z=1.5. Data - E * 8 120 3
in this region are difficult to equilibrate, which may be the a2 E° 6 120 N
cause of the discrepancy. It should be noted, though, that a E 4 z 182 22 2 %;%& &
better data collapse is obtained for larger valueg.dflow- -5 E_X s 8 52 S, b
ever, the data fO[rX]anO not scale well with aSigniﬁcantly B b e [ e
larger value ofz. 1 2 3 4 5

We show results for the distribution gf'°® at the critical x=In y(oo

point, T%=3.3, in Fig. 10. Unlike the data in the disordered
phase, shown in Figs. 3 and 5, there is here a significant size
dependence, with the slope of the tail becoming less negati
with increasing. . Asymptotically, the slope should be given
by Eq. (21), _Wh'Ch ha_s the value-2/3 using the exponent dashed line, which is a fit to tHe= 6 data, has a slope of1.7, and
values obtained earlief. The L=6 data have a slope of (he solid line, which is a fit to the.=12 data, has a slope of
—1.7 and theL =12 a slope 0f-0.95 so it is possible that _0.95. Using the values of exponents found earlRef. 10 the
the slope would tend te- 2/3 for L—c. However, it is also  sjope, given by Eq(21), is expected to be about2/3 in the ther-
possible that the slope might be less negative then thisnodynamic limit, and it is certainly plausible that data for larger
which would imply a value ot larger than 3/2. sizes would extrapolate to this value.

v FIG. 10. High precision data with larde. for the distribution of
t?ﬁe local susceptibility at the critical point®=3.30. The number
of samples was 25600 fdr=6 and 10240 fol.=8 and 12. The
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FIG. 12. A plot of the typical global nonlinear susceptibility,
FIG. 11. A plot of the average global nonlinear susceptibility atdefined in Eq.(36), at criticality, for a range of sizes and aspect
criticality, for a range of sizes and aspect ratios. The exponents usedtios. In the limitL ,<L?, the typical global nonlinear susceptibility
in this fit arez=1/5 andy+d=4.7. In earlier work(Ref. 10, we varies ang_d+y)/Z~T_(d+y)/z giving a quite strong divergence of
found z=1.5,y+d=4.5 so the present results are consistent withroughly T~2* This behavior is shown by the solid line, which is a
these estimates. In the limit,<L? the average global nonlinear fit to the data for smallL,/L? and has slope 2.4.
susceptibility varies as 4"/~ T~ @Y/ giying a strong diver-
gence of roughlyT ~3% This behavior is shown by the solid line,

flect corrections to scaling for the range of sizes that we were
which is a fit to the data for small./L* and has slope 3.1. g 9

able to study. Note that even the typical value has a strong

divergence with T at criticality, in contrast to the
33) experiments.

We have also studied the probability distributi®y,)

in the disordered phase. This shows a slightly more compli-
cated behavior than the probability distribution of local
quantities presented above. We find that the power describ-
ing the tail in the same distribution is the same as that of the
local nonlinear susceptibility. This is reasonable since these
unusually large values come from correlations which are
very long ranged in time, whereas the spatial correlation
length is small and so does not give a significant extra effect.
at criticality. Here, we have looked at scaling of various mo-These spatial correlations do, however, cause the peak in the
ments of the global nonlinear susceptibiliag the critical ~ distribution to shift to larger values with increasing system
point, for a range of aspect ratios. For example the average igize, though presumably the peak position would eventually
shown in Fig. 11. Since there are two exponents which cageéttle down to a constant for sizes greater than the correlation
be adjustedy andz, the data are unable to determine themlength.
both with precision. However, in the limit,/L*<1, where
the dependence dn drops out and

1
Xni=— 6L—TL"(<M4>_3<M2>2)

with M=3; ;Si(7). In earlier work® we found that this
quantity diverges at criticalityfor fixed aspect ratiplike
xn~LY"9 with y given by(31), so for arbitrary aspect ratio,
finite size scaling gives

L
[Xnilav= Ly+d’)‘(’nl<|—_z) ) (34

VIl. CONCLUSIONS

[Xnlay= L2~ T @iz, (35 One can characterize Griffiths singularities in the disor-

dered phase of a quantum system undergoiiig=® transi-
tion with discrete broken symmetry, by a single, continu-
ously varying, dynamical exponent. Average response
functions may or may not diverge in part of the disordered
phase near the critical point, depending on the valug sée
. - ' Egs. (15 and (16). The numerical results, summarized in
linear suscepiibility defined by Fig. 7 and Eqs(25) and(26), indicate that the average linear
x¥P=exfd INxnlav: (36) ;stceptibility d_oes not diverge in the _dis_ordered phase (_)f_ the
guantum Ising spin glass, though it diverges at the critical
at the critical point and show the data in Fig. 12. As with thepoint. The average nonlinear susceptibildpes however,
data for the average in Fig. 11, the ratid«y)/z is more diverge in part of the disordered phase.
tightly constrained than either or d+y separately. A good Numerically, as one approaches the critical point from the
fit is obtained with @+y)/z=2.4, which leads to a diver- disordered phase, the valuezis close to the value obtained
gence of roughlyT~2# not quite so strong as from the av- precisely at the critical point, see Fig. 7. Since the same
erage nonlinear susceptibility. The difference may well resresult is known to hold exactly in 1D, where they are both

the data constraind(+y)/z to be about 3, in agreement with
the T3 divergence at criticality found in earlier wotR Fig-
ure 11 assumes the previously determined value, dfe.,
z=1.5.

In addition we have evaluated thgpical global non-
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equal to infinity? one might speculate that they are equal inresult®in finding a dynamic exponent at the critical point of
general, though we are not aware of any proof of this. Preabout 1.5. This is rather different from the situation in one
sumably the detailed dependencezofiith T% in the disor-  dimensiofi* where z=%, and one might ask whether the
dered phase, shown in Fig. 7, is nonuniversal. However, it isrue dynamical exponent might not be larger than 1.5 in two
interesting to ask whether the answer to the questiboés dimensions, and possibly infinite. While the data for the
the non-linear susceptibility diverge in the disordered modest range of sizes that can be studied by Monte Carlo
phasé€ is universal or not. From Eq(16) this depends on simulations are consistent with a small valuezpfve cannot
whetherz>d/3 as the critical point is approached. If this completely rule out the possibility that this estimate would
limit for z is precisely the same as the valuezddit critical-  increase if one could study larger sizes. Unfortunately, it
ity, then the answer to the questi@muniversal. However, as does not seem feasible to study very much larger sizes with
we just mentioned, we are not aware of any argument whicleurrent computer power, unless a more sophisticated algo-
shows that these two values nkhould be equal in general. rithm can be found than the single spin-flip approach used
A related study has also been carried out recently by Gudere. Assuming that is indeed finite, the critical scaling in
et al'*1" Their results for the 2D spin glass are consistentthe two-dimensional quantum Ising spin glass is of a fairly
with ours, and they also performed some simulations for the&onventional, but anisotropic, type, withplaying the role of
3D spin glass. In three dimensions the classical model has @n anisotropy exponent. The difference from a classical mag-
finite temperature transitiotf,so the spin glass phase would net with anisotropic scaling is that Griffiths singularities give
exist for a finite range ofT, which shrinks to zero as additional singularities in various scaling functions in the
T9—TY", see Fig. 1. The results of Guet al!? indicate  limit L, >L?, or equivalentlyTL?*<1.
that, in three dimensions, the range of the Griffiths phase
over which the nonlinear susceptibility diverges, i.e., the re-
gion betweenTEI ande('nI in Fig. 1, is very small but appar-
ently nonzero. It is interesting to speculate on whether the The work of A.P.Y. has been supported by the National
possible divergence of the nonlinear susceptibility in part ofScience Foundation under Grant No. DMR-9411964. The
the disordered phase might be related to the difference beavork of H.R. was supported by the Deutsche Forschungsge-
tween the experimerttsvhich apparently do not find a strong meinschaf(DFG) and he thanks the Physics Department of
divergence ofy, at the quantum critical point, and the UCSC for the kind hospitality. We should like to thank R. N.
simulation$®*! which do. Bhatt, M. Guo, D. A. Huse, and D. S. Fisher for helpful
The data presented here are consistent with our earligtiscussions.
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