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A. P. Young
Department of Physics, University of California, Santa Cruz, California 95064

~Received 22 December 1995!

We study a model for a quantum Ising spin glass in two space dimensions by Monte Carlo simulations. In
the disordered phase atT50, rare strongly correlated regions give rise to strong Griffiths singularities, as
originally found by McCoy for a one-dimensional model. We find that there are power law distributions of the
local susceptibility and local nonlinear susceptibility, which are characterized by a smoothly varying dynamical
exponentz. Over a range of the disordered phase near the quantum transition, the local nonlinear susceptibility
diverges. The local susceptibility does not diverge in the disordered phase but does diverge at the critical point.
Approaching the critical point from the disordered phase, the limiting value ofz seems to equal its value
precisely at criticality, even though the physics of these two cases seems rather different.
@S0163-1829~96!04430-X#

I. INTRODUCTION

A feature of disordered systems which has no counterpart
in pure systems, is that rare regions, which are more strongly
correlated than the average, can play a significant role. For
classical magnetic systems, Griffiths1 showed that such re-
gions lead to a free energy which is a nonanalytic function of
the magnetic field at temperatures below the transition tem-
perature of the pure system. However, for the static proper-
ties of a classical system, the Griffiths singularities are very
weak; just essential singularities.2 By contrast, Griffiths sin-
gularities are much more spectacular for quantum phase tran-
sitions atT50, especially for systems with a brokendiscrete
symmetry. This was first found by McCoy3 for a one-
dimensional model, the one-dimensional random transverse-
field Ising model, which has recently been studied in more
detail by Fisher.4 In this model Griffiths singularities domi-
nate not only the disordered phase but also the critical
region.3–7 One finds very broad distributions of various
quantities including the local susceptibility and the energy
gap, and a dynamical exponent,z, which is infinite at the
critical point. In the disordered phase, the distribution of lo-
cal susceptibilities is found to be a power law, in which the
power can be related7 to a continuously varying dynamical
exponent,4 which diverges at criticality. Theaveragesuscep-
tibility diverges whenz.1, i.e., over a finite region of the
disordered phase in the vicinity of the critical point, a result
first found many years ago by McCoy.3

Many of these surprising results of the one-dimensional
model, such as the power law distribution of susceptibilities
in the disordered phase, are expected to hold more
generally.8 However, it is not clear whether the average sus-
ceptibility will diverge in the disordered phase for dimen-
sion,d, greater than 1, or whether this is a special feature of
d51. Here we investigate Griffiths singularities for atwo-
dimensional quantum Isingspin glasssystem by Monte
Carlo simulations. The one-dimensional model has no frus-

tration and so is a random ferromagnet rather than a spin
glass. In higher dimension, though, one can have frustration,
which, together with randomness, gives spin glass behavior.
The main features of Griffiths singularities are expected to be
similar regardless of whether or not one has frustration. Our
motivation for studying a spin glass here, rather than a ran-
dom ferromagnet, is experimental work9 on a quantum spin
glass system. This did not find the expected strong diver-
gence in the nonlinear susceptibility at the quantum phase
transition. By contrast, subsequent numerical simulations10,11

did find a rather strong divergence, comparable with that at
the classical spin glass transition. Hence it seems worth in-
vestigating whether this discrepancy might be due to Grif-
fiths singularities causing the nonlinear susceptibility to di-
verge even in the disordered phase, thus making the location
of the transition difficult in the experiments. While the ear-
lier simulations10 concentrated on thecritical point, here we
focus mainly on thedisordered phase. Somewhat less de-
tailed results on the two-dimensional spin glass have also
been reported in parallel work by Guoet al.,12 who, addi-
tionally, performed calculations in three dimensions.

II. THE MODEL

The two-dimensional quantum Ising spin glass in a trans-
verse field13 is has the following Hamiltonian:

H̃QM52(
^ i , j &

J̃i js i
zs j

z2G(
i

s i
x , ~1!

where the$s i
a% are Pauli spin matrices, theJ̃i j are quenched

random interaction strengths, andG is an external transverse
field. A system described by this Hamiltonian undergoes a
quantum phase transition at zero temperature,T50, from a
paramagnetic~or spin liquid! phase to a spin glass phase for
some critical field strengthGc .

10 As is described
elsewhere10,11 this model can be mapped onto an effective
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classical Hamiltonian in two space plus one imaginary time
dimensions, with disorder that is perfectly correlated along
the imaginary time axis. This classical Hamiltonian is

H52(
t

(
^ i , j &

Ji j Si~t!Sj~t!2(
t,i

Si~t!Si~t11!, ~2!

where the Ising spins,Si(t), take values61, i and j refer to
the sites on anL3L spatial lattice, whilet denotes a time
slice,t51,2, . . . ,Lt . The number of time slices,Lt , is pro-
portional to the inverse of the temperature,T, of the original
quantum system in Eq.~1!. Periodic boundary conditions are
applied in all directions. The model is simulated at an effec-
tive classical ‘‘temperature’’Tcl, which controls the amount
of order in the spins. Of course,Tcl, is not the real tempera-
tureT, which is zero at the transition, but is rather a measure
of the strength of thequantumfluctuations. IncreasingTcl

therefore corresponds to increasing the transverse fieldG, in
the quantum Hamiltonian, Eq.~1!. The nearest neighbor in-
teractions Ji j are independent oft, because they are
quenched random variables, and are chosen independently
from a Gaussian distribution with zero mean and standard
deviation unity, i.e.,

@Ji j #av50,

@Ji j
2 #av51, ~3!

where@•••#av denotes an average over the disorder. Statisti-
cal mechanics averages for a given sample will be denoted
by angular brackets, i.e.̂•••&. The interactions between
time slices are ferromagnetic and taken to be nonrandom
with strength unity.

The phase diagram of the model is sketched in Fig. 1.
Because we are dealing with a two-dimensional lattice, there
is no finite-temperature spin glass transition,14 and the region
with spin glass order therefore lies entirely along theT50
axis in the region 0<Tcl,Tc

cl whereTc
cl denotes the critical

point. In earlier work10 we found that

Tc
cl53.27560.025. ~4!

III. THEORY

Griffiths singularities arise from localized regions which
are more correlated than the average. They do not have large
spatial correlations, but give rise to singularities because of
large correlations in imaginary time. To focus on these time
correlations, it is simplest to study quantities that are com-
pletely local in space, i.e., are just on a single site. We shall
be particularly interested in the local susceptibility,

x~ loc!5
]

]hi
^s i

z&, ~5!

where hi is a local field on sitei . In the imaginary time
formalism this can be evaluated from

x~ loc!5 (
t51

Lt

^Si~0!Si~t!&. ~6!

Since the divergent response function at a conventional
spin glass transition is the nonlinear susceptibility,14 it is also
interesting to study the local nonlinear susceptibility, given
by

xnl
~ loc!5

]3

]hi
3 ^s i

z&, ~7!

which can be determined in the simulations from

xnl
~ loc!52

1

6Lt
~^mi

4&23^mi
2&2!, ~8!

where

mi5 (
t51

Lt

Si~t!. ~9!

We consider distributions ofx (loc) and xnl
(loc) obtained

both by measuring at different sites in a given sample, and
by taking many samples with different realizations of the
disorder.

A. Disordered phase

In the disordered phase the distributions ofx (loc) and
xnl
(loc) will be very broad with a power law variation at large

values. Physically this comes from regions which are locally
ordered. The probability of having such a region is exponen-
tially small in its volume,V, but, when it occurs, there is an
exponentially large relaxation time,8 because, to invert the
spins in this region at some imaginary time one has to insert
a domain wall of sizeV, for which the Boltzmann factor is
exponentially small inV, as is sketched in Fig. 2. The com-
bination of an exponentially large result happening with ex-
ponentially small probability gives a broad distribution of
results in complete analogy to the effect of the Griffiths
phase on the dynamics inclassicalrandom magnets.15,16 In
the latter case the volume to surface ratio determines the
resulting probability distribution for the logarithm of relax-
ation times. In contrast to this the extra dimension present in
the quantum problem gives rise to a volume to volume ratio
instead~cf. Fig. 2!, which leads to a power law distribution
of correlation lengths in the imaginary time direction. The

FIG. 1. The phase diagram of the two-dimensional quantum
Ising spin glass. The horizontal axis can be thought of asTcl if one
is using the effective classical Hamiltonian in Eq.~2! or G if one is
using the original quantum Hamiltonian in Eq.~1!. There is a criti-
cal point atTcl5Tc

cl ForTcl,Tc
cl there is a spin glass ordered phase.

For Tcl.Tc
cl there is no spin glass order but there are Griffiths

singularities. In the regionTc
cl,Tcl,Txnl

cl the Griffiths singularities
are sufficiently strong that the average nonlinear susceptibility di-
verges as the~real! temperature tends to zero. ForTcl.Txnl

cl the
average nonlinear susceptibility stays finite in the zero temperature
limit.
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power depends on the microscopic details and so is expected
to vary smoothly throughout the Griffiths phase.

We can relate the power in the distribution to a dynamical
exponent, defined in the disordered phase, as follows.7 The
excitations which give rise to a largex (loc) at T50 are well
localized and so we assume that their probability is propor-
tional to the spatial volume,Ld. These excitations have a
very small energy gap,DE5E12E0, whereE0 is the ground
state energy of the quantum system andE1 is the first excited
state. This small gap is responsible for the large susceptibil-
ity because the latter is essentially proportional to the inverse
of the gap because the matrix elements which enterx (loc) do
not have very large variations. Since there is no characteristic
energy gap it is most sensible to use logarithmic variables.
Hence, if the power in the distribution of lnDE is l, say, then
we have

P~ lnDE![DEP̃~DE!

;LdDEl

5~LDE1/z!d, ~10!

where the last line defines the dynamical exponent,z, in the
conventional way as the power relating a time scale to a
length scale. Comparing the last two expressions we see that

l5
d

z
. ~11!

Hence the tail of the distribution ofDE has the form

ln@P~ lnDE!#5
d

z
lnDE1 const. ~12!

Since the local susceptibility is proportional to the inverse
of the gap, the power law tail of its distribution should be
given by

ln@P~ lnx~ loc!!#52
d

z
lnx~ loc!1 const. ~13!

The nonlinear susceptibility involves three integrals over
time, whereas the linear susceptibility only involves one.
Hence we assume that the distribution ofxnl

(loc) is similar to
that of (x (loc))3, which leads to the following power law tail
in the distribution:

ln@P~ lnxnl
~ loc!!#52

d

3z
lnxnl

~ loc!1 const. ~14!

Hence there should be a factor of 3 between the powers in
the distributions of lnx(loc) and lnxnl

(loc) We shall see that this
prediction is confirmed by the numerics. As a result, one can
characterizeall the Griffiths singularities in the disordered
phase by asingle dynamical exponent,z, which varies
smoothly throughout the Griffiths phase.

The averageuniform susceptibility will diverge, in the
disordered phase, at the same point as the average local sus-
ceptibility because spatial correlations are short range and so
cannot contribute to a divergence. From Eq.~13! we see that
this happens when

z.d. ~15!

Similarly, according to Eq.~14!, the average nonlinear sus-
ceptibility will diverge when

z.
d

3
. ~16!

One can also infer the nature of the divergence ofxnl
(loc)

andx (loc) as the~real! temperatureT tends to zero, see Fig.
1. Forx (loc) we expect that the distribution in Eq.~13! will
be cut off atx (loc);T21 which gives

@x~ loc!#av;Td/z21. ~17!

For xnl
(loc) we expect that the cutoff will be at of orderT23,

which, together with Eq.~14! gives

@xnl
~ loc!#av;Td/z23. ~18!

The global nonlinear susceptibility will diverge in the same
way, possibly with logarithmic corrections, as occurs in the
one-dimensional random ferromagnet.4

The dynamical exponent will tend to some limit as the
critical point is approached. It is interesting to ask whether
this limit will be the same as the value ofz precisely at
criticality. On the face of it, there does not seem any reason
why they should be equal, sincez in the disordered phase is
determined by rare compact clusters, whereasz at criticality
is determined by fluctuations on large length scales of order
of the ~divergent! correlation length. Nonetheless, for the 1D
random ferromagnet, theyare both equal~to infinity!. For
the 2D spin glass we shall also find that these two values are
numerically close, and may well be equal~though finite!.

B. The critical point

We expect that the distribution ofx (loc) will also have a
power law at the critical point just as it does in the disor-

FIG. 2. The strongly coupled space region~cluster! of volume
V;Ld tends to order~locally! the spins along the imaginary time
(t) direction, indicated by the plus and minus sign meaning a spin
orientation parallel~plus! or antiparallel~minus! with respect to the
ground state configuration of the isolated cluster. The insertion of a
domain wall costs an energyE;sV, wheres is a surface tension
~note that the couplings in thet direction are all ferromagnetic!.
This event occurs with a probability exp(2E/Tcl), resulting in the
exponentially large~imaginary! correlation timejt;exp(sLd/Tcl).
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dered phase. To deduce the exponent, note that the average
time dependent correlation function at criticality is given by
scaling as10,11

@^Si~0!Si~t!&#av;
1

tb/~nz! , ~19!

where

b

n
5
d1z221h

2
~20!

is the order parameter exponent andn is the correlation
length exponent.

Since the average local susceptibility is just the integral of
this over t, it follows that the distribution of lnx(loc) must
have the same power, i.e.,

ln@P~ lnx~ loc!!#52S b

nzD lnx~ loc!1 const ~21!

at criticality. In earlier work10 we foundz51.5,h50.5, so
numericallyb/(nz) is about 2/3.

Integrating Eq.~19! over t from 0 to T21, one sees that
the average susceptibility~which is the same as the average
local susceptibility for a model with a symmetric distribution
of interactions, such as that used here! diverges asT→0 like

@x#av;Tb/zn21, ~22!

at criticality. Similarly the average local nonlinear suscepti-
bility will diverge like10,11

@xnl
~ loc!#av;T2b/zn23, ~23!

at criticality. The global nonlinear susceptibility will have a
stronger divergence at criticality10:

@xnl#av;T~2b2dn!/zn23. ~24!

Note that Eqs.~22!–~24! refer to the situation in whichTcl is
set to the critical valueTc

cl and the real temperature tends to
zero, see Fig. 1.

IV. RESULTS IN THE DISORDERED PHASE

We use standard Monte Carlo methods to simulate the
model in Eq.~2!. Except where noted, 2560 realizations of
the disorder were averaged over. The simulations were done
on parallel computers: a Parsytec GCel1024 with 1024 nodes
~T805 transputers! and a Paragon XP/S10 with 140 nodes
~i860XP microprocessors!. Massively parallel machines with
many medium-sized nodes~in terms of memory! are ideal
for the problem considered here: as long as one physical
system fits into the RAM of one processor one only has to
set up a farm topology to distribute the initial seed for the
random number generators and to collect the results for the
different realizations at the end of the simulation. Apart from
that, no communication between processors is needed, so the
parallelization is perfectly efficient; the gain in speed is di-
rectly proportional to the number of nodes.

The distributions of lnx(loc) and lnxnl
(loc) at Tcl53.7 and

3.5 ~both in the disordered phase! are shown in Figs. 3–6.
There is a straight line region for large values as expected,

which is independent ofL, and the only dependence onLt is
that the tail extends further for largerLt . This is not surpris-
ing since there is a cutoff due to the finite number of time
slices atx (loc)5Lt andxnl

(loc)5Lt
3 At both temperatures one

sees that the values ofz obtained fromx (loc) andxnl
(loc) are in

reasonably good agreement with each other. AtTcl53.7, we
find thatz.0.51, from the data forx (loc) andz.0.54 from
data for xnl

(loc) Hence, according to Eq.~16!, the average
xnl
(loc) does not diverge atTcl53.7 becausez,2/3. At

Tcl53.5, we find z.0.71 from the data forx (loc) and
z.0.76 from data forxnl

(loc) . Hence, the averagexnl
(loc) does

diverge atTcl53.5.
Figure 7 shows the values ofz at various points in the

FIG. 3. The log of the distribution of the log of the local sus-
ceptibility for Tcl53.7 for different values ofL andLt . There is no
significant dependence onL and the data are also independent of
Lt at smallx

(loc). IncreasingLt seems to simply extend the range
over which the data lies on a straight line. The solid line is a fit to
the straight line region of the data and has slope23.92 which gives
z50.51 from Eq.~13!.

FIG. 4. Similar to Fig. 3 but for the local nonlinear susceptibil-
ity. The straight line has slope21.23 which givesz50.54 from Eq.
~14!, in quite good agreement with the fit to the data in Fig. 3. Since
the slope is more negative than21, or equivalentlyz,2/3, the
average nonlinear susceptibility does not diverge at this point.
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disordered phase. In all cases there is good agreement be-
tween the estimates from the data forx (loc) andxnl

(loc) . From
these data we find that the average nonlinear susceptibility
diverges, in the disordered phase, for

Tc
cl<Tcl<Txnl

cl , ~25!

where

Txnl

cl .3.56 ~26!

andTc
cl.3.275 from earlier work.10 Note that, according to

Fig. 7 and Eq.~15!, the average linear susceptibility does not
diverge anywhere in the disordered phase. It appears that the
value ofz precisely at criticality may equal the value as the
critical point is approached from the disordered phase, even
though it is not clear that they have to be equal.

V. RESULTS AT THE CRITICAL POINT

From finite size scaling, the average uniform susceptibil-
ity ~which is the same as the average local susceptibility for
a model with a symmetric distribution of interactions, such
as that used here! varies withL andLt at the critical point
according to10,11

@x#av5Lxx̃S Lt

LzD , ~27!

where

x5z2
b

n
5
z2d122h

2
. ~28!

In earlier work10 we found z.1.5, h.0.5, n.1.0, and
b.1.0 so (z2d122h)/2.1/2. The earlier work concen-
trated on a fixed value ofLt /L

z, which we call the ‘‘aspect
ratio.’’ Here we investigate whether Eq.~27! is satisfied for a
range of aspect ratios. The data, shown in Fig. 8, do indeed
collapse well with the expected values of the exponents. For
Lt /L

z!1, which corresponds to a large system at finite tem-
perature, the dependence onL should drop out, and so, from
Lt}T

21, one recovers Eq.~22!. Using the numerical values
of the exponents gives

@x#av;T21/3. ~29!

Thus the average susceptibility diverges at the critical point,
though we have seen above that it does not diverge in the
disordered phase.

The average local nonlinear susceptibility is expected to
vary at the critical point as

FIG. 5. Similar to Fig. 3 but forTcl53.5. The straight line has
slope22.78 which givesz50.71 from Eq.~13!.

FIG. 6. Similar to Fig. 5 but for the local nonlinear susceptibil-
ity. The straight line has slope20.87 which givesz50.76 from Eq.
~14!, in fair agreement with the fit to the data in Fig. 5. Since the
slope is greater than21, or equivalentlyz.2/3, the average non-
linear susceptibility does diverge at this point.

FIG. 7. The dynamical exponentz, obtained by fitting the dis-
tributions of x (loc) and xnl

(loc) to Eqs. ~13! and ~14!, is plotted for
different values ofTcl. The estimates obtained from data forx (loc)

are shown by the triangles and the estimates from the data for
xnl
(loc) are shown by the hexagons. The two are in good agreement.

The dotted vertical line indicates the critical point, obtained in Ref.
10 and the solid square indicates the estimate ofz at the critical
point. The dashed line isz52/3; the average nonlinear susceptibil-
ity diverges forz larger than this, i.e.,Tcl.Txnl

cl .3.56. The solid
curve is just a guide to the eye.
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@xnl
~ loc!#av5Lyx̃nl

~ loc!S Lt

LzD , ~30!

where10

y53z2
2b

n
. ~31!

With the numerical values of the exponents found
earlier,10 one hasy.2.5. ForLt /L

z!1, which corresponds
to a large system at finite temperature, the dependence on
L should drop out, and so one recovers Eq.~23!. Using the
numerical values of the exponents gives

@xnl
~ loc!#av;T25/3. ~32!

The data, shown in Fig. 9, collapse well forLt /L
z not too

large providedy/z.1.8, which gives aT21.8 divergence,
close to the prediction in Eq.~32!. However, the data col-
lapse is not as good for larger values ofLt with z51.5. Data
in this region are difficult to equilibrate, which may be the
cause of the discrepancy. It should be noted, though, that a
better data collapse is obtained for larger values ofz. How-
ever, the data for@x#av do not scale well with a significantly
larger value ofz.

We show results for the distribution ofx (loc) at the critical
point, Tcl53.3, in Fig. 10. Unlike the data in the disordered
phase, shown in Figs. 3 and 5, there is here a significant size
dependence, with the slope of the tail becoming less negative
with increasingL. Asymptotically, the slope should be given
by Eq. ~21!, which has the value22/3 using the exponent
values obtained earlier.10 The L56 data have a slope of
21.7 and theL512 a slope of20.95 so it is possible that
the slope would tend to22/3 for L→`. However, it is also
possible that the slope might be less negative then this,
which would imply a value ofz larger than 3/2.

VI. GLOBAL NONLINEAR SUSCEPTIBILITY

Experimentally9 one measures theglobal nonlinear sus-
ceptibility, for which the local magnetization̂s i

z& in ~7! and
the local external fieldhi have to be replaced by the mean
global magnetization,L2d( i^s i

z& and a uniform field,H,
respectively. For the effective classical model this means that
one has to consider

FIG. 8. A scaling plot of the data for the average susceptibility
atTcl53.30, which is the critical point, to within our errors; see Eq.
~4!. The plot assumes the form in Eq.~27! with the exponent values
deduced in earlier work~Ref. 10!, i.e.z51.5,b/n51. It is seen that
the plot works well. The solid line, which fits the data for
Lt /L

z,0.8 has slope 0.5/1.551/3 as expected, since the average
susceptibility should be independent ofL in this limit. The power
1/3 gives the divergence asT→0 at criticality; see Eq.~29!.

FIG. 9. A finite size scaling plot of the average local nonlinear
susceptibility, according to Eq.~30!, atTcl53.30, very close to the
critical point. The solid line, which fits the data for smallLt /L

z has
slope 2.7/1.551.8 as expected, since the average local nonlinear
susceptibility should be independent ofL in this limit. The power
1.8 gives the divergence asT→0, and this value agrees well with
estimates from the earlier estimates of exponent~Ref. 10!, see Eq.
~32!.

FIG. 10. High precision data with largeLt for the distribution of
the local susceptibility at the critical point,Tcl53.30. The number
of samples was 25600 forL56 and 10240 forL58 and 12. The
dashed line, which is a fit to theL56 data, has a slope of21.7, and
the solid line, which is a fit to theL512 data, has a slope of
20.95. Using the values of exponents found earlier~Ref. 10! the
slope, given by Eq.~21!, is expected to be about22/3 in the ther-
modynamic limit, and it is certainly plausible that data for larger
sizes would extrapolate to this value.
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xnl52
1

6LtL
d ~^M4&23^M2&2! ~33!

with M5( i ,tSi(t). In earlier work10 we found that this
quantity diverges at criticality~for fixed aspect ratio! like
xnl;Ly1d, with y given by~31!, so for arbitrary aspect ratio,
finite size scaling gives

@xnl#av5Ly1dx̃nlS Lt

LzD , ~34!

at criticality. Here, we have looked at scaling of various mo-
ments of the global nonlinear susceptibilityat the critical
point, for a range of aspect ratios. For example the average is
shown in Fig. 11. Since there are two exponents which can
be adjusted,y andz, the data are unable to determine them
both with precision. However, in the limitLt /L

z!1, where
the dependence onL drops out and

@xnl#av;Lt
~d1y!/z;T2~d1y!/z, ~35!

the data constrain (d1y)/z to be about 3, in agreement with
theT23 divergence at criticality found in earlier work.10 Fig-
ure 11 assumes the previously determined value ofz, i.e.,
z51.5.

In addition we have evaluated thetypical global non-
linear susceptibility defined by

xnl
typ5exp@ lnxnl#av, ~36!

at the critical point and show the data in Fig. 12. As with the
data for the average in Fig. 11, the ratio (d1y)/z is more
tightly constrained than eitherz or d1y separately. A good
fit is obtained with (d1y)/z.2.4, which leads to a diver-
gence of roughlyT22.4, not quite so strong as from the av-
erage nonlinear susceptibility. The difference may well re-

flect corrections to scaling for the range of sizes that we were
able to study. Note that even the typical value has a strong
divergence with T at criticality, in contrast to the
experiments.9

We have also studied the probability distributionP(xnl)
in the disordered phase. This shows a slightly more compli-
cated behavior than the probability distribution of local
quantities presented above. We find that the power describ-
ing the tail in the same distribution is the same as that of the
local nonlinear susceptibility. This is reasonable since these
unusually large values come from correlations which are
very long ranged in time, whereas the spatial correlation
length is small and so does not give a significant extra effect.
These spatial correlations do, however, cause the peak in the
distribution to shift to larger values with increasing system
size, though presumably the peak position would eventually
settle down to a constant for sizes greater than the correlation
length.

VII. CONCLUSIONS

One can characterize Griffiths singularities in the disor-
dered phase of a quantum system undergoing aT50 transi-
tion with discrete broken symmetry, by a single, continu-
ously varying, dynamical exponent,z. Average response
functions may or may not diverge in part of the disordered
phase near the critical point, depending on the value ofz; see
Eqs. ~15! and ~16!. The numerical results, summarized in
Fig. 7 and Eqs.~25! and~26!, indicate that the average linear
susceptibility does not diverge in the disordered phase of the
2D quantum Ising spin glass, though it diverges at the critical
point. The average nonlinear susceptibilitydoes, however,
diverge in part of the disordered phase.

Numerically, as one approaches the critical point from the
disordered phase, the value ofz is close to the value obtained
precisely at the critical point, see Fig. 7. Since the same
result is known to hold exactly in 1D, where they are both

FIG. 11. A plot of the average global nonlinear susceptibility at
criticality, for a range of sizes and aspect ratios. The exponents used
in this fit arez51/5 andy1d54.7. In earlier work~Ref. 10!, we
found z.1.5, y1d.4.5 so the present results are consistent with
these estimates. In the limitLt!Lz, the average global nonlinear
susceptibility varies asLt

(d1y)/z;T2(d1y)/z giving a strong diver-
gence of roughlyT23.1. This behavior is shown by the solid line,
which is a fit to the data for smallLt /L

z and has slope 3.1.

FIG. 12. A plot of the typical global nonlinear susceptibility,
defined in Eq.~36!, at criticality, for a range of sizes and aspect
ratios. In the limitLt!Lz, the typical global nonlinear susceptibility
varies asLt

(d1y)/z;T2(d1y)/z giving a quite strong divergence of
roughlyT22.4. This behavior is shown by the solid line, which is a
fit to the data for smallLt /L

z and has slope 2.4.
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equal to infinity,4 one might speculate that they are equal in
general, though we are not aware of any proof of this. Pre-
sumably the detailed dependence ofz with Tcl in the disor-
dered phase, shown in Fig. 7, is nonuniversal. However, it is
interesting to ask whether the answer to the question ‘‘Does
the non-linear susceptibility diverge in the disordered
phase’’ is universal or not. From Eq.~16! this depends on
whetherz.d/3 as the critical point is approached. If this
limit for z is precisely the same as the value ofz at critical-
ity, then the answer to the questionis universal. However, as
we just mentioned, we are not aware of any argument which
shows that these two values ofz should be equal in general.

A related study has also been carried out recently by Guo
et al.12,17 Their results for the 2D spin glass are consistent
with ours, and they also performed some simulations for the
3D spin glass. In three dimensions the classical model has a
finite temperature transition,14 so the spin glass phase would
exist for a finite range ofT, which shrinks to zero as
Tcl→Tc

cl2, see Fig. 1. The results of Guoet al.12 indicate
that, in three dimensions, the range of the Griffiths phase
over which the nonlinear susceptibility diverges, i.e., the re-
gion betweenTc

cl andTxnl
cl in Fig. 1, is very small but appar-

ently nonzero. It is interesting to speculate on whether the
possible divergence of the nonlinear susceptibility in part of
the disordered phase might be related to the difference be-
tween the experiments9 which apparently do not find a strong
divergence ofxnl at the quantum critical point, and the
simulations10,11which do.

The data presented here are consistent with our earlier

results10 in finding a dynamic exponent at the critical point of
about 1.5. This is rather different from the situation in one
dimension6,4 where z5`, and one might ask whether the
true dynamical exponent might not be larger than 1.5 in two
dimensions, and possibly infinite. While the data for the
modest range of sizes that can be studied by Monte Carlo
simulations are consistent with a small value ofz, we cannot
completely rule out the possibility that this estimate would
increase if one could study larger sizes. Unfortunately, it
does not seem feasible to study very much larger sizes with
current computer power, unless a more sophisticated algo-
rithm can be found than the single spin-flip approach used
here. Assuming thatz is indeed finite, the critical scaling in
the two-dimensional quantum Ising spin glass is of a fairly
conventional, but anisotropic, type, withz playing the role of
an anisotropy exponent. The difference from a classical mag-
net with anisotropic scaling is that Griffiths singularities give
additional singularities in various scaling functions in the
limit Lt@Lz, or equivalentlyTLz!1.
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