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We study the two-dimensional disordered boson Hubbard model via quantum Monte Carlo simulations. It is
shown that the probability distribution of the local susceptibility has a 1/x2 tail in the Bose-glass phase. This
gives rise to a divergence although particles are completely localized here as we prove with the help of the
participation ratio. We demonstrate the presence of an incompressible Mott lobe within the Bose-glass phase
and show that adirect Mott-insulator-to-superfluid transition happens at the tip of the lobe. Here we find
critical exponentsz51, n;0.7 andh;0.1, which agree with those of the pure three-dimensional classical
XY model.@S0163-1829~97!51918-7#

At zero temperature two-dimensional systems of interact-
ing bosons can show a quantum phase transition from an
insulating phase to a superconducting superfluid phase.1,2

Such a transition can be observed experimentally in granular
superconductors3 and in 4He films absorbed in aerogels.4 By
tuning a control parameter like the disorder strength or the
chemical potential the bosons become localized in a so-
called Bose- glass phase that is insulating but gapless and
compressible. A huge theoretical effort has been undertaken
to shed light on the universal properties of this super-
conductor-to-insulator transition. In two dimensions the
model has eluded successful analytical treatment, which ne-
cessitates numerical methods such as quantum Monte Carlo
simulations,5–9 real-space renormalization-group calcula-
tions,10 or strong-coupling expansion.11

Apart from this generic transition the Bose-glass phase
itself has a number of universal features that are relevant for
experiments. Since it is gapless various zero-frequency sus-
ceptibilities will diverge,2 which is reminiscent of the quan-
tum Griffiths phase occurring in random transverse Ising
systems,13–17where a continuously varying dynamical expo-
nent parametrizes the occurring singularities. Moreover, for
weak disorder a different transition, directly from a super-
conducting to a Mott-insulating phase might occur.10,6

This scenario emerges also from recent theoretical con-
siderations12 and establish a universality class that is differ-
ent from the one investigated in Refs. 5 and 7–9.

In this paper we address these two questions in a numeri-
cal approach. We report on results obtained by extensive
quantum Monte Carlo simulations of the disordered boson
Hubbard model~BH! with short-range interactions in two
dimensions, which is defined by
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where ^ i j & are nearest-neighbor pairs on a square lattice,
ai

1 (ai) are boson creation~annihilation! operators,
ni5ai

1ai counts the number of bosons at sitei , U is the
strength of an on-site repulsion, andm i is a random chemical

potential. We are interested in the ground state properties
~i.e., at temperatureT50) of Eq. ~1!. By using standard
manipulations7 we rewrite the ground-state energy density of
Eq. ~1! as a free energy density of a classical model
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where the integer current variablesJi ,t
x , Ji ,t

y , andJi ,t
t , live on

the links of a~211!-dimensional cubic lattice of linear size
L in the two space directions@with coordinatesi5(x,y)]
andLt}1/T in the ~imaginary! time direction~with coordi-
natet). Ultimately one has to perform the limitLt→` ~i.e.,
T→0). The current vectorJi ,t5(Ji ,t

x ,Ji ,t
y ,Ji ,t

t ) has to be di-
vergenceless on each lattice site (i ,t) as indicated. The clas-
sical actionS is given by
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The coupling constantK acts as a temperature and corre-
sponds tot/U. Note that the mapping from Eq.~1! to Eq.~3!
involves various approximations7 and we stress right from
the beginning that we report exclusively on results for the
classical model~3!. However, as far as universal properties
are concerned, we expect them to be valid also for Eq.~1!.
The random partv i of the local chemical potential is distrib-
uted uniformly between2D and1D. All results are disorder
averages over at least 500 samples, obtained by Monte Carlo
simulations of the classical model~3! with an appropriate
heat bath algorithm7 at classical temperatureK. Details of
the calculations will be published elsewhere.18

In mean-field theory one expects the followingK-m phase
diagram:2 ForD,0.5 there is a superfluid~SF! phase at large
K, a Bose-glass~BG! phase at smallK, and a sequence of
Mott-insulator~MI ! lobes embedded into the BG phase cen-
tered aroundK50, m integer. ForD>0.5 the Mott lobes
vanish and only the BG and SF phases remain. In this case
the SF-BG transition is generic everywhere along the phase
separation line and has been investigated extensively in Ref.
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7 in two dimensions at the pointK5Kc~D50.5,m50.5!. The
nature of the transition at the tip of the Mott lobes@i.e., at
m5n andK5Kc8(D,n) for D,0.5# is not clear and under
discussion in the literature.2,10,5,6,11

Our first goal is to shed light on the Bose-glass phase
itself. It has been argued2 that here the density of states at
zero energy does not vanish, leading to a divergent super-
fluid susceptibility, although the correlation length is finite.
On one hand, this behavior is reminiscent of the quantum
Griffiths phase in random transverse Ising systems.14–16On
the other hand, we demonstrate in this paper that the BG
phase isdifferent from the Griffiths phase in the following
respect: whereas in the latter strongly coupled clusters lead
to a divergence of varying strength with varying coupling
constant, essentially fully localized excitations give rise to a
uniform, logarithmic divergence in the former.

We study the local superfluid susceptibility, which is
defined byx i5( t51

Lt Ci
1(t) with the imaginary time auto-

correlation function Ci
1(t)5^exp$2(1/K)( t851

t (1/21Ji ,t8
t

2m i)%& where the angular brackets^•••& mean a thermody-
namic average. Note thatCi

1(t) corresponds to the local
~imaginary time! Greens function̂ai(t)ai

1(0)& in the origi-
nal BH model~1! and the local susceptibility is simply its
~zero-frequency! integral.

The probability distributionP(lnx) is shown in Fig. 1 for
the caseD50.5, from which we conclude that

lnP~ lnx!52
d

z
lnx1const ~4!

with z5d52 throughout the BG phase. We have chosen the
notation of Refs. 16 and 15 in order to demonstrate that the
dynamical exponentz that is characteristic for a Griffiths
phase13 in random transverse Ising models can also be de-
fined in the present context and isconstanthere. Note that
herez5d in the BG phaseandat the critical point, although
the two exponents have their origin in different physics.19

We also looked at weaker disorderD50.2, where MI lobes

are present. As soon as one enters the latter, the distribution
P(x) is chopped off at some characteristic value inversely
proportional to the nonvanishing gap in the MI phase. This
implies furthermore that the BG phase is indeed gapless.2

The relation~4! could be obtained by setting the hopping
matrix elementt to zero in Eq.~1!, which yields a com-
pletely local Hamiltonian. This lets us suspect that the fact
that z does not vary within the BG phase is due to the local
nature of the low-lying excitations. To further clarify this
point we try to quantify the degree of localization of the
latter. However, since it is not possible to obtain these exci-
tations directly in the representation we use, we introduce a
participation ratio20
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for the spatial density distributionr i5Lt
21( t(Ji ,t

t,b2Ji ,t
t,a) of

an additional particle, i.e., here we work with two replicas
a andb of the system, one with fixed particle numberN and
the other withN11 (N5L2/2 for the transition that corre-
sponds tom51/2). @•••#av denotes a disorder average. One
expects pL5O(1) if the extra particle is localized and
pL5O(N) if it is delocalized. The result is shown in Fig. 2,
where we see very clearly that the additional particle be-
comes completely localized within the BG phase, most prob-
ably at those sites which allow for an extra particle, i.e.,
v i'0 ~since we are atm51/2). Moreover the inset shows
that pL(K) satisfies the following scaling relation for fixed
aspect ratioLt /L

z at the generic SF-BG transition

pL~K !

L2
5L2yq̃~dL1/n!, ~6!

with d5(K2Kc)/Kc the distance from the critical point
(Kc50.247), n50.960.1 and z52 as in Ref. 7, and
y51.060.1.

Now we consider the MI lobes within the BG phase. We
chooseD50.2 and explore the MI-BG boundary by varying
the chemical potential between 0.5 and 1.5 with fixed

FIG. 1. The probability distributionP(lnxloc) of the local sus-
ceptibility for various values ofK (D50.5, m50.5, the BG-SF
transition is atKc50.247). The system size isL56 andLt5200.
For K50.19, which is deep in the Bose-glass phase, also data for
L54 and L510 are shown, which is indistinguishable from
L56. The broken line has slope21 @cf. Eq. ~4!#.

FIG. 2. The participation ratiopL(K) @Eq. ~5!# as a function of
K for various system sizes (D50.5,m50.5). Within the Bose-glass
phase (K,Kc50.247)pL approaches a constant. The inset shows a
scaling plot withn50.9 andy51.0.
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K,Kc(D50.2,m50.5)50.20. The latter point corresponds
to the generic BG-SF transition studied in Ref. 7, but now
with weaker disorder. We checked that one indeed gets the
same critical exponents as forD50.5. In Fig. 3 one sees that
with increasingm the average particle density per site in-
creases monotonically until it saturates in a plateau at
ni51. The plateau region indicates the boundary of the MI
phase centered aroundm51 with exactly one particle per
site. There is only a weak size dependence, at least as long as
one is deep inside the BG phase, where the correlation length
is very small. The inset shows the compressibility

k5
1

LdLt
@^N2&2^N&2#av, ~7!

whereN5( ( i ,t)Ji ,t
t is the total number of particles. Obvi-

ously the compressibility vanishes as soon as the plateau,
i.e., the MI phase, is reached. We note that we observe ex-
tremely strong sample-to-sample fluctuations in the com-
pressibility, which necessitated an extensive disorder average
~5000 samples!. With increasingK the plateau region shrinks
until it vanishes atKc8(D50.2,m51)'0.325. This indicates
the tip of the lobe on which we focus now and for which the
universality class might be different from the generic case.

We fix m51 and varyK. Coming from the SF phase we
first analyze the finite size scaling behavior7 of the superfluid
stiffness

r5
1

Lt
@^nx

2&#av;L2~d1z22!r̃~L1/nd,Lt /L
z!, ~8!

with nx51/L( ( i ,t)J( i ,t)
x the winding number. Since we do not

know the dynamical exponentz we hypothesizedz52 ~as
for the generic case! andz51 @as in the pure (D50) case#.
For both we performed runs with constant aspect ratio
Lt /L

z, and it turned out that forz51 the best data collapse
could be obtained and that only this value is also compatible
with the correlation function results discussed below. In Fig.

4 we show our results forz51, where one gets a clear in-
tersection point ofLr at Kc850.32560.002. This value is
very close to the corresponding value for the pure case
Kc8

pure50.33360.003~Ref. 18! and indicates that the tip of
the lobe depends very weakly on the disorder strength or is
even independent of it over some range.12 In the latter case
the critical exponentn might escape the inequalityn>2/d
~Ref. 21! at this special multicritical point,12,22 since then
variation of the disorder cannot trigger the transition as re-
quired in Ref. 21. Indeed, the inset of Fig. 4 shows a scaling
plot which yieldsn50.760.1,2/d51, which agrees well
with the pure value~see below!. These results yield a con-
sistent picture; nevertheless we should mention that one can-
not strictly exclude the possibility that our data are not yet in
the asymptotic scaling regime and the exponentn we esti-
mate is only an effective exponent for small length scales.

From the data for the imaginary time correlation

FIG. 3. The average particle numberni and compressibilityk as
a function of the chemical potentialm (D50.2, K50.19). At
m50.5 one is deep in the Bose-glass phase andni51/2. The lower
inset shows the compressibility: for largeLt the drop ink becomes
sharper. The upper inset shows how the plateau~i.e., the Mott lobe!
vanishes in the vicinity ofK5Kc8(D50.2,m51).

FIG. 4. The stiffnessr(0)L at the tip of the lobe (D50.2,
m51.0). The aspect ratio is constant forz51, the inset shows a
scaling plot withKc50.325 andn50.7.

FIG. 5. The correlation functionsCx(r ) andC1(t) for system
size 10310310 at the tip of the lobe (Kc50.325, D50.2,
m51.0!. The dotted lines are least-square fits toCx(r )5a„r yx1
(L–r )yx… and C1(t)5a8„tyt1(Lt–t)yt

…, which givesyx5–1.11
andyt5–1.08, i.e.,z5yx /yt51.0. The inset shows the compress-
ibility k for D50.2,m51.0.
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function Ci(t) and the spatial correlation function
Cx(r )5@^exp$2(1/K)(x51

r (1/21Ji1xêx ,t
x )%&#av shown in

Fig. 5, we get firm support forz51: The ratio of the decay
exponentsyx andyt for Cx andC1(t)5@Ci

1(t)#av, respec-
tively, should equalz and we findyx /yt'1.0(1), roughly
independent of how we scaleLt with L. From
yx5d1z221h we geth50.160.1.

Finally the inset of Fig. 5 shows the compressibility at the
above-studied transition, and we observe that it vanishes
here, too. In particular the data scale well according to
k5L21k̃(L1/nd) for systems withL5Lt , i.e., constant as-
pect ratio forz51. Hence, forweakdisorder~D<0.2! we
find at the tip of the lobe adirect SF-to-MI transition possi-
bly within the same universality class as the pure model,
since our estimates forz, h, andn are numerically indistin-
guishable from the values for the the pureXY model in
three dimensions, which arez51, h50.033~4!, and
n50.669~2!.23

As one can see from Fig. 4 and the inset of Fig. 5 there is
no sign of afirst-order transition at the tip of the lobe, as has
been suggested in Ref. 11. Moreover, our conclusion dis-
agrees with the mean-field prediction2 of an intervening BG
phase between the MI and SF phase at the tip of the lobe for
weak disorder. For stronger disorder the scenario might
change: for instance, atD50.4 we estimatez'1.4, which is

possibly only an effective exponent and the compressibility
does not vanish immediately below the transition from the
SF phase. This indicates the existence of a threshold value
for the disorder strength: only above this threshold the mean-
field prediction might be correct.10,12

To conclude, we have shown in this paper that the Bose-
glass phase in the disordered boson Hubbard model and the
Griffiths phase in random transverse Ising models are closely
related and that the gapless low-energy excitations are fully
localized in the BG phase. Moreover, we presented evidence
that the transition for commensurate boson densities is di-
rectly from a Mott insulating phase to a superfluid phase for
weak disorder. The critical exponents we estimate for this
special multicritical point are different from those at the ge-
neric BG-SG transition at incommensurate boson densities
and agree with those for the pure three-dimensionalXY
model. This suggests that the latter and the tip of the lobe at
weak disorder are within the same universality class. Mean
field renormalization-group calculations and scaling argu-
ments put forward in Ref. 12 give strong support to this
scenario.
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