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Bose-glass and Mott-insulator phase in the disordered boson Hubbard model
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We study the two-dimensional disordered boson Hubbard model via quantum Monte Carlo simulations. It is
shown that the probability distribution of the local susceptibility has)& 14il in the Bose-glass phase. This
gives rise to a divergence although particles are completely localized here as we prove with the help of the
participation ratio. We demonstrate the presence of an incompressible Mott lobe within the Bose-glass phase
and show that alirect Mott-insulator-to-superfluid transition happens at the tip of the lobe. Here we find
critical exponentz=1, »~0.7 and»~0.1, which agree with those of the pure three-dimensional classical
XY model.[S0163-18287)51918-7

At zero temperature two-dimensional systems of interactpotential. We are interested in the ground state properties
ing bosons can show a quantum phase transition from afi.e., at temperaturd =0) of Eq. (1). By using standard
insulating phase to a superconducting superfluid phase. manipulationéwe rewrite the ground-state energy density of
Such a transition can be observed experimentally in granuldgq. (1) as a free energy density of a classical model
superconductordand in “He films absorbed in aerogélgy
tuning a control parameter like the disorder strength or the
chemical potential the bosons become localized in a so- f:_ﬁln 2;4 exp(—S{J}), 2
called Bose- glass phase that is insulating but gapless and T th
compressible. A huge theoretical effort has been undertakenhere the integer current variablds , J/,, andJ/, live on
to shed light on the universal properties of this superthe links of a(2+1)-dimensional cubic lattice of linear size
conductor-to-insulator transition. In two dimensions theL in the two space directionnith coordinatesi = (x,y)]
model has eluded successful analytical treatment, which nexnd L ,«<1/T in the (imaginary time direction(with coordi-
cessitates numerical methods such as quantum Monte Cartatet). Ultimately one has to perform the limit.— (i.e.,
simulations;™® real-space renormalization-group calcula-T—0). The current vectod; .= (J%,,3Y,,J7,) has to be di-
tions,'® or strong-coupling expansidn. vergenceless on each lattice sitet) as indicated. The clas-

Apart from this generic transition the Bose-glass phasejca| actionS is given by
itself has a number of universal features that are relevant for
experiments. Since it is gapless various zero-frequency sus- 1 1
ceptibilities will diverge? which is reminiscent of the quan- S{J}= RZ [EJiz,t—(,quvi)th]- 3
tum Griffiths phase occurring in random transverse lIsing .0
systems?*~*"where a continuously varying dynamical expo- The coupling constank acts as a temperature and corre-
nent parametrizes the occurring singularities. Moreover, fosponds ta/U. Note that the mapping from E@l) to Eq.(3)
weak disorder a different transition, directly from a super-involves various approximatioﬁand we stress right from
conducting to a Mott-insulating phase might oct®f. the beginning that we report exclusively on results for the
This scenario emerges also from recent theoretical corclassical mode(3). However, as far as universal properties
sideration¥’ and establish a universality class that is differ- gre concerned, we expect them to be valid also for (Eg.
ent from the one investigated in Refs. 5 and 7-9. The random pare; of the local chemical potential is distrib-

In this paper we address these two questions in a numerirted uniformly betweer-A and+A. All results are disorder
cal approach. We report on results obtained by extensivgverages over at least 500 samples, obtained by Monte Carlo
quantum Monte Carlo simulations of the disordered bosorimulations of the classical modéB) with an appropriate
Hubbard model(BH) with short-range interactions in two heat bath algorithfhat classical temperaturé. Details of
dimensions, which is defined by the calculations will be published elsewhé?e.

U In mezan-field theory one expects the followikgu phase

_ Yo LaatyL o 2_ . diagram? For A<0.5 there is a superfluitSF) phase at large

H= t<izj> (a3 +aig)+ ZEi i Z pani, (@ K, a Bose-glas$BG) phase at smalk, and a sequence of

Mott-insulator(MI) lobes embedded into the BG phase cen-

where (ij) are nearest-neighbor pairs on a square latticejered aroundk =0, u integer. ForA=0.5 the Mott lobes
a; (a) are boson creation(annihilation operators, vanish and only the BG and SF phases remain. In this case
ni=a;"a; counts the number of bosons at siteU is the the SF-BG transition is generic everywhere along the phase
strength of an on-site repulsion, apgis a random chemical separation line and has been investigated extensively in Ref.

V"]i,t:O
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FIG. 1. The probability distributioiP(Iny;,.) of the local sus-
ceptibility for various values oK (A=0.5, ©=0.5, the BG-SF FIG. 2. The participation ratip (K) [Eqg. (5)] as a function of
transition is atk.=0.247). The system size Is=6 andL,=200. K for various system sizeg\(= 0.5, = 0.5). Within the Bose-glass
For K=0.19, which is deep in the Bose-glass phase, also data fophase K<K.=0.247)p, approaches a constant. The inset shows a
L=4 and L=10 are shown, which is indistinguishable from scaling plot with»=0.9 andy=1.0.

L=6. The broken line has slopel [cf. Eq. (4)]. o
are present. As soon as one enters the latter, the distribution

7 in two dimensions at the poift=K . (A=0.5,4=0.5. The  P(x) is chopped off at some characteristic value inversely

nature of the transition at the tip of the Mott lobgs., at  proportional to the nonvanishing gap in the Ml phase. This
w=n and K=K/(A,n) for A<0.5] is not clear and under implies furthermore that the BG phase is indeed gapiess.
discussion in the literaturet®56:11 The relation(4) could be obtained by setting the hopping

Our first goal is to shed light on the Bose-glass phasénatrix elementt to zero in Eq.(1), which yields a com-
itself. It has been arguédhat here the density of states at Pletely local Hamiltonian. This lets us suspect that the fact
zero energy does not vanish, leading to a divergent supefbatz does not vary within the BG phase is due to the local
fluid susceptibility, although the correlation length is finite. nature of the low-lying excitations. To further clarify this
On one hand, this behavior is reminiscent of the quantunPoint we try to quantify the degree of localization of the
Griffiths phase in random transverse Ising systétn¥On  latter. However, since it is not possible to obtain these exci-
the other hand, we demonstrate in this paper that the Bdgations directly in the representation we use, we introduce a
phase idifferentfrom the Griffiths phase in the following Participation ratié’
respect: whereas in the latter strongly coupled clusters lead
to a divergence of varying strength with varying coupling
constant, essentially fully localized excitations give rise to a
uniform, logarithmic divergence in the former.

We study the local superfluid susceptibility, which is for the spatial density distributiop;=L;*=(3/Y—J7¢) of
defined byy; ==,1,C/ (1) with the imaginary time auo- 7 Sl Do e o e e partcle numiemnd

. . + t T o ’
correlation function C;' (1) =(exg—(1/K) 2y, _y(1/2+ J;,, the other withN+1 (N=L?/2 for the transition that corre-
_“‘w where the angular Eracke¢s- ) mean a thermody- sponds tou=1/2).[ - - - ],, denotes a disorder average. One
r!amlg averqge. Note that; (,T) corresEonds. to the .Io.cal expectsp, . =0(1) if the extra particle is localized and
(imaginary time Greens functioa;(7)a;"(0)) in the origi-  , — O(N) if it is delocalized. The result is shown in Fig. 2,
nal BH model(1) and the local susceptibility is simply its \yhere we see very clearly that the additional particle be-
(zero-frequencyintegral. _ o comes completely localized within the BG phase, most prob-

The probability distributiorP(Iny) is shown in Fig. 1 for  aply at those sites which allow for an extra particle, i.e.,
the cased =0.5, from which we conclude that vi~0 (since we are ap=1/2). Moreover the inset shows

that p, (K) satisfies the following scaling relation for fixed

-1

®

pL:LZl (pi)?

av

INP(Iny)=— gInXJrconst 4) aspect ratid_,./L* at the generic SF-BG transition
pL(K) ,
with z=d=2 throughout the BG phase. We have chosen the [z L Ya(sL), (6)

notation of Refs. 16 and 15 in order to demonstrate that the

dynamical exponent that is characteristic for a Griffiths with 6=(K—K.)/K, the distance from the critical point
phasé® in random transverse Ising models can also be de(K.,=0.247), »=0.9+0.1 and z=2 as in Ref. 7, and
fined in the present context and dsnstanthere. Note that y=1.0+0.1.

herez=d in the BG phasandat the critical point, although Now we consider the MI lobes within the BG phase. We
the two exponents have their origin in different physits. chooseA =0.2 and explore the MI-BG boundary by varying
We also looked at weaker disord&r=0.2, where Ml lobes the chemical potential between 0.5 and 1.5 with fixed



RAPID COMMUNICATIONS

55 BOSE-GLASS AND MOTT-INSULATOR PHASE IN THE . . . R11 983
1.08 1.6 T T
. 4x4x4 ——
o ogy — : 141 12| e OB -
ER] -t 10 8381(3 = 10; 186(8:(8 —
1.04 1 E 12755 0 o2 — . 12X12X12 .
059 6x6x18 —— g ; =
09 085 1 105 1.1 6x6x36 — - 1r N
" ° | 0.4 <
(< 1 .:We+e+e+e+e+e+e+wm+ % 08 r . ‘.“-."
; 04 06 -L”VS
) e 2% ons — 04}
096 02 | o — '
o 02 ¢
3 05 08 07 08
" 0 1 1
0.92 * * : : * * : 0.3 0.31 0.32 0.33 0.34
06 07 08 09 1 11 12 13 14 K
I FIG. 4. The stiffnessp(0)L at the tip of the lobe £=0.2,

FIG. 3. The average particle numbgrand compressibilitk as gcalilr.]()). |-£?$\,i3]s}geitor§t2|% ;snggr;sct)a;t ior-1, the inset shows a
a function of the chemical potentigh (A=0.2, K=0.19). At ap ¢ o
1=0.5 one is deep in the Bose-glass phasergrdl/2. The lower
inset shows the compressibility: for large the drop ink becomes
sharper. The upper inset shows how the platgéay the Mott lobg

vanishes in the vicinity oK=K/(A=0.2,u=1).

4 we show our results for=1, where one gets a clear in-
tersection point ofLp at K,=0.325+0.002. This value is
very close to the corresponding value for the pure case
K. PU"*=0.333+0.003(Ref. 1§ and indicates that the tip of

K<K.(A=0.2,u=0.5)=0.20. The latter point corresponds the lobe depends very weakly on the disorder strength or is
to the generic BG-SF transition studied in Ref. 7, but noweven independent of it over some rarigen the latter case
with weaker disorder. We checked that one indeed gets thie critical exponen might escape the inequality=2/d
same critical exponents as far=0.5. In Fig. 3 one sees that (Ref. 21 at this special multicritical poin;* since then
with increasingu the average particle density per site in- variation of the disorder cannot trigger the transition as re-
creases monotonically until it saturates in a plateau aguired in Ref. 21. Indeed, the inset of Fig. 4 shows a scaling

n;=1. The plateau region indicates the boundary of the MIplot which yields»=0.7+0.1<2/d=1, which agrees well
phase centered aroungd=1 with exactly one particle per With the pure valugsee below. These results yield a con-
site. There is only a weak size dependence, at least as long 8istent picture; nevertheless we should mention that one can-
one is deep inside the BG phase, where the correlation lengftot strictly exclude the possibility that our data are not yet in

is very small. The inset shows the compressibility the asymptotic scaling regime and the exponemnte esti-
mate is only an effective exponent for small length scales.

From the data for the imaginary time correlation

— 1 2 2
K_FJL_TRN >_<N> Javs (7)
whereN=X ,J/, is the total number of particles. Obvi- 1 '12 ' ' N
ously the compressibility vanishes as soon as the plateau, '
i.e., the MI phase, is reached. We note that we observe ex- " G —
tremely strong sample-to-sample fluctuations in the com- 08 8x8x8 ~—
pressibility, which necessitated an extensive disorder average X 08
(5000 samples With increasingK the plateau region shrinks ™ 04 H
until it vanishes aK /(A =0.2,u=1)~0.325. This indicates 5* N 02 »
the tip of the lobe on which we focus now and for which the < AN . /
universality class might be different from the generic case. (5 Ny, 031 032 033 034 j
We fix u=1 and varyK. Coming from the SF phase we R K J
first analyze the finite size scaling behaviof the superfluid \11\, . ’
stiffness el
01} Cyfr) —— MR T
1, —(dtz-2y=(] L 2 Cult) —
p= L) ]arL pLSLILY,  (® - .
T 1 2 4 6 8 10
n

with n,= 1/|-2(i,t)3?i,t) the winding number. Since we do not

know the dynamical exponemtwe hypothesized=2 (as FIG. 5. The correlation function§,(r) andC. (7) for system
for the generic cageandz=1 [as in the pure4=0) cas§.  sjze 10<10x10 at the tip of the lobe K.=0.325, A=0.2,
For both we performed runs with constant aspect ratio,—1.0). The dotted lines are least-square fits@g(r)=a(r¥«+
L,/L? and it turned out that for=1 the best data collapse (L-r)¥x) and C,(7)=a’(#~+(L,—7)7), which givesy,=-1.11
could be obtained and that only this value is also compatiblendy,=-1.08, i.e.,z=y,/y,=1.0. The inset shows the compress-
with the correlation function results discussed below. In Figibility « for A=0.2, x=1.0.
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function C;(t) and the spatial correlation function possibly only an effective exponent and the compressibility

Culn) =[(exp{~(UK)Zj_1(1/2+ 3, o )}]ay shown in  does not vanish immediately below the transition from the
SF phase. This indicates the existence of a threshold value

Fig. 5, we get firm support for=1: The ratio of the decay , ,
for the disorder strength: only above this threshold the mean-

exponentsy, andy, for C, andC, (7)=[C;"(7)].y, respec-

tively, should equak and we findy,/y,~1.0(1), roughly field prediction might be correct. o
independent of how we scalel, with L. From To conclude, we have shown in this paper that the Bose-

y=d+2z—2+ 7 we get7=0.1=0.1. glgsg phase in .the disordered boson Hubbard model and the
Finally the inset of Fig. 5 shows the compressibility at the Griffiths phase in random transverse Ising models are closely
above-studied transition, and we observe that it vanisheielated and that the gapless low-energy excitations are fully
here, too. In particular the data scale well according tdocalized in the BG phase. Moreover, we presented evidence
K:L—l}‘(Lllvg) for systems withL=L_, i.e., constant as- that the transition for commensurate boson densities is di-
pect ratio forz=1. Hence, forweak disorder(A<0.2) we  rectly from a Mott insulating phase to a superfluid phase for
find at the tip of the lobe direct SF-to-MI transition possi- Wweak disorder. The critical exponents we estimate for this
bly within the same universality class as the pure modelspecial multicritical point are different from those at the ge-
since our estimates far, %, and v are numerically indistin- neric BG-SG transition at incommensurate boson densities
guishable from the values for the the puxXér model in and agree with those for the pure three-dimensiokal
three dimensions, which are=1, %=0.0334), and model. This suggests that the latter and the tip of the lobe at
v=0.6692). weak disorder are within the same universality class. Mean
As one can see from Fig. 4 and the inset of Fig. 5 there isield renormalization-group calculations and scaling argu-
no sign of afirst-ordertransition at the tip of the lobe, as has ments put forward in Ref. 12 give strong support to this
been suggested in Ref. 11. Moreover, our conclusion disscenario.
agrees with the mean-field predicti®f an intervening BG
phase between the MI and SF phase at the tip of the lobe for We thank F. Pazmandi, G. T. Zimanyi, and A. P. Young
weak disorder. For stronger disorder the scenario mightor interesting and helpful discussions. This work was sup-
change: for instance, &=0.4 we estimatg~1.4, which is  ported by the Deutsche Forschungsgemeinsdi#G).
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