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We study the glassysuperroughphase of a class of solid-on-solid models with a disordered substrate in the
limit of vanishing temperature by means ofexactground states, which we determine with a minimum-cost-
flow algorithm. Results for the height-height correlation function are compared with analytical and numerical
predictions. The domain-wall energy of a boundary-induced step grows logarithmically with system size,
indicating the marginal stability of the ground state, and thefractal dimension of the step is estimated. The
sensibility of the ground state with respect to infinitesimal variations of the quenched disorder is analyzed.
@S0163-1829~97!52112-6#

There has been much interest recently in the properties of
crystal surfaces upon disordered substrates,1–4 in particular
the effect of the presence of pinning potentials on surface
roughening. Further motivation comes from the close rela-
tionship of the corresponding disordered solid-on-solid
model to the two-dimensional vortex-freeXY model with
random fields and to the randomly pinned planar flux
array.5–13 The latter is particularly relevant with respect to
the technologically important aspect of flux pinning in high-
Tc superconductors.

14

It has been demonstrated that these systems have a phase
transition at a critical temperature from a thermally rough
phase into asuperroughphase at low temperatures. Whereas
the existence of this transition is established by now, the
qualitative and quantitative features of the glassy low-
temperature phase are still debated. Predictions of earlier
renormalization-group~RG! calculations15,6,2,9 turned out to
be incompatible with results of extensive numerical
simulations.10,3,11The subsequent discovery of the relevance
of replica-symmetry-breaking~RSB! effects in variational16

and RG~Refs. 12 and 13! calculations lead to a variety of
results, from which those obtained by the variational treat-
ment are again in disagreement with the most recent numeri-
cal study.17,18

For us the situation seems to be the following: close to the
transition the discrimination between various predictions is
numerically hard because of its smallness on intermediate
length scales. Far from the transition~i.e., deep in the glassy
phase at low temperatures! the picture should become much
clearer, meaning that the disorder-dominated effects become
stronger. The clearest evidence for the latter can be expected
for strictly zero temperature, when the roughness is exclu-
sively produced by the substrate alone. However, to reach
this limit, Monte Carlo simulations of glassy systems like
those we are interested in suffer from notorious equilibration
problems.19 At zero temperature the properties of the system
under discussion are completely determined by its minimal
energy configuration or ground state. Since, as we show in
this paper, it is possible to calculate this stateexactly, a de-
tailed and reliable picture of the zero-temperature limit of the
glassy phase can be obtained.

Thus the aim of the present paper is twofold: first we
calculate numerically the zero temperature limit of the
height-height correlation function for finite systems and
compare the result with various analytical predictions and
finite temperature simulations. Second, motivated by the ob-
servation of manifestly glassy features~like RSB, slow dy-
namics, metastable states! in the low-temperature phase, we
ask how far concepts developed for finite-dimensional spin
glasses can be applied here, and explore the nature of this
ground state in much greater detail. We investigate its stabil-
ity with respect to step excitations, analyze this fractal-
boundary-induced domain wall itself, and study the chaotic
nature of the ground state by an application of infinitesimal
variations of the substrate heights. To our knowledge, these
important issues have never been discussed in the present
context.

The solid-on-solid~SOS! model we consider here is de-
fined by the Hamiltonian

H5(̂
i j &

f ~hi2hj !, ~1!

where ^ i j & are nearest-neighbor pairs on ad-dimensional
lattice (d51 and 2!, and f (x) is an arbitrary convex
@ f 9(x)>0# and symmetric@ f (x)5 f (2x)# function, for in-
stance, f (x)5x2. Each height variablehi5di1ni is the
sum of an integer particle number, which can also be nega-
tive, and a substrate offsetdiP@0,1@ . For a flat substrate,
di50 for all sitesi , we have the well known SOS model.20

The disordered substrate is modeled by random offsets
diP@0,1#.2 In the present paper we are only interested in
uncorrelated disorder, meaning that all offsets are distributed
independently. The method we use is, however, applicable to
any disorder distribution, in particular to the case of corre-
lated disorder„i.e., @didi1r#av5g(r …, with g(r … an arbitrary
function….4 In what follows, @ #av denotes the disorder aver-
age.

The random offsets induce a frustration into the system
in the same sense as quenched randomness in the inter-
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action strengths does in the context of spin-glass models.19

The minimum-energy surface~being the set of particle
numbers$ni% that minimize the energy functionH), is no
longer flat (hi5const.), but a highly nontrivial object,
and the calculation of this ground state is a complex com-
binatorial optimization problem. By introducing the height
difference variablesxi j5ni2nj for links on the dual lat-
tice we can reformulate our task as aminimum cost flow
problem

minimize(̂
i j &

ci j ~xi j !, ~2!

with integer xi j and convex, flow-dependent~i.e.,
x-dependent! cost functionsci j (x)5 f (x2di j ), di j5di2dj .
For this problem we developed an efficient pseudopolyno-
mial algorithm which is described in much detail in Ref. 21.
It is guaranteed to find theexactground state, typically in 15
min on a Sparc 20 workstation for a system withN

52563256 sites. We used fixed boundary conditions~b.c.’s!
for the model~because for technical reasons21 the algorithm
works only on a planar graph!. We would like to point out
that this is the first extensive application of a minimum cost
flow algorithm to a problem in theoretical physics to our
knowledge.22

Much effort, numerically as well analytically, has been
devoted to the calculation of the height-height correlation
functionC(r ,r 8)5@(hr2hr8)

2#av in the casef (x)5x2 close
to the transition.2,3,6–13,15–18The zero-temperature limit has
not been investigated so far and the results we present
here are the first reported in the literature,23 to our knowl-
edge. At high temperatures (T@Tg52/p) one expects
C(r ,r 8)5T/2p lnur2r 8u in an infinite lattice. Because of the
natural bending of this logarithmic curve by any boundary
conditions this expression should be replaced17 for finite lat-
tices byC(r ,r 8)5T/2pPL(r ,r 8), where for fixed b.c.’s the
propagator is given by

PL~r ,r 8!5
2

L2 (
n,m51

L
@sin~q0xn!sin~q0ym!2sin~q0x8n!sin~q0y8m!#2

22cosq0n2cosq0m
, ~3!

with r5(x,y), r 85(x8,y8) and q05p/(L11). As men-
tioned above, at low temperaturesT,Tg different scenarios
are currently under discussion in the literature: a Gaussian
scaling, withC(r ) linear in log(r), and a log2(r) behavior. In
the first case a plotC(r ) versusPL(r ) should yield a straight
line, in the second case one should be able to fitC(r ) to a
quadratic polynomial inPL(r ) ~see Ref. 17!.

We define the site averaged correlation function.
C̄(r )52/L2(x51

L/2 (y51
L @(h(x,y)2h(x1r ,y))

2#av, and also the
corresponding site-averaged lattice propagatorP̄L(r ), which
behaves forL→` andr!L like P̄L(r ); ln(r)/2p. In Fig. 1
we showC̄(r ) versusP̄L(r ) for a system sizeL5128. Ob-
viously one doesnot obtain a straight line, which one would
obtain if C̄(r );a01a1P̄L(r ). Thus the Gaussian scaling
C̄(r )} log(r) for r→` can definitely be excluded on these
length scales.

Moreover, although a fit like C̄(r );a01a1P̄L(r )
1a2P̄L(r )

2 works fine at first sight, there is still a significant
bending in the plot ofC̄(r )/ P̄L(r ) versusP̄L(r ) shown in the
inset of Fig. 1, indicating the possible presence of even
higher-order terms. The fit parametersa150.21 and
a250.57 are compatible with a linear zero-temperature ex-
trapolation of the finiteT results of Ref. 17. The existence of
a log2 term is compatible with earlier6,1,2,9replica symmetric
RG calculations and with the most recent one involving
RSB.12,13 Note that the RG prediction for the coefficient is9

a2/2p52/p2t21O(t3), where t is the distance from the
critical point. Sincet51 in our case (T50), it is hard to
compare the numerical value of the coefficient. Neglecting
the higher order corrections one obtainsa2/2p52/p2

'0.20, which is twice as large as our estimate.
We also studied the correlation function for different con-

vex cost functionsf (x)5uxun with varying n. We observed

that with increasing powern for smaller distances, large
height differencesuxi j u.1 are suppressed due to their larger
costs. At larger distances, however, the roughness increases
systematically withn, expressed in monotonically increasing
fit values for the coefficient of the log2 term. This is due to
the decreasedcosts for small height differences (xi j561).

FIG. 1. The site averaged correlation functionC̄(r ) versus the
lattice propagatorP̄L(r ) for L5128 and averaged over 2000
samples. The broken line is a least square fit toC̄(r )
50.00810.21P̄L(r )10.57P̄L(r )

2. The inset showsC̄(r )/ P̄L(r )
versusP̄L(r ), and the straight line indicates the amount of curvature
of the data.
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Moreover, we conclude that the coefficient for the log2 term
is a non-universal number at zero temperature because of its
significant dependence on the actual shape of the cost func-
tion f (x).

An intriguing question concerns the stability of the
ground state with respect to thermal fluctuations. To attack
this problem we take over the concept of domain-wall renor-
malization that is well known in the context of random spin
systems:24–26 we ask how much energy a step~or domain
wall! of height 1 in a system of linear sizeL would cost. If
this energy is an increasing function of the sizeL, it indicates
the stability of the ground state even at finite temperatures
~disregarding other, more complicated excitations!. The step
is induced by appropriate boundary conditions: we fix the
lower boundary to zero (h(x,0)50), and the upper boundary
to 1 (h(x,L11)51). At the left and right boundaries we en-
force h(0,y)5h(L11,y)5u(y2L/2), with u(x)50 for x,0
andu(x)51 for x>0. This procedure induces a straight step
(h(x,y)50 for y,L/2, h(x,y)51 for y>L/2) in the pure case
(di50), which costs an energyDE5L ~implying that the
flat surface is stable at finite temperatures in this case!. In
addition to quadratic geometries we also varied the height
~i.e., the distance between the upper and lower boundaries!
and considered rectangular geometries withL3H sites.

We calculated the ground state first forhi50 on the
whole boundary, and then for the step inducing boundaries
described above@we choosef (x)5x2 from now on#. In Fig.
2 we show the averaged step energy as a function of system
size. The data are nicely fitted by a logarithmicL depen-
dence

@ uDEu#av;a1b lnL with b50.5260.02. ~4!

At first sight the tempting conclusion of this observation
would be that there exists alow-temperature phase with
long-range order, with an order parameter given by the over-
lap of the system with its ground state~note that the bound-
aries are fixed so that this definition is unambiguous!. How-
ever, due to the strong chaotic rearrangement of the state
upon temperature changes, which we discuss below, most
probably this quasi-long-range order is destroyed at finite
temperatures. We think that this result merits a further inves-
tigation, e.g., via simulations.

An inspection of the geometrical shape of the step that is
induced by the boundary condition described above reveals
that it is fractal, crossing the whole sample. Therefore we
variedH to ensure that the limitation in they direction does
not influence the quantitative results we obtain. We calcu-
lated the averaged length of the step as a function of system
size, which is depicted in the inset of Fig. 2, and obtain a
good fit to be given by

Lstep}Ldstep with dstep51.3560.02, ~5!

where dstep is the fractal dimension27 of the step. To our
knowledge, this is the first estimate of such an exponent in
the present context, which we expect to be universal, as we
checked for various forms forf (x).

In order to shed further light on the possibly glassy fea-
tures of the low-temperature phase of our system, we study
what became known under the notion ofchaos in spin
glasses.28,11 For the latter, one observes that infinitesimal
variations of temperature or interaction strengths decorrelate
the state of the system over a distance that is called the
overlap length.28,11 Here we study the same scenario by in-
finitesimal ~random! perturbations of the offsets of the
sample, and comparing the resulting changes in the ground-
state configuration. To be concrete we define offsets by
di85di1« i , with « iP@2d/2,1d/2# andd!1, and given the
unperturbed and perturbed ground-state heightshi and hi8 ,
respectively; we are interested in the accumulated height dif-
ference

xL~d!5(
i

@~hi2hi8!2#av. ~6!

To obtain an idea about the scaling behavior of this quantity,
let us consider the one-dimensional case first, for which the
ground state~with free right boundary condition! can be con-
structed iteratively. The iterationhi115H(hi ,di112di)
leads asymptotically to a random walk:@(hi1r2hi)

2#av;r ,
with a slightly modified short-distance behavior. The same
holds for the random variablehi2hi8 ~with the site indexi as
‘‘time’’ !, but its amplitude is reduced by factord. Thus in
one dimension we expectxL

(1d)(d);d2L, which we also
verified numerically. Note thatd is the inverse length scale
beyond whichhi2hi8 becomes typically different from zero
if h05h0850.

Motivated by this observation, we hypothesize the follow-
ing scaling form forxL :

xL~d!/dh;g~L !, ~7!

with h52 in one dimension andg(L) an arbitrary function.
In Fig. 3 we show a scaling plot of the data we obtained from

FIG. 2. The averaged step energy@ uDEu#av as a function
of system sizeL, averaged over 104 samples. It is f 1(L)
50.1510.56 ln(L) and f 2(L)50.1910.52 ln(L), see Eq.~4!. The
inset shows the step lengthLstepas a function of system size. Here
it is g1(L)50.77L1.37andg2(L)51.04L1.33; see Eq.~5!. The boxes
are data for anL32L geometry, the crosses forL3L. Note that for
larger H the step energy is slightly smaller and the step length
slightly larger, since the step has more space to optimize its con-
figuration.
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our ground-state calculation. The data collapse is acceptable
for h50.9160.05. One should interpret 1/dh as the charac-
teristic length scale over which the two ground states de-
correlate in analogy to the overlap length in the context of
spin glasses.26,28

To summarize, our numerical investigation of the zero-

temperature limit of the glassy phase in SOS models on dis-
ordered substrates revealed the following picture:~1! There
is a dominant log2(r) contribution in the height-height corre-
lation function as predicted by RG calculations. However,
we find also indications of the existence of higher nonlineari-
ties in log(r). ~2! Different forms for the microscopic inter-
actions yield qualitatively similar but quantitatively different
results for, e.g., the coefficient of the log2 term~atT50). ~3!
The step excitation energy increases logarithmically with the
system size, indicating a marginal stability of the ground
state against thermal fluctuations.~4! The boundary-induced
step itself is fractal with a fractal dimension ofdf'1.35.~5!
The concept of the chaos known from spin glasses also ap-
plies here, and the chaos exponent for the overlap length is
close to 1.

As a future perspective we would like to remark that with
our minimum cost flow algorithm it is possible to attack
efficiently a large variety of combinatorial optimization
problems occurring for disordered and frustrated systems in
statistical and solid state physics, in particular those involv-
ing ‘‘real’’ flows like ensembles of flux lines14 in lattice
models.29
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