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Ground-state properties of solid-on-solid models with disordered substrates
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We study the glassguperroughphase of a class of solid-on-solid models with a disordered substrate in the
limit of vanishing temperature by means eXactground states, which we determine with a minimum-cost-
flow algorithm. Results for the height-height correlation function are compared with analytical and numerical
predictions. The domain-wall energy of a boundary-induced step grows logarithmically with system size,
indicating the marginal stability of the ground state, and ftlaetal dimension of the step is estimated. The
sensibility of the ground state with respect to infinitesimal variations of the quenched disorder is analyzed.
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There has been much interest recently in the properties of Thus the aim of the present paper is twofold: first we
crystal surfaces upon disordered substr&tésn particular  calculate numerically the zero temperature limit of the
the effect of the presence of pinning potentials on surfacéeight-height correlation function for finite systems and
roughening. Further motivation comes from the close relacompare the result with various analytical predictions and
tionship of the corresponding disordered solid-on-solidfinite temperature simulations. Second, motivated by the ob-
model to the two-dimensional Vortex-erQY model with servation of manifesﬂy g|assy featuréﬁ(e RSB, slow dy_
rand%rplsflelds and to the randomly pinned planar fluxnamics, metastable staten the low-temperature phase, we
array-" ™~ The latter is particularly relevant with respect t0 a5k how far concepts developed for finite-dimensional spin
the technologically important aspect of flux pinning in high- glasses can be applied here, and explore the nature of this

Te litaper%ondugtor%“. wated that th ems h nQround state in much greater detail. We investigate its stabil-
as been demonstrated that (nése Systéms have a p with respect to step excitations, analyze this fractal-

transition at a critical temperature from a thermally roughy,, o induced domain wall itself, and study the chaotic
phase into auperroughphase at low temperatures. Whereas o T
ature of the ground state by an application of infinitesimal

the existence of this transition is established by now, th%ariations of the substrate heights. To our knowledge, these

gualitative and quantitative features of the glassy low-, ) b b di din th
temperature phase are still debated. Predictions of earlidfiPortant issues have never been discussed in the present

renormalization-grougRG) calculationd®®2°turned out to ~ context. . . _
be incompatible with results of extensive numerical Th€ solid-on-solid SO model we consider here is de-
simulationsi®*1The subsequent discovery of the relevancefined by the Hamiltonian
of replica-symmetry-breakingRSB) effects in variationaf
and RG(Refs. 12 and 1Bcalculations lead to a variety of
results, from which those obtained by the variational treat- H=E f(hi—hy), (1)
ment are again in disagreement with the most recent numeri- (i)
cal study'”1®

For us the situation seems to be the following: close to thavhere (ij) are nearest-neighbor pairs ondadimensional
transition the discrimination between various predictions idattice (d=1 and 2, and f(x) is an arbitrary convex
numerically hard because of its smallness on intermediatkf "(x)=0] and symmetrid f(x) = f(—x)] function, for in-
length scales. Far from the transiti¢ire., deep in the glassy stance,f(x)=x2. Each height variablen;=d;+n; is the
phase at low temperatudethe picture should become much sum of an integer particle number, which can also be nega-
clearer, meaning that the disorder-dominated effects beconitve, and a substrate offsel [0,1[. For a flat substrate,
stronger. The clearest evidence for the latter can be expectelj=0 for all sitesi, we have the well known SOS modél.
for strictly zero temperature, when the roughness is excluThe disordered substrate is modeled by random offsets
sively produced by the substrate alone. However, to reacH; €[0,1].2 In the present paper we are only interested in
this limit, Monte Carlo simulations of glassy systems like uncorrelated disorder, meaning that all offsets are distributed
those we are interested in suffer from notorious equilibratiorindependently. The method we use is, however, applicable to
problems'® At zero temperature the properties of the systemany disorder distribution, in particular to the case of corre-
under discussion are completely determined by its minimalated disordex(i.e., [d;d;,].~=09(r), with g(r) an arbitrary
energy configuration or ground state. Since, as we show ifunction).* In what follows, [ ],, denotes the disorder aver-
this paper, it is possible to calculate this statactly a de- age.
tailed and reliable picture of the zero-temperature limit of the The random offsets induce a frustration into the system
glassy phase can be obtained. in the same sense as quenched randomness in the inter-
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action strengths does in the context of spin-glass mddels. = 256x 256 sites. We used fixed boundary conditi¢ins.’s)
The minimum-energy surfacébeing the set of particle for the model(because for technical reaséhthe algorithm
numbers{n;} that minimize the energy functioH), is no  works only on a planar graphWe would like to point out
longer flat (y=const.), but a highly nontrivial object, that this is the first extensive application of a minimum cost
and the calculation of this ground state is a complex comflow algorithm to a problem in theoretical physics to our
binatorial optimization problem. By introducing the height knowledge?
difference variablesq;=n;—n; for links on the dual lat- Much effort, numerically as well analytically, has been
tice we can reformulate our task asnanimum cost flow geyoted to the calculation of the height-height correlation
problem function C(r,r")=[(h,— h,/)?],, in the casef (x)=x? close
to the transitiorf:>®-1315-18The zero-temperature limit has
minimizeE Cij (Xij), 2 not been investigated so far and the results we present

(i) here are the first reported in the literatdfetp our knowl-
with integer x; and convex, flow-dependentii.e., edge. At high temperaturesT$T,=2/m) one expects
x-dependentcost functionsc;;(x) = f(x—d;;), djj=d;—d;. C(r,r")=T/27In|r—r’| in an infinite lattice. Because of the
For this problem we developed an efficient pseudopolynonatural bending of this logarithmic curve by any boundary
mial algorithm which is described in much detail in Ref. 21. conditions this expression should be repldéédr finite lat-
It is guaranteed to find thexactground state, typically in 15 tices byC(r,r")=T/27P (r,r'), where for fixed b.c.’s the
min on a Sparc 20 workstation for a system wilh  propagator is given by

2 i [Sin(goxN)Sin( gy M) — Sin(qoX' n)sin( oy’ m)]2

PLN= 2 nely 2—cog)on— cogygMm

, ()

with r=(x,y), r'=(x",y") and go==/(L+1). As men- that with increasing powen for smaller distances, large
tioned above, at low temperatur&s- T different scenarios  height difference$x;;|>1 are suppressed due to their larger
are currently under discussion in the literature: a GaussiaBosts. At larger distances, however, the roughness increases
scaling, withC(r) linear in log(), and a '06(0_ behavior. I systematically witm, expressed in monotonically increasing
the first case a plaE(r) versusP, (r) should yield a straight it yajues for the coefficient of the I8germ. This is due to

line, in the second case one should be able (€(it) 0 @  he decreasectosts for small height differences;(=+1).
quadratic polynomial irP (r) (see Ref. 1}

__We define the site averaged correlation function.
C(r) =222 50 i (Nxyy = Nixiry))?law and also the
corresponding site-averaged lattice propag&g(ir), which 0.6 T T -
behaves foL. —o andr<L like P_(r)~In(r)/27. In Fig. 1
we showC(r) versusP,(r) for a system sizé =128. Ob-
viously one doesiot obtain a straight line, which one would
obtain if C(r)~ag+a;P (r). Thus the Gaussian scaling 0.4
C(r)xlog(r) for r—o can definitely be excluded on these
length scales. . L
Moreover, although a fit like C(r)~ap+a;P (r)
+a,P, (r)? works fine at first sight, there is still a significant 0.2 yd
bending in the plot o€(r)/P (r) versusP, (r) shown in the ’
inset of Fig. 1, indicating the possible presence of even
higher-order terms. The fit parameters;=0.21 and
a,=0.57 are compatible with a linear zero-temperature ex-
trapolation of the finitel' results of Ref. 17. The existence of 0
a log term is compatible with earliét>°replica symmetric 0 0.2 0.4 0.6 0.8
RG calculations and with the most recent one involving P
RSB1213 Note that the RG prediction for the coefficient is
ay/2m=2/m*r2+ O(7%), where 7 is the distance from the .
critical point. Sincer=1 in our case =0), it is hard to FIG. 1. The site averaged correlation functi®(r) versus the
compare the numerical value of the coefficient. Neglectindattice propagatorP (r) for L=128 and averaged over 2000
the higher order corrections one obtaims/2m=2/m?  samples. The broken line is a least square fit @fr)
~0.20, which is twice as large as our estimate. =0.008+0.21P (r)+0.57P (r)%. The inset showsC(r)/P(r)
We also studied the correlation function for different con-versusP, (r), and the straight line indicates the amount of curvature
vex cost functiond (x) =|x|" with varyingn. We observed of the data.
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3 : S— At first sight the tempting conclusion of this observation
e would be that there exists Bw-temperature phase with

’ long-range ordeywith an order parameter given by the over-
lap of the system with its ground stafeote that the bound-
aries are fixed so that this definition is unambigyoittow-
ever, due to the strong chaotic rearrangement of the state
upon temperature changes, which we discuss below, most
probably this quasi-long-range order is destroyed at finite
temperatures. We think that this result merits a further inves-
tigation, e.g., via simulations.

An inspection of the geometrical shape of the step that is
induced by the boundary condition described above reveals
that it is fractal, crossing the whole sample. Therefore we
variedH to ensure that the limitation in thedirection does
not influence the quantitative results we obtain. We calcu-
lated the averaged length of the step as a function of system
L size, which is depicted in the inset of Fig. 2, and obtain a

good fit to be given by

25 ¢

[IAEI],,

0.5

FIG. 2. The averaged step energyAE|],, as a function d . B
of system sizel, averaged over 0 samples. It isf;(L) ﬁstepocl- stee with dstep—1'35i0'02’ ®)

=0.15+0.56 In() and f,(L)=0.19+0.52 In(), see Eq(4). The \yhere d, is the fractal dimensidi of the step. To our
Inset shows the step lengffye,as a function of system size. Here oy jedge, this is the first estimate of such an exponent in
itis g,(L)=0.72."*"andg,(L) =1.04.>*, see Eq(5). The boxes o hresent context, which we expect to be universal, as we
are data for alh. X 2L geometry, the crosses far< L. Note that for checked for various forms fdf(x)
larger H the step energy is slightly smaller and the step length ™, "o 4o 4 shed further light on the possibly glassy fea-
slightly larger, since the step has more space to optimize its cont-
f 4 ures of the low-temperature phase of our system, we study
iguration. . . .
what became known under the notion ofiaosin spin
glasse$®!! For the latter, one observes that infinitesimal
Moreover, we conclude that the coefficient for the?ogym  variations of temperature or interaction strengths decorrelate
is a non-universal number at zero temperature because of ithe state of the system over a distance that is called the
significant dependence on the actual shape of the cost funeverlap lengtif®*! Here we study the same scenario by in-
tion f(x). finitesimal (random perturbations of the offsets of the
An intriguing question concerns the stability of the sample, and comparing the resulting changes in the ground-
ground state with respect to thermal fluctuations. To attacktate configuration. To be concrete we define offsets by
this problem we take over the concept of domain-wall renord =d; + &; , with &; [ — §/2,+ §/2] and§<1, and given the
malization that is well known in the context of random spin unperturbed and perturbed ground-state heightand h/

SyStemg-A__ZG we ask how much energy a stépr domain  respectively; we are interested in the accumulated height dif-
wall) of height 1 in a system of linear sizewould cost. If  ference

this energy is an increasing function of the dizet indicates
the stability of the ground state even at finite temperatures o
(disregarding other, more complicated excitatiofihe step XL(5):Ei [(hi=h{)]ay- (6)
is induced by appropriate boundary conditions: we fix the
lower boundary to zeroh(, 5)=0), and the upper boundary To obtain an idea about the scaling behavior of this quantity,
to 1 (h L +1y=1). At the left and right boundaries we en- let us consider the one-dimensional case first, for which the
force hgyy=h+1y)=60(y—L/2), with 6(x)=0 for x<0  ground statéwith free right boundary conditiorcan be con-
and(x)=1 for x=0. This procedure induces a straight stepstructed iteratively. The iteratiorh;,;=H(h;,d;,;—d;)
(hxyy=0 fory<L/2,h =1 fory=L/2) in the pure case leads asymptotically to a random walkhi . —h)?]a~T,
(di=0), which costs an energgE=L (implying that the with a slightly modified short-distance behavior. The same
flat surface is stable at finite temperatures in this xase holds for the random variablg —h/ (with the site index as
addition to quadratic geometries we also varied the heighttime” ), but its amplitude is reduced by factér Thus in
(i.e., the distance between the upper and lower boundariesne dimension we expect{'¥(8)~ 8°L, which we also
and considered rectangular geometries WithH sites. verified numerically. Note thad is the inverse length scale

We calculated the ground state first for=0 on the  beyond whichh;—h/ becomes typically different from zero
whole boundary, and then for the step inducing boundarieg p =n/=0.

. o5 .

described abovpwve choosef (x) =x* from now on. In Fig. Motivated by this observation, we hypothesize the follow-
2_ we show the averaged step energy as a f_unct_lon of systeRg scaling form fory, :
size. The data are nicely fitted by a logarithniicdepen-
dence xXL(8)]87~g(L), )

with =2 in one dimension and(L) an arbitrary function.
[|AE|]o~a+bInL  with b=0.52+0.02. (4)  InFig. 3 we show a scaling plot of the data we obtained from
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FIG. 3. Scaling plot ofy*® as defined in(6) for various values
for the perturbation amplitudé, averaged over fosamples. The
best data collapse is obtained fgpr=0.91. The full line represents

the scaling function involving a dominant figterm.
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temperature limit of the glassy phase in SOS models on dis-
ordered substrates revealed the following pictuig: There

is a dominant lod(r) contribution in the height-height corre-
lation function as predicted by RG calculations. However,
we find also indications of the existence of higher nonlineari-
ties in logf). (2) Different forms for the microscopic inter-
actions yield qualitatively similar but quantitatively different
results for, e.g., the coefficient of the fogrm (at T=0). (3)

The step excitation energy increases logarithmically with the
system size, indicating a marginal stability of the ground
state against thermal fluctuatior{d) The boundary-induced
step itself is fractal with a fractal dimension df~1.35.(5)

The concept of the chaos known from spin glasses also ap-
plies here, and the chaos exponent for the overlap length is
close to 1.

As a future perspective we would like to remark that with
our minimum cost flow algorithm it is possible to attack
efficiently a large variety of combinatorial optimization
problems occurring for disordered and frustrated systems in
statistical and solid state physics, in particular those involv-
ing “real” flows like ensembles of flux linéé in lattice
models?®

our ground-state calculation. The data collapse is acceptable

for =0.91*+0.05. One should interpretd7 as the charac-
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