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Random transverse Ising spin chain and random walks
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We study the critical and off-critical~Griffiths-McCoy! regions of the random transverse-field Ising spin
chain by analytical and numerical methods and by phenomenological scaling considerations. Here we extend
previous investigations to surface quantities and to the ferromagnetic phase. The surface magnetization of the
model is shown to be related to the surviving probability of an adsorbing walk and several critical exponents
are exactly calculated. Analyzing the structure of low-energy excitations we present a phenomenological
theory which explains both the scaling behavior at the critical point and the nature of Griffiths-McCoy singu-
larities in the off-critical regions. In the numerical part of the work we used the free-fermion representation of
the model and calculated the critical magnetization profiles, which are found to follow very accurately the
conformal predictions for different boundary conditions. In the off-critical regions we demonstrated that the
Griffiths-McCoy singularities are characterized by a single, varying exponent, the value of which is related
through duality in the paramagnetic and ferromagnetic phases.@S0163-1829~98!03418-3#
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I. INTRODUCTION

Magnetic systems with quenched disorder at very low
even vanishing temperature have attracted a lot of inte
recently. In particular the quantum phase transition occurr
in quantum Ising spin glasses in a transverse field1 and ran-
dom transverse Ising ferromagnets2–4 turned out to have a
number of surprising features. For instance, the presenc
quenched disorder has more pronounced effects on qua
phase transitions than on those phase transitions, which
driven by thermal fluctuations. For example, in the Griffit
phase, which is at the disordered side of the critical point,
susceptibility has an essential singularity in classical s
tems, whereas in a random quantum system the corresp
ing singularity ~Griffiths-McCoy singularity5,6! is much
stronger, it is in a power-law form.

Many interesting features of random quantum syste
can already be seen in one-dimensional models. After
pioneering work by McCoy and Wu7 and later studies by
Shankar and Murphy,8 Fisher2 has recently performed an ex
haustive study of the critical behavior of the rando
transverse-field Ising spin chain. He used a renormalizat
group~RG! approach, which he claims becomes exact at
critical point. The same type of method has later been u
for other 1d random quantum problems9 and recently some
exact results are obtained through a mapping of the ran
XY model onto a Dirac equation in the continuum limit.10

In the present paper we consider the prototype of rand
quantum systems the random transverse-field Ising chain
fined by the Hamiltonian:

H52(
l

Jls l
xs l 11

x 2(
l

hls l
z . ~1.1!
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Here thes l
x , s l

z are Pauli matrices at sitel and theJl ex-
change couplings and thehl transverse fields are random
variables with distributionsp(J) and r(h), respectively.
The Hamiltonian in Eq.~1.1! is closely related to the transfe
matrix of a classical two-dimensional layered Ising mod
which was introduced and studied by McCoy and Wu.7

In the following we briefly summarize the existing exac
conjectured, and numerical results on the random transve
field Ising chain in Eq.~1.1!. The quantum control paramete
of the model is given by

d5
@ ln h#av2@ ln J#av

var@ ln h#1var@ ln J#
. ~1.2!

For d,0 the system is in the ordered phase with a nonv
ishing average magnetization, whereas the regiond.0 cor-
responds to the disordered phase. There is a phase tran
in the system atd50 with rather special properties, whic
differs in several respects from the usual second-order ph
transitions of pure systems. One of the most striking p
nomena is that some physical quantities are not s
averaging, which is due to very broad, logarithmic probab
ity distributions. As a consequence thetypical value~which
is the value on an event with probability one! and theaver-
age valueof such quantities is different. Thus the critic
behavior of the system is primarily determined by ra
events, dominating the averaged values of various obs
ables.

The average surface magnetization close to the crit
point vanishes as a power lawms;dbs, where

bs51, ~1.3!
11 404 © 1998 The American Physical Society
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57 11 405RANDOM TRANSVERSE ISING SPIN CHAIN AND . . .
is an exact result by McCoy.6 The average bulk magnetiza
tion is characterized by another exponentb, which is con-
jectured by Fisher in his RG treatment:2

b522t, ~1.4!

wheret5(11A5)/2 is the golden mean. The average sp
spin correlation functionG( l )5@^s i

xs i 1 l
x &#av involves the

average correlation lengthj, which diverges at the critica
point asj;udu2nav. The RG result by Fisher2 is

nav52. ~1.5!

On the other hand, the typical correlations have a faster
cay, sincej typ;udu2n typ with n typ51.8

In a quantum system statistics and dynamics are in
ently connected. Close to the critical point the relaxat
time t r is related to the correlation length ast r;jz, wherez
is the dynamical exponent. The random transverse-field Is
spin chain is very strongly anisotropic at the critical poi
since according to the RG picture2 and to numerical results11

ln t r;j1/2, ~1.6!

which corresponds toz5`. On the other hand, the relax
ation time is related to the inverse of the energy-level sp
ing at the bottom of the spectrumt r;(DE)21. Then, as a
consequence of Eq.~1.6! some energylike quantities~specific
heat, bulk, and surface susceptibilities, etc.! have an essentia
singularity at the critical point, while the correlation functio
of the critical energy density has a stretched-exponential
cay, in contrast to the usual power-law behavior.

Leaving the critical point towards the disordered pha
the rare events with strong correlations still play an imp
tant role, until we reach the regiond.dG , where all trans-
verse fields are bigger than the interactions. In the regio
,d,dG , which is called the Griffiths-McCoy phase th
magnetization is a singular function of the uniform longit
dinal field Hx asmsing;uHxu1/z, where the dynamical expo
nent z varies with d. At the two borders of the Griffiths-
McCoy phase it behaves asz'1/2d„11O(d)…2 asd→0 and
z51 asd→dG

2 , respectively.
Some of the above-mentioned results have been num

cally checked11 and in addition various probability distribu
tions and scaling functions have been numerica
determined.12 Our present study, which contains analytic
and numerical investigations extends the previous work
several respects. In the case of a limiting random distribu
we obtain exact results on the surface magnetization ex
nent xs5bs /n and in particular the thermal exponentn
through a simple directed walk consideration. The mapp
of the problem of calculating various universal quantities
the random transverse Ising chain onto the calculation
statistical properties of appropriately defined random wa
is one of the main achievements of the present paper. W
its help we are also able to explain quantitatively many of
exotic features of the Griffiths-McCoy region onboth sides
of the transition.

Moreover, we improved the accuracy of the numeri
estimates on the bulk magnetization exponent in Eq.~1.4!.
Furthermore we present results on the magnetization pro
in confined critical systems as well as about the probab
distribution of several quantities.
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Throughout the paper we use two types of random dis
butions.~1! The binary distribution, in which the coupling
can take two valuesl and 1/l with the probabilityp and
q512p, respectively, while the transverse field is consta

p~J!5pd~J2l!1qd~J2l21!,

r~h!5d~h2h0!. ~1.7!

The critical point is given by (p2q)ln l5ln h0 and dG

5Ap/q for l,1. ~2! The uniform distribution in which the
couplings and the fields have uniform distributions:

p~J!5H 1, for 0,J,1

0, otherwise
~1.8!

r~h!5H h0
21 , for 0,h,h0

0, otherwise,

and the critical point is ath051 anddG5`.
The structure of the paper is the following. In Sec. II w

present the free-fermionic description of our model toget
with the way of calculation of several physical quantities
this representation. In Sec. III the surface magnetization
several critical exponents are calculated exactly using a
respondence with an adsorbing walk problem. Phenome
logical considerations and numerical estimates about the
tribution of low-energy excitations are compared in Sec.
Numerical results for different critical and off-critical param
eters are presented in Secs. V and VI, respectively. Our
sults are discussed in the final section.

II. FREE-FERMION REPRESENTATION

We consider the random transverse-field Ising spin ch
in Eq. ~1.1! on a finite chain of lengthL with free or fixed
boundary conditions, i.e., withJL50. The Hamiltonian in
Eq. ~1.1! is mapped through a Jordan-Wigner transformat
and a following canonical transformation13 into a free-
fermion model:

H5 (
q51

L

eqS hq
1hq2

1

2D , ~2.1!

wherehq
1 andhq are fermion creation and annihilation op

erators, respectively. The fermion energieseq are obtained
via the solution of an eigenvalue problem, which necessita
the diagonalization of a 2L32L tridiagonal matrixT with
nonvanishing matrix elementsT2i 21,2i5T2i ,2i 215hi , i
51,2, . . . ,L and T2i ,2i 115T2i 11,2i5Ji , i 51,2, . . . ,L
21. We denote the components of the eigenvectorsVq as
Vq(2i 21)52fq( i ) and Vq(2i )5cq( i ), i 51,2, . . . ,L,
i.e.,
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T5S 0 h1

h1 0 J1

J1 0 h2

h2 0 �

� � JL21

JL21 0 hL

hL 0

D ,

Vq5S 2 Fq~1!

Cq~1!

2 Fq~2!

A

Cq~L21!

2 Fq~L !

Cq~L !

D . ~2.2!

One is confined to theeq>0 part of the spectrum.14

A. Magnetization

Technically the calculation is more simple, when t
boundary condition~bc! does not break the symmetry of th
Hamiltonian, therefore we start with a chain with two fre
ends. As a consequence, in this case the ground-state e
tation value of the local magnetization operator^0us l

xu0& free

is zero for finite chains. Then the scaling behavior of t
magnetization at the critical point is obtained from t
asymptotic behavior of the~imaginary! time-time correlation
function:

Gl~t!5^0us l
x~t!s l

x~0!u0&

5(
i

u^ i us l
xu0&u2exp@2t~Ei2E0!#, ~2.3!

whereu0& andu i & denote the ground state and thei th excited
state ofH in Eq. ~2.1!, with energiesE0 and Ei , respec-
tively. In the thermodynamic limit in the ordered phase
the system the first excited state is asymptotically degene
with the ground state, thus the sum in Eq.~2.3! is dominated
by the first term. In the larget limit lim t→`Gl(t)5ml

2 , thus
the local magnetization is given by the off-diagonal mat
element:

ml
free5^1us l

xu0&. ~2.4!

In the fermion representation the magnetization operato
expressed as

s l
x5A1B1A2B2 . . . Al 21Bl 21Al ~2.5!

with

Ai5(
q

fq~ i !~hq
11hq!, Bi5(

q
cq~ i !~hq

12hq!.

~2.6!
ec-

e

f
te

is

Using u1&5h1
1u0& the matrix element in Eq.~2.4! is evalu-

ated by Wick’s theorem. Since foriÞ j ^0uAiAj u0&
5^0uBiBj u0&50 we obtain for the local magnetization

ml
free5UH1 G11 G12 . . . G1l 21

H2 G21 G22 . . . G2l 21

A A A � A

Hl Gl1 Gl2 . . . Gll 21

U , ~2.7!

where

H j5^0uh1Aj u0&5F1~ j !,

Gjk5^0uBkAj u0&52(
q

Cq~k!Fq~ j !. ~2.8!

We note that the off-diagonal magnetizationml
free in Eq.

~2.4! can be used to study the scaling behavior of the criti
magnetization through finite-size scaling.

Next we turn to consider the system with symme
breaking bc’s, when one of the boundary spins is fixed. Th
one should formally puth150 or hL50. For instance, if we
fix the spin at siteL we put hL50, implying thatsL

x now
commutes with the Hamiltonian andSL

x is a good quantum
number. In the fermionic description the twofold degenera
of the energy levels, corresponding toSL

x511 and SL
x

521, is manifested by a zero energy mode:«150 in Eq.
~2.1!, with an eigenvector which satisfiesV1(2i )5c1( i )
50, i 51,2, . . . ,L.15 Then the first excited stateu1& is de-
generate with the ground stateu0& and the matrix element in
Eq. ~2.4! corresponds to theground-stateexpectation value
of the magnetization

ml
free15^0us l

xu0&, ~2.9!

which is formally given by the determinant in Eq.~2.7!. The
surface magnetizationms[m15f1(1) can be computed in a
straightforward manner by simply solving the equationTV1
50 with V1(2i )5c1( i )50 for i 51, . . . ,L and using the
normalization condition( if1( i )251. This leads to the exac
formula

ms5F11 (
l 51

L21

)
j 51

l S hj

Jj
D 2G21/2

, ~2.10!

which has been derived in Ref. 16 in the thermodynam
limit L→`. Note that with the boundary condition consid
ered here we proved that Eq.~2.10! is also exact for any
finite system.

Next we consider those boundary conditions, when b
boundary spins are fixed. Then one should formally puth1
50 andhL50. This situation is, however, more complicate
than the mixed bc, since it describes both parallel (11) and
antiparallel (12) boundary conditions. To determine th
magnetization profiles in these cases we make use of
duality properties of the quantum Ising model. First we d
fine the dual Pauli operatorst i 11/2

x ,t i 11/2
z as

t i 11/2
z 5s i

xs i 11
x , s i

z5t i 21/2
x t i 11/2

x , ~2.11!
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in terms of which the Hamiltonian in Eq.~1.1! is expressed
as

H52(
l

Jlt l 11/2
z 2(

l
hlt l 21/2

x t l 11/2
x . ~2.12!

In the dual model formally the couplings and fields are
terchanged, thus the dual Hamiltonian has zero surf
fields, sinceJ05JL50 in Eq. ~1.1!. Then it can be easily
shown that the even sector~i.e., those states which conta
even number of fermions! of the free chain corresponds t
the ~11! parallel boundary condition of the dual mode
whereas the odd sector of the free chain to the~12! anti-
parallel boundary condition.

To obtain the magnetization profile for fixed bounda
spin conditions we use the expression

t l 11/2
x 5s0

zs1
z . . . s l

z , ~2.13!

which can be obtained from Eq.~2.11!, then express the
product of sz’s by fermion operators through the relatio
s i

z5AiBi and evaluate the right-hand side~rhs! of Eq. ~2.13!
in the corresponding free-chain situation. For the para
spin boundary condition we take the free-chain vacuum
pectation value:

ml
115^0ut l 11/2

x u0&115^0uA0B0A1B1 . . . AlBl u0& free,
~2.14!

which can be expressed through Wick’s theorem as

ml
115U1 0 0 . . . 0

0 G̃11 G̃12 . . . G̃1l

A A A � A

0 G̃l1 G̃l2 . . . G̃ll

U . ~2.15!

HereG̃jk is the same as in Eq.~2.8!, however it is calculated
with the dual couplingshl↔Jl .

To obtain the magnetization profile in the antiparallel sp
boundary condition~12! one should take the expectatio
value of the rhs of Eq.~2.13! in the lowest state of the od
sector of the free chain, which is the first excited state of
Hamiltonian:u1&5h1

1u0&. Thus

ml
125^0ut l 11/2

x u0&125^1uA0B0A1B1 . . . AlBl u1& free.
~2.16!

To evaluate this expression by Wick’s theorem one sho
notice that the stateu1&5h1

1u0& can be considered th
vacuum state of such a system, whereh1 andh1

1 are inter-
changed, which formally means thatc1(k)→2c1(k) and
e1→2e1 . Then the expectation values in Eq.~2.8! are
modified as

Ḡjk5^1uBkAj u1&52 (
q.1

Cq~k!Fq~ j !1C1~k!F1~ j !,

~2.17!
-
ce

l
x-

e

ld

which again have to be evaluated with the dual couplin
hl↔Jl . Then theml

12 profile is given by the determinant in

Eq. ~2.15!, where the matrix elementsG̃jk are replaced by
Ḡjk .

B. Susceptibility and autocorrelations

The local susceptibilityx l at sitel is defined through the
local magnetizationml as

x l5 lim
Hl→0

dml

dHl
, ~2.18!

whereHl is the strength of the local longitudinal field, whic
enters in the Hamiltonian in Eq.~1.1! as Hls l

x . x l can be
expressed as

x l52(
i

u^ i us l
xu0&u2

Ei2E0
, ~2.19!

which for boundary spins is simply given by

x152(
q

ufq~1!u2

eq
. ~2.20!

Next we consider the dynamical correlations of the s
tem as a function of the imaginary timet. First, we note that
the correlations between surface spins can be obtained
rectly from Eq.~2.3! as

G1~t!5(
q

uFq~1!u2exp~2teq!. ~2.21!

For bulk spins the matrix element^ i us l
xu0& in Eq. ~2.3! is

more complicated to evaluate, therefore one goes back to
first equation of Eq.~2.3! and considers the time evolution i
the Heisenberg picture:

s l
x~t!5exp~tH !s l

xexp~2tH !

5A1~t!B1~t! . . . Al 21~t!Bl 21~t!Al~t!.

~2.22!

The general time and position-dependent correlation fu
tion

^s l
x~t!s l 1n

x &5^A1~t!B1~t!¯Al~t!A1B1¯Al 1n&,
~2.23!

can then be evaluated by Wick’s theorem as a produc
two-operator expectation values, which in turn is written in
the compact form as a Pfaffian:
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^s l
x~t!s l 1n

x &5U u^A1~t!B1~t!& ^A1~t!A2~t!& ^A1~t!B2~t!& ¯ ^A1~t!Al~t!& ^A1~t!A1& ¯ ^A1~t!Al 1n&

^B1~t!A2~t!& ^B1~t!B2~t!& ¯ ^B1~t!Al~t!& ^B1~t!A1& ¯ ^B1~t!Al 1n&

^A2~t!B2~t!& ¯ ^A2~t!Al~t!& ^A2~t!A1& ¯ ^A2~t!Al 1n&

� A

^Bl 1n21Al 1n&

U
56@detCi j #

1/2, ~2.24!
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whereCi j is an antisymmetric matrixCi j 52Cji , with the
elements of the Pfaffian~2.24! above the diagonal. At zero
temperature the elements of the Pfaffian are the followin

^Aj~t!Ak&5(
q

Fq~ j !Fq~k!exp~2teq!,

^Aj~t!Bk&5(
q

Fq~ j !Cq~k!exp~2teq!,

~2.25!

^Bj~t!Bk&52(
q

Cq~ j !Cq~k!exp~2teq!,

^Bj~t!Ak&52(
q

Cq~ j !Fq~k!exp~2teq!,

whereas the equal-time contractions are given in Eq.~2.6!.
For the finite-temperature contractions see Ref. 17.

III. SURFACE MAGNETIZATION AND THE MAPPING
TO ADSORBING WALKS

In this section we analyze the surface magnetization
the RTIM ~random transverse Ising model! using a mapping
to an adsorbing random-walk problem. In this way we obt
exact results for the critical exponentsbs andn, as well as
for the surface magnetization scaling dimensionxm

s . These
observations will then be used in the following section
identify the structure of the strongly coupled domai
~SCD’s!, which are responsible for the low-energy excit
tions in the system.

A. Surface magnetization and correlation length

The surface magnetization in Eq.~2.10! represents per
haps the simplest order parameter of the transverse-
Ising chain. Note that the scaling behavior of end-to-end c
relations

CL5@^s1
xsL

x&#av ~3.1!

is identical to that of the surface magnetization sinceCL as
well as ms involve only surface spin operators that ha
anomalous dimensionxs . So, for instance,CL(d50)
;L22xs andCL→`(d);d2bs.

In the following we determine its average behavior for t
symmetric binary distribution, i.e., withp5q51/2 in Eq.
~1.7!. First we consider the system of a large, but fin
length L at the critical point. In the limitl→0 the surface
magnetization in Eq.~2.10!, which is expressed as a sum
f

n

-

ld
r-

products has a simple structure. Considering a random r
ization of the couplings the surface magnetization is ze
whenever a product of the form of) i 51

l Ji
22 , l

51,2, . . . ,L is infinite, i.e., the number ofl couplings ex-
ceeds the number ofl21 couplings in any of the@1,l # inter-
vals. On the other hand, if the surface magnetization ha
finite value, it could be of the formms51/(n11)1/2, where
n50,1,2, . . . measures the number of intervals, which
characterized by having the same number ofl andl21 cou-
plings. To have a more transparent picture we represent
distribution of couplings by directed walks, which start
zero and make thei th steps upwards~for a coupling Ji
5l21) or downwards~for a couplingJi5l). As illustrated
in Fig. 1 the surface magnetization corresponding to a r
dom sequence is nonzero, only if the representing walk d
not go below the ‘‘time’’ axis,18 while the corresponding
surface magnetization is given asms51/(n11)1/2, where
now n just counts the number of times the walk has touch
the t axis for t.0.

Then the ratio of walks representing a sample with fin
surface magnetization is just the survival probability of t
walk Psurv, which is given byPsurv(L)}L21/2, for walks
~samples! of lengthL. In the thermodynamic limit this prob
ability vanishes, thus thetypical realization of the chain,
i.e., the event with probability one has zero surface mag
tization. This is certainly different from theaveragevalue,
which is dominated by the rare events represented by sur
ing walks with anms5O(1). Consequently the average su
face magnetization of a critical chain of lengthL is given by

@ms~L,d50!#av5AL21/21O~L23/2!. ~3.2!

On the other hand, one knows from finite-size scaling t

@ms(L,d50)#av;L2xm
s
, wherexm

s 5bs /n is the scaling di-
mension of the surface magnetization. Thus from Eq.~3.2!
we can read theexact result:

FIG. 1. Sketch of the correspondence between a bond con
ration and a random walk. The thick segments in the horizontal
indicate strong (Ji5l21) bonds, thin segments weak bonds (Ji

5l). This bond configuration corresponds to a surviving walk~as
indicated by the broken line staying completely above the horiz
tal line!, implying a finite surface magnetization. Actually for th
example ms51/31/2 in the casel50, since the random walk
touches the horizontal line three times~including the starting point!.
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xm
s 5

1

2
, ~3.3!

while the prefactor in Eq. ~3.2! is obtained as A
50.643 196 1 from a numerical calculation.

In the following we argue that the exponent in Eq.~3.3! is
the same far all valuesl of the binary distribution. First we
mention that the finite-size critical surface magnetizat
@ms

l(L,0)#av is a monotonically decreasing function ofl

<1: @ms
l1(L,0)#av,@ms

l2(L,0)#av 0<l1,l2<1 for any
value of L. Thus the corresponding exponents also sat
xm

s (l1)<xm
s (l2). However according to exact results th

value of xm
s is the same, i.e., 1/2 for the homogeneo

model19 (l51) and for the extreme inhomogeneous mo
(l→0), thus the relation in Eq.~3.3! should hold for any
parameters of the distribution. We note that this is the fi
exact derivation of thexm

s exponent, the value of which is in
agreement with previously known exact and conjectured
sults in Eqs.~1.3! and ~1.5!.

Next we calculate then exponent from thed dependence
of the surface magnetization. In the scaling limitL@1, udu
!1 the surface magnetization can be written as

@ms
l~L,d!#av5@ms

l~L,0!#avm̃s~dL1/n!. ~3.4!

Here the scaling functionm̃s(y), which depends on the rati
of L and the correlation lengthj, can be expanded a
m̃s(y)511By1O(y2), so that one obtains for thed correc-
tion to the surface magnetization:

@ms~L,d!#av2@ms~L,0!#av}dLQ, ~3.5!

with Q51/n2xm
s . This exponent can also be determined

the l→0 limit of the binary distribution. Now, slightly out-
side the critical point the products ofl terms in the sum of
Eq. ~2.10! will contain a factor of (11d)2l.112ld in lead-
ing order ofd. Then the surface magnetization of a coupli
distribution which is represented by a surviving walk
given by

ms5F11(
i 51

n

~112l id!G21/2

5~11n!21/22d
(

i
l i

~n11!3/2
1O~d2!, ~3.6!

where l i gives the position of thei th touching point of the
walk with the t axis. Next we consider a typical survivin
walk, which hasn5O(1) return points~since the probability
of n returns decreases exponentially!, and these points ar
situated atl i5O(L1/2). Consequently for a typical surviving
walk the correction term in Eq.~3.6! is O(L1/2), which
should be multiplied by the surviving probability o
O(L21/2). Since the surviving walks have a sharp probabil
distribution we are left with the result:@ms(L,d)#av

2@ms
l(L,0)#av5Bd1O(d2), where the constant is give

from numerical calculations as:B50.270 563.17/20p.
Comparing our result with that in Eq.~3.5! we get for the
correlation length critical exponent
n

y

s
l

t

-

n52. ~3.7!

This is an exact determination of the exponentn. We ob-
tained it for a particular limitl→0 for the binary distribu-
tion ~1.7!, which is a very broad distribution of coupling
and therefore essentially the limit in which Fisher’s R
analysis2 becomes exact, too.Cum grano salisone might say
that here we presented a way to perform exact calculation
using directly the fixed-point distribution occuring in this R
study.

B. Relation between surface magnetization
and adsorbing random walks

Here we summarize and extend the mapping between
surface magnetization of the RTIM and the surviving pro
ability of the corresponding adsorbing random walk. Fir
we consider again the extreme binary distribution of co
plings in Eq.~1.7! with h051, such that the control param
eter in Eq.~1.2! is given by

d5
q2p

4pq

1

ln l
. ~3.8!

Then, according to the considerations of the previous s
tion, the corresponding adsorbing walk has an asymme
character: it makes steps with probabilitiesp and q512p
off and towards the wall, respectively. The correspond
control parameterdw5q2p in Eq. ~A1! is proportional tod
in Eq. ~3.8!. Our basic observation can be summarized a

ms~d,L !;Psurv~dw ,L !, d;dw . ~3.9!

At the critical point from Eq. ~A7! Psurv(0,L);L2g and
g51/2 is justxm

s , the surface magnetization scaling dime
sion of the RTIM.In the paramagnetic phaseof the RTIM
d.0 and the corresponding walk has a drift towards
adsorbing wall. The surviving probability in Eq.~A8!

Psurv~dw.0,L !;exp~2L/jw!,

jw5
8pq

~p2q!2 ;dw
22 , ~3.10!

is characterized by a correlation length, which diverges
jw;d2n with n52. We note that the expression forjw in
Eq. ~3.10! agrees with the RTIM result by Fisher.2 Finally, in
the ferromagnetic phased,0 the corresponding walk drifts
off the wall and the surviving probability has a finite limit a
L→`:

Psurv~d,0,L→`!5
p2q

p
;2dw . ~3.11!

This expression then corresponds to a finite average sur
magnetization of the RTIM, which linearly vanishes at t
critical point. Thus the surface magnetization exponent of
RTIM is bs51, in agreement with the exact results b
McCoy.6 The finite-size corrections to the surviving pro
ability in Eq. ~3.11! are exponential, according to Eq.~A10!

Psurv~d,0,L !2Psurv~d,0,L→`!;exp~2L/jw!,
~3.12!
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with the correlation lengthjw , as in Eq. ~3.10!. Conse-
quently then critical exponent is the same below and abo
the transition point, as it generally should be.

These results obtained for the extreme binary distribut
can be generalized for other random distributions, too. I
enough to notice that the surface magnetization in a sam
with nonsurviving walk character is exponentially vanishi
with the size of the system. Therefore the basic relation
Eq. ~3.9! remains valid. Then at the critical point th
Psurv(d50,L);L21/2 is a consequence of the Gaussian n
ture of the random walk. Similarly, the relationsjw;dw

22 ,
dw.0 and Psurv(dw,0,L);2dw , dw,0 follow from the
scaling behavior of the random walks.

IV. DISTRIBUTION OF THE LOW-ENERGY
EXCITATIONS

In the previous section we saw that the surface orde
connected to a coupling distribution, which can be rep
sented by a surviving walk. Since~local! order and small
~vanishing! excitation energies are always connected, we
thus identify the local distribution of couplings, which resu
in a strongly coupled domain~SCD!. Note that a SCD is no
simply a domain of strong bonds, but it generally has a m
larger spatial extent.20

To estimate the excitation energye of an SCD we make
use the exact result for the lowest gape1( l ) of an Ising
quantum chain ofl spins with free bc:21 Since we are inter-
ested in a bond and field configuration that gives rise to
exponentially small gape1 we can neglect the rhs of th
eigenvalue equation

T•V15e1V1 , ~4.1!

cf. Eq. ~2.2! and derive approximate expressions for t
eigenfunctionsF1 andC1 . With these one arrives at

e1~ l !;msm̄s•hl)
i 51

l 21
hi

Ji
. ~4.2!

Herems andm̄s denote the finite-size surface magnetizatio
at both ends of the chain, as defined in Eq.~2.10! ~for m̄s
simply replacehj /Jj by hL2 j /JL2 j in this equation!. If the
sample has a low-energy excitation, then both end-sur
magnetizations are ofO(1), consequently the coupling dis
tribution follows a surviving walk picture. The correspon
ing gap estimated from Eq.~4.2! is given by

e1;)
i 51

l 21
hi

Ji
;exp$2 l tr• ln~J/h!%, ~4.3!

where l tr measures the size of transverse fluctuations o
surviving walk of lengthl andln(J/h) is an average coupling
In the following we assume that the excitation energy
surface SCD’s are of the same order of magnitude as th
localized in the bulk of the system and have the same typ
coupling distributions. Thus we identify the SCD’s, both
the surface and in the volume of the system, as a realiza
of couplings and fields with surviving walk character a
having an excitation energy given in Eq.~4.3!. With this
prerequisite we are now ready to apply our theory for
critical and off-critical regions of the RTIM ofL sites.
n
s
le

n

-

is
-

n

h

n

s

ce

a

f
se
of
t
on

e

At the bulk critical point the characteristic lengthl of
surviving regions is of the order of the size of the systemL,
thus the SCD extends over the volume of the system.
transverse fluctuations of the couplings in the SCD are fr
Eq. ~A13! asl tr;L1/2, thus we obtain for the scaling relatio
of the energy gap at the critical point:

e~d50,L !;exp~2const•L1/2!, ~4.4!

in accordance with the existing numerical results.11 At this
point it is useful to point out the origin of the exponent 1
accompanying the length scaleL in Eq. ~4.4!: it is the fact
that the sequence ofhi /Ji is random and uncorrelated, for
general sequence one would havel tr;Lv with v being the
wandering exponent~the scaling dimension of the transver
fluctuations! of the particular sequence under considerati
For instance one could also consider relevant aperiodic
quences~generated in a deterministic fashion!, which have
either the same or different wandering exponents, lead
either to the same or a different scaling behavior of the
ergy scale at the critical point as the random chain stud
here.22

In the paramagnetic phase the probability of finding
SCD of sizel , which is localized at a given point is propo
tional to exp(2l/j), cf. Eq. ~3.10!. Since the SCD can be
located at any point of the chain, the actual probability
proportional to the length of the chain, thusPL( l )
;Lexp(2l/j). The characteristic size of SCD’s obtaine
from the conditionPL( l )5O(1) is given by

l;j ln L, d.0, ~4.5!

which grows very slowly with the linear size of the system
The characteristic transverse fluctuations of such a wal
given—according to Eq.~A16!—as l tr'(q2p) la, with a
5O(1). Setting this expression into Eq.~4.3! we obtain the
scaling relation

e~d.0,L !;L2z~d!, ~4.6!

where the dynamical exponentz(d)52a/d is a continuous
function of the control parameterd. Our estimate qualita-
tively agrees with Fisher’s result,2 that close to the critical
point z(d)51/2d.

The dynamical exponentz(d) is conveniently measured
from the scaling behavior of the probability distributio
PL( l );PL„ln(e)…;L. For a given largeL the scaling com-
bination from Eq.~4.6! is Le1/z, thus

P~e!;e2111/z~d!. ~4.7!

The distribution function of the gap in Eq.~4.7! has already
been studied in Ref. 11 for periodic boundary conditio
Here we considered free chains and investigated the accu
lated probability distribution

VL~ ln e!5E
2`

lne

dyPL~y!. ~4.8!

As seen in Fig. 2 the accumulated probability distribution
low energies is approximately a straight line on a log-l
plot and from the slope one can estimate 1/z(d) quite accu-
rately.
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In the ferromagnetic phase of the RTIM the size of t
SCD is of the order of the sample,l;L and also the trans
verse fluctuations of the couplings arel tr;L. Consequently
the energy of the first excitations scale exponentially with
size of the system:e;exp(2constL). Here, however, one
should take into account that—due to the duality relation
Eq. ~2.12!—in a strongly coupled environment there a

FIG. 2. The integrated gap probability distributionVL(ln e1) in
the disordered phase (h.1) for different values ofh. The dynami-
cal exponentz(h) is extracted from the expected asymptotic for
ln VL(ln e1)51/z(h)(ln e1)1const which is a straight line when us
ing a logarithmic scale on they axes. Thus 1/z(h)'0.82, 0.62 and
0.40 forh54.0, 2.0, and 1.5, respectively. The data for the unifo
distribution averaged over 50 000 samples. Note that for largeh,
i.e., far away from the critical point, there is essentially no syst
size dependence, whereas closer to the critical point the asymp
slope is reached only for large enough system sizes.
e

n

always weakly coupled domains~WCD’s!, which are the
counterparts of the SCD’s in the paramagnetic phase.
characteristic size of a WCD isO(ln L), and their presence
will reduce the size of the SCD’s, such that one expe
logarithmic corrections to the size of transverse fluctuatio
l tr . Indeed the numerical results on the accumulated gap
tribution function in Fig. 3 can be interpreted with the pre
ence of such corrections.

In the ferromagnetic phase many physical quantities~con-
nected autocorrelation function, susceptibility, etc.! are con-
nected with the distribution of the second gap. Unfor
nately, we cannot make an estimate fore2 on the base of our
present approach. However, our model is self-dual, the
tributions of the couplings and the fields transform to ea
other in Eq.~2.12! for d→2d. Therefore, we assume tha
the scaling behavior ofe1 in the paramagnetic phase and th
of e2 in the ferromagnetic phase are also related throu
duality, thus

e2~d,0,L !;L2z~2d!. ~4.9!

Indeed, as seen in Fig. 4 the scaling relation in Eq.~4.9! is
satisfied, however with strong, logarithmic corrections.

V. CRITICAL PROPERTIES

A. Surface magnetization—canonical vs microcanonical
ensemble

The surface magnetization of the RTIM has already be
studied in Sec. III. Here we revisit this problem in order
answer the question, whether the values of the average q
tities and the corresponding critical exponents depend or
on the ensemble used in the calculations. Our present s
is motivated by a recent work23 in which finite-size scaling
methods and their predictions for critical exponents24 have
been scrutinized for random systems.

In our approach in Sec. III the bond and field configur
tions were taken completely random according to the co
sponding distribution. We call this thecanonicalensemble,
since only the ensemble average of lnJi and lnhi is held
fixed. One can also confine oneself on a subset of this

tic

FIG. 3. The same as in the Fig. 2 in theordered phase (h
,1). The data do not scale with lne1 /L, there are strong logarith
mic corrections. A scaling with lne1 /@L/ln(L)# is also poor~as can
be seen in the figure!, most probably higher powers of ln(L) are
involved.
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11 412 57FERENC IGLÓI AND HEIKO RIEGER
semble, in which we fix the value of the product of all bon
in the chain and similarly the product of all fields. Then t
critical point of the system is exactly given by( i 51

L21 ln Ji

5(i51
L21 ln hi , ~note that we study the surface magnetizat

in a chain with one fixed boundary condition such that th
are exactly as many bonds as fields!. This we call themicro-
canonicalensemble. The motivation for the introduction
this ensemble can be found in Ref. 23: essentially it is a m
restrictive way of fulfilling the criterium@ ln J#av5@ ln h#av for
being at the critical point.

The critical exponents of the canonical ensemble E
~3.3!, ~1.5!, which agree with other exact and RG results,
then the canonical ones.

We start to analyze the behavior of the surface magn
zation in the paramagnetic phase (d.0). In the microca-
nonical ensemble the product of the couplings and that of
fields are fixed, therefore the last term in the sum of E
~2.10! is of ) j (hj /Jj )

2;exp(2dL), for each realizations. As
a consequence the surface magnetization of the samples
tains a prefactor exp(2AdL), which is also present in the
average value. It is easy to see that the leading finite-
dependence of the surface magnetization oftypical samples
is related to the above term and given by

@ms~L,d.0!# typ~mc!;exp~2AdL !. ~5.1!

Thus in the microcanonical ensemble there are no rare ev
with O(1) surface magnetizations and therefore the sca
behavior of theaverageand typical values are identical and
for d.0 we have the scaling combinationdL.

In the canonical distribution, due to fluctuations in t
product of the couplings, there are rare events withO(1)
surface magnetizations and their fraction exp(2Ad2L) in
Eq. ~3.10! governs the finite-size scaling behavior of theav-
eragesurface magnetization, yieldingnav52. On the other
hand, thetypical behavior in the canonical ensemble is t
same as in the microcanonical ensemble, see Eq.~5.1!, by
which n typ51.

In the ferromagnetic phase (d,0) the fraction of realiza-
tions with finite surface magnetization can be estimated
follows in the microcanonical ensemble. Afterl ,L steps the
walk has an average drift ofl dr52dwl , which exceeds the

FIG. 4. The same as in Fig. 3 for the second lowest excitat
i.e., VL(ln e2). One observes that asymptotically lnVL(ln e2)
51/z(h)ln e21const, with z(h50.5)50.625z(h52.0) as one
would expect from duality, by whichz(h)5z(1/h).
e
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size of transverse fluctuations,l tr; l 21/2, if l . l c;dw
22 .

Therefore a walk which has been survived up tol c steps with
a probability ofPsurv; l c

21/2;2dw will not be adsorbed with
probability of O(1) in the following stepsl c, l ,L. From
this argument the microcanonical surface magnetization
a lineard dependence close to the critical point, therefore
surface magnetization exponent

bs~mc!51, ~5.2!

is the same as in the canonical distribution Eq.~1.3!.
We can easily estimate the finite-size corrections to

surface magnetization in the ferromagnetic phase by notic
that the corrections to the surviving probability of the corr
sponding walk are proportional to the probability that t
walk has a transverse fluctuation of the size of the driftl tr

;dwL, which is given by exp(2Bl tr
2/Ls2);exp(2B8Ldw

2 ).
Consequently the finite-size corrections to the surface m
netization are given by exp(2L/j), with j;d22. Thus the
correlation length exponent in the ordered phase is

n~mc!52, d,0, ~5.3!

which agrees with the canonical result in Eq.~3.7!. We note
that the above arguments about the surviving probability
random walks ford,0 essentially hold for the canonica
distribution, as a consequence the ferromagnetic phase o
RTIM has the same type of description in the two ensemb

At the critical point of the model we use again the sym
metric binary distribution in Eq.~1.7!, such that the sample
have the same number ofl and l21 couplings. In the ex-
treme limit l→0, as in the canonical case, the critical po
surface magnetization can be determined exactly, thro
studying the surviving probability of the corresponding a
sorbing random walk. To determine the microcanonical s
viving probability first we note that from the canonical walk
only a fraction ofO(L21/2) is microcanonical. Second, th
microcanonical surviving walks have their end at the start
point. Such returning surviving walks are of a fraction
O(L23/2) among the canonical walks. Thus the survivin
probability of microcanonical walks isPsurv(mc);L21,
therefore the microcanonical surface magnetization satis
the scaling relation:

@ms~L,d50!#av~mc!;L21. ~5.4!

The scaling combination betweenL and d.0 is again
obtained by analyzing the expression in Eq.~3.6!. The typi-
cal number of return points of the surviving walks is aga
n5O(1), but nowl i5O(L), since the endpoint of the walk
is a return point. Consequently, the correction term in E
~3.6! for surviving walks isO(L), what should be multiplied
by the surviving probability to obtain the average ofO(1),
from which the scaling combinationLd, d.0 follows, in
agreement with the previous determination below Eq.~5.1!.

To summarize, the average surface magnetization of
RTIM has anomalous scaling behavior in the microcanon
ensemble: in Eq.~5.1! there is an exponentionally vanishin
prefactor exp(2AdL), which governs the scaling behavio
of the surface magnetization in the paramagnetic phase.
note that in scaling theory the different scaling behavior
the low- and high-temperature phases is generally attribu

,
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to the presence of a dangereous irrelevant scaling varia
see Ref. 25. In Fig. 5 we show the scaling plots for t
surface magnetization in the two ensembles obtained num
cally by evaluating Eq.~2.10! for the binary distribution.
Note that we expect similar results to hold for end-to-e
correlations@^s1

xsL
x&#av, with the exponentxs replaced by

2xs ~cf. Sec. III!.
Another reason for the difference in the scaling behav

for d.0 measured in the two ensembles is the fact t
several physical quantities, among those the surface ma
tization, isnot self-averagingat the critical point. To illus-
trate this property in Fig. 6 we have plotted the probabil
distribution of the surface magnetization in the two ense
les. Both scale, as expected, as

PL~ ln ms!5
1

AL
p̃S ln ms

AL
D ~5.5!

the asymptotic form of the scaling functionp̃ for the canoni-
cal ensemble was determined analytically,2 for particular dis-
tributions of the fields and/or couplings it can even be cal
lated exactly.26

The average is determined by the rare events havin
magnetization of orderO(1), i.e., by the asymptotic behav
ior of p̃(y) for y→0. From Fig. 5~top! we conclude that for

FIG. 5. Scaling plot of the surface magnetization in the cano
cal ensemble~top! and the microcanonical~bottom! ensemble. Both
data are for the binary distribution~with l50.1 averaged over
100 000 samples!. Note that in the microcanonical ensemble scali
with dL is expected to hold ford.0, butnot for d,0, cf. Eq.~5.3!.
le,
e
ri-

d

r
t
e-

-

-

a

the canonical ensemblep̃(y) approaches a constant fory
→02 , whereas for the microcanonical ensemble in Fig
~bottom! the scaling functions shows a power-law depe
dence

p̃~y!;~2y!a for y→02 ~5.6!

with a positveexponenta. For the average then follows

@ms#av5
1

AL
E dm p̃~ ln ms /AL !

;
1

AL
E dm~ u ln msu/AL !a}L2~11a!/2. ~5.7!

As we said abovea50 for the canonical ensemble, resultin
in @ms#av;1/AL, anda51 fits the data reasonably well i
case of the microcanonical ensemble, resulting in@ms#av
;1/L.

Based on our observation on the surface magnetization
assume that for other non-self-averaging quantities the
responding critical behavior could be anomalous in the
crocanonical ensemble. In the rest of the paper we res
ourselves to the canonical ensemble.

i-
FIG. 6. Scaling plot of the probability distributionP(ln ms) of

the surface magnetization in the canonical ensemble~top! and the
microcanonical~bottom! ensemble. Both data are for the unifor
distribution averaged over 500 000 samples.
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B. Profiles of observables

A real system is always geometrically constrained a
due to modified surface couplings its properties in the s
face region are generally different from those in the bu
Close to the critical point this surface region, which has
characteristic size of the correlation length, intrudes far i
the system. At the very critical point the appropriate way
describe the position-dependent physical quantities is to
density profiles rather than bulk and surface observables.
a number of universality classes much is known about
spatially inhomogeneous behavior, in particular in two
mensions, where conformal invariance provides a powe
tool to study various geometries.27

In a critical system confined between two parallel plat
which are at a large, but finite distanceL apart, the local
densitiesF(r ) such as the order parameter~magnetization!
or energy density vary with the distancel from one of the
plates as a smooth function ofl /L. According to the scaling
theory by Fisher and de Gennes28

^F~ l !&ab5L2xFFab~ l /L !, ~5.8!

wherexF is the bulk scaling dimension of the operatorF,
while ab denotes the boundary conditions at the two plat
In a d-dimensional system the scaling function in Eq.~5.8!
has the asymptotic behavior:

Fab~ l /L !5AF11BabS l

L D d

1 . . . G l

L
!1. ~5.9!

Here the amplitude of the first correction term is univers
the corresponding exponent is justxF

s 5d the surface scaling
dimension ofF.

In two dimensions conformal invariance gives further p
dictions on the profile:

^F~ l !&ab5F L

p
sin p

l

LG2xF

Gab~ l /L !, ~5.10!

where the scaling functionGab( l /L) depends on the univer
sality class of the model and on the type of the bound
condition. With symmetric boundary conditions the scali
function is constantGaa5A. For conformally invariant, non-
symmetric boundary conditions the scaling function has b
predicted for several models. For the Ising model the m
netization profiles with free-fixed (f 1) and~12! boundary
conditions are predicted as

Gf 15AFsin
p l

2LGxm
s

, ~5.11!

and

G125A cos
p l

L
, ~5.12!

respectively.
In two dimensions conformal invariance can also be u

to predict the critical off-diagonal matrix-element profile
^FuF( l )u0&, where ^Fu denotes the lowest excited sta
leading to a nonvanishing matrix element@see Eq.~2.4!#.
These off-diagonal profiles give information about the s
face and bulk critical behavior via finite-size scaling, wh
d
r-
.
a
o

se
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e
-
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,

s.

l,

-

y

n
-

d

-

avoiding the contribution of regular terms. With symmetr
boundary conditions one obtains for the profile29

^FuF~ l !u0&}S p

L D xfS sin p
l

L D xF
s

2xF

, ~5.13!

which involves both the bulk and surface scaling dimensio
The numerically calculated average diagonal and o

diagonal magnetization profiles~see Sec. II! for the RTIM
are presented in Figs. 7 and 8 for the uniform distribution~in
Ref. 30 some data for the binary distribution have been p
sented!. Here we do not usexm andxm

s as fit parameters, bu
fix them to the theoretically predicted values in Eqs.~1.4!,
~3.3!. The only fit parameter is the nonuniversal prefactorA,
which is found remarkably constant for the different boun
ary conditions. As one can see on Fig. 7 the data for differ
length L collapses to scaling curves, which are very w
described by the scaling functions predicted by conform
invariance. Thus we can conclude that not only the sca
prediction by Fisher and de Gennes28 in Eq. ~5.8! is very
well satisfied for the RTIM, but the corrections to the appr
priate conformal results are also very small, practically n
ligible. This is an unexpected result, since the RTIM is n
conformally invariant, due to anisotropic scaling at the cr
cal point Eq.~1.6!.

FIG. 7. Scaling plots of the magnetization profiles for nonsy
metric boundary conditions (l 85 l 20.5). Top: plus-minus (12)
bc, the broken line is a fit to the form~5.10! and~5.12! with A as a
fit parameter. Bottom: free-fixed~f1! bc., the broken line is a fit to
the form ~5.10! and ~5.11! with A as a fit parameter.
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To close this section we present numerical results for
bulk magnetization scaling dimensionxm and compare it
with Fisher’s perhaps most striking prediction in Eq.~1.4!.
Here we have made effort to increase the numerical ac
racy, therefore we worked with the binary distribution in E
~1.7! on chains with both ends fixed with lengthL<24 and
performed theexact averageof the local magnetization on
the central spin. From the finite-lattice magnetizations, wh
scales as@m(L,0)#av;L2xm we have determinedxm by a
two-point fit, comparing systems with sizesL and L22.
From the finite-size exponents, presented in Table I fol
52, 3, and 4 one concludes that they are in agreement
Fisher’s result:xm5(32A5)/450.191. Unfortunately the
numerical data in Table I show log-periodic oscillation
which are a consequence of the energy scale introduce
the binary distribution. Therefore one cannot use the accu
sequence-extrapolation methods to analyze the limiting
havior of the series. Instead, from a simple linear fit one
obtain the estimate

xm50.19060.003, ~5.14!

improving the accuracy of previous MC estimates.11

C. Dynamical correlations

The general time- and position-dependent correlation
Eq. ~2.23! have a complicated structure at the critical poi

FIG. 8. Top: scaling plot of the magnetization profile for sym
metric ~here: fixed! boundary conditions. The broken line is a fit
the form~5.10! andGaa5A with A as a fit parameter. Bottom: th
profile of the off-diagonal matrix element with free bc. The brok
line is a fit to the form~5.13!.
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Therefore we consider dynamical correlations on the sa
spin, which has a simpler asymptotic behavior. First we c
sider the bulk autocorrelation function

G~t!5@^sL/2
x ~t!sL/2

x &#av ~5.15!

and recapitulate the scaling argument in Ref. 31.
The autocorrelation function, like the~local! magnetiza-

tion, is not self-averaging at the critical point: its avera
value is determined by therare events, which occur with a
probability Pr , andPr vanishes in the thermodynamic limi
In the random quantum systems the disorder is strictly c
related along the time axis, consequently in the rare eve
with a local order, i.e., with a finite magnetization also t
autocorrelations are nonvanishing. Under a scaling trans
mation, when lengths are rescaled asl 85 l /b, with b.1 the
probability of the rare events transforms asPr85b2xm, like
the local magnetization. As we said above the same is
for the autocorrelation function

G~ ln t!5b2xmG~ ln t/b1/2! d50, ~5.16!

where we have made use of the relation between rele
time t r and lengthj at the critical point in Eq.~1.6!. Taking
now the length scale asb5(ln t)2 we obtain

G~t!;~ ln t!22xm d50. ~5.17!

For surface spins in Eqs.~5.16!, ~5.17! the surface magneti
zation scaling dimensionxm

s appears.
In Fig. 9 we present the numerical results for the critic

bulk autocorrelation function obtained via evaluating t
Pfaffian Eq.~2.24!. Note that we have chosenL to be odd, so
that L/2 denotes the central spin, representing the bulk
havior in a system with free bc. A plot ofG(t)21/2xm, with
xm as in Eq.~5.14!, versus lnt ~or t on a logarithmic scale!
should yield a straight line in the infinite system size lim
according to Eq.~5.17!. As can be seen in Fig. 9 the da
agree well with this prediction. For the surface autocorre
tions G1(t)5@^s1

x(t)s1
x&#av, evaluated according to Eq

~2.21!, which is much less involved than the computation
a Pfaffian, a similar plot with the bulk magnetization exp
nentxm replaced by the surface magnetization exponentxm

s

gives also an excellent agreement with the predict

G1(ln t);(ln t)22xm
s
.

TABLE I. Numerical estimates for the bulk magnetization e
ponentxm(L) for the binary distribution for various values ofl.

xm(L)
L l52 l53 l54

6 0.127071 0.162136 0.181770
8 0.142310 0.161044 0.169656

10 0.157063 0.179177 0.189815
12 0.167197 0.195090 0.207268
14 0.173605 0.197072 0.206820
16 0.176458 0.196602 0.204265
18 0.178444 0.195288 0.201673
20 0.179836 0.194391 0.199992
22 0.181044 0.194279 0.199270
24 0.182175
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To complete the results on critical dynamics we ment
the scaling behavior of the autocorrelation functi
@^s l

z(t)s l
z&#av. We mention thats l

z represents one part o
the local energy operator, the other part of which
s l

xs l 11
x —is related to it through duality. As shown in Ref. 3

this quantity at the critical point can be characterized b
power-law asymptotic decay with novel critical exponen
which are different in the bulk and at the surface of t
system.

VI. OFF-CRITICAL PROPERTIES

A surprising property of random quantum systems is
existence of Griffiths-McCoy singularities in the parama
netic side of the critical point. In the corresponding Griffith
McCoy region the autocorrelation function decays as
power G(t);t21/z(d), where the dynamical exponentz(d)
characterizes also the distribution of low-energy excitatio
in Eq. ~4.7!. As a consequence, the free energy is a nona
lytic function of the magnetic field and the susceptibili
diverges in the whole region.

According to the phenomenological theory11 in the
Griffiths-McCoy region the singularities of all physical qua
tities are entirely characterized by the dynamical expon
z(d). Numerical calculations11,12 give support to this as
sumption, although there are discrepancies between the
ues ofz(d) obtained from different quantities.

Here we extend previous investigations in several
spects. First, we consider also the surface properties, suc
the surface autocorrelation function and the surface sus
tibility. Second, we investigate also theferromagnetic sideof
the critical point. In the neighborhood of the critical poi
Fisher2 has already obtained some RG results in the fe
magnetic phase. Here we are going to check these re
numerically and to extend them for finited,0.

A. Phenomenological scaling considerations

As already shown in Sec. IV the dynamical exponentz(d)
is conveniently measured from the probability distribution
the energy gap~in the ferromagnetic phase one considers
second gap in a finite system, which does not vanish ex

FIG. 9. Bulk spin-spin autocorrelation functionG(t) Eq. ~5.15!
for various system sizes~and the uniform distribution!. The straight
line is the prediction according to Eq.~5.17!.
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nentially!. For large systems the gap distribution is given
Eq. ~4.7! and with this the average autocorrelation function
given by

G~t!;E
0

`

P~e!exp~2te!de;t21/z~d!. ~6.1!

In a finite system of sizeL for long enough time, such tha
t@Lz(d), the decay in Eq.~6.1! will change to aG(t)
;1/t form, which is characteristic for isolated spins.
means that in the above limit the system can be considere
an effective single spin.

In the following we present a simple scaling theory whi
explains the form of the asymptotic decay in Eq.~6.1!. Here
in the Griffiths-McCoy phase we modify the scaling relatio
in Eq. ~5.16! by two respects. First, the scaling combinati
is changed tot/bz, since the dynamical exponentz(d) is
finite in the off-critical region. Second, therare events,
which are responsible for the Griffiths-McCoy singulariti
are now samples with very low-energy gaps and their nu
ber is practically independent of the size of the system. C
sequently the rescaling prefactor isb21 and the scaling rela-
tion is given by

G~t,1/L !5b21G~t/bz,b/L ! dÞ0, ~6.2!

where the inverse size of the system 1/L is also included as a
scaling field. Now takingb5t1/z we obtain

G~t,1/L !5t21/zG̃~t1/z/L ! dÞ0, ~6.3!

thus in the thermodynamic limit we recover the power-la
decay in Eq.~6.1!. The scaling functionG̃(y) in Eq. ~6.3!
should behave asG̃(y);y12z for large y, in this way one
recovers the limiting 1/t decay, as argued below Eq.~6.1!.
Then the finite-size scaling behavior of the autocorrelat
function is of the form of Lz21, and after integrating
G(t,1/L) by t the same scaling behavior will appear in th
local susceptibility:

x i~L !;Lz21, dÞ0. ~6.4!

B. Numerical calculation of the dynamical exponent

The phenomenological description of the Griffiths pha
suggests that all Griffiths-McCoy singularities emerging
temperature, energy, time- or frequency-dependent quant
should be parametrizable by a single dynamical expon
z(d). In this subsection we present the results on our num
cal estimates forz(d) resulting from the calculation of the
following quantities:

~i! distribution of low-energy excitations,
~ii ! autocorrelation function on bulk and surface spins,
~iii ! distribution of surface susceptibilities.

The distribution functions for the energy gaps have alrea
been presented in Sec. IV. The same quantity for the sur
susceptibility in Eq.~2.20! has a similar form as the invers
gap, as seen in Fig. 10. The only difference that for
susceptibility the matrix element in the denominator of E
~2.20! select one special position of the SCD. As a con
quence the corresponding probability distribution has noL
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dependence, as already discussed in Ref. 11 and can al
seen by comparing Eqs.~4.6! with ~6.4!. Thez(d) exponents
calculated from the surface susceptibility distribution ag
well with those obtained from the gap distribution.

The average autocorrelation function is measured at
sites of the chain: on the central spin, giving an estimate
the bulk correlation function and on the surface spin. T
average bulk autocorrelation functions are drawn on a l
log plot in Fig. 11 for several values ofd.0. One can easily
notice an extended region of the curves, which are well
proximated by straight lines, the slope of which is connec
to the dynamical exponent through Eq.~6.1!. Similar behav-
ior can be seen in Fig. 12, where the average surface a
correlation functions are drawn. Our investigation on the
namical exponent is completed by studying theconnected
surface autocorrelation function in the ferromagnetic pha
As seen in Fig. 13 the scaling form in Eq.~6.1! is well
satisfied for this function, too.

The behavior of the dynamical exponents calculated
different methods are summarized in Fig. 14. First we n
that the numerical estimates are very close to each other.
only exception is the data obtained from the bulk autoco
lations. To explain the possible origin of this discrepancy
turn to Sec. VII. Thez(d) values well satisfy the two theo
retical limits: limudu→`z(d)51 and limudu→051/2d2. Fur-
thermore the dynamical exponents show the duality relat
z(d)5z(2d).

VII. DISCUSSION

In this paper the critical and off-critical properties of th
random transverse-field Ising spin chain are studied by a
lytical and numerical methods and by phenomenolog
scaling theory. The previously known exact,7 RG,2 and nu-
merical results11,30,31,12about the model have been extend
and completed here in several directions. The scaling be
ior of the surface magnetization is obtained through a m
ping to an adsorbing random walk and the critical expone
bs , n, andxm

s are calculated exactly. We have also sho
that the scaling behavior in the microcanonical ensembl
anomalous.

FIG. 10. Integrated probability distribution of the zer
frequency surface susceptibility for different system sizes in
disordered phase ath52.0. Note thatz(h), as determined from the
slope of the straight line, turns out to be within the error margin
z(h) determined via the gap distribution~see Fig. 2!.
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Using the correspondence between the surface magne
tion and the adsorbing walks we have identified stron
coupled domains in the system, where the couplings hav
surviving walk character, and estimated the distribution
low-energy excitations both in the critical and off-critic
regions. This provides a comprehensive explanation of
microscopic origin of the Griffiths-McCoy singularities.
turns out that most of the astonishing features of the crit
as well as the off-critical~Griffiths-McCoy! properties can be
simply explained via random-walk analogies. However, o
prediction by Fisher,2 namely, the exact value of the bul
magnetization exponentb and its surprising relation to the
golden mean, still lacks asimple explanation in terms of
universal properties of random walks.

In the numerical part of our work we have treated re
tively large (L<128) finite systems. At the critical point w
have calculated the magnetization profiles for differe
boundary conditions, which are found to follow accurate
the conformal predictions, although the system is not con
mally invariant. We have also increased the numerical ac
racy in the calculation of the bulk magnetization scaling
mension. In the off-critical regions we have determined
dynamical exponentz(d) from different physical quantities
The obtained results give support to the scaling predict
that the Griffiths-McCoy singularities are characterized
the single parameterz(d). Here we note that the numerica

e

f

FIG. 11. The bulk autocorrelation function@^sL/2
x (t)sL/2

x (0)&#av

in imaginary time in the disordered phase (h.1), calculated at a
central spini 5L/2 with Eq. ~2.23! via the Pfaffian method pre
sented in Sec. II. The straight lines are fits to the expected pow
law decayt21/z(h).
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data show systematic differences, whenz(d) is calculated
from bulk or from surface quantities. A similar observatio
has been made in Ref. 12, too. The possible origin of
discrepancies is, that the SCD’s, which are responsible
the Griffiths-McCoy singularities, have different enviro
ments at the surface and in the volume of the system. T
from the argument leading to Eqs.~4.5!, ~4.6! one can obtain

FIG. 12. The surface autocorrelation function@^s1
x(t)s1

x(0)&#av

in imaginary time in the disordered phase (h.1), calculated via
Eq. ~2.21!. The straight lines are fits to the expected power-l
decayt21/z(h).

FIG. 13. The connected part of the surface autocorrelation fu
tion @^^s1

x(t)s1
x(0)&&#av5@^s1

x(t)s1
x(0)&2ms

2#av in imaginary
time in the ordered phase (h,1), calculated via Eq.~2.21!, but
now substractinguF1(1)u2. The straight lines are fits to the ex
pected power-law decayt21/z(h).
e
or

n,

logarithmic corrections between the dynamical expone
This fact can then explain the differences in the finite-s
data. We have numerically studied the Griffiths-McCoy s
gularities in the ferromagnetic phase, too. In this region
second gap of the Hamiltonian and theconnectedautocorre-
lation function scale with the dynamical exponent, whic
according to numerical results, satisfies the duality relatio
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APPENDIX: ADSORBING RANDOM WALKS

Here we summarize the basic properties of on
dimensional random walks in the presence of an adsorb
wall. For simplicity, first we consider a walker, which make
steps of unit lengths with probabilitiesp andq512p to the
positive and to the negative directions, respectively. Star
at a distances.0 from an adsorbing wall we are intereste
in the surviving probabilityPsurv(dw ,L) after L steps. Here

dw5q2p ~A1!

c-

FIG. 14. Summary of all estimates of the dynamical expon
z(h) as a function of the distance from the critical pointd
5u ln hu/2. The open circles are the estimates from the gap distr
tion, as exemplified in Fig. 2, open triangles: surface susceptib
distribution ~cf. Fig. 10!, full circles: surface autocorrelation func
tion ~cf. Fig. 12!, crosses: surface autocorrelation function in t
ordered phase~cf. Fig. 13!, open squares: bulk autocorrelation fun
tion ~cf. Fig. 11!. Note that whereas all former estimates agr
within the error margin~which is roughly the size of the symbols!
the latter estimate, namely the one obtained via the bulk autoco
lation function, differs significantly from all others.
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measures the average drift of the walk in one step: fordw
,0 (dw.0) the walk has a drift towards~off! the wall.

The probabilityWL( l ), that the walker afterL steps is at
a position l<L, can be easily obtained by the mirro
method:32

WL~ l !5p~L1 l !/2q~L2 l !/2S L!

@~L1 l !/2#! @~L2 l !2#!

2
L!

@~L1 l !/21s#! @~L2 l !/22s#! D . ~A2!

In the following we takes51 and in the limitL@1, l @1 we
use the central limit theorem to write in the continuum a
proximationl→x andWL( l )→PL(x) as

PL~x!5
1

p

x

L

1

A2pLs2
expF2

~x2 x̄!2

2Ls2 G ~A3!

with

x̄5~p2q!L52dwL, s254pq. ~A4!

The surviving probability is then given by

Psurv~dw ,L !5E
0

`

PL~x!dx5A 2s2

p2pL
exp~2 ȳ2!

3H 1

2
1

ȳ

2
Apexp~ ȳ2!@12F~2 ȳ!#J ,

~A5!

where

ȳ5
x̄

A2Ls2
52dwA L

2s2, ~A6!

andF(z)52/Ap*0
zexp(2t2)dt is the error function.33

In the following we evaluatePsurv(dw ,L) in Eq. ~A5! in
the different limits. In the symmetric casedw50, p51/2:

Psurv~dw50,L !5
1

A8pL
;L21/2. ~A7!

For dw.0, whenp,q and the walk has a drift towards th
wall the surviving probability has an exponential decay
ȳ→2`:

Psurv~dw.0,L !5A 2s2

p2pL
exp~2 ȳ2!

1

4ȳ2

;L21/2exp~2L/jw!jw /L, ~A8!

with a correlation length
y
te
-

s

jw5
2s2

dw
2

. ~A9!

Finally, for dw,0, when p,q and the walk is drifted
from the wall the surviving probability has a finite limit:

Psurv~dw,0,L !5A 2s2

p2pL
ȳ1A 2s2

p2pL
exp~2 ȳ2!

1

4ȳ2

52
dw

p
1A 2s2

p2pL
exp~2L/jw!jw /L,

~A10!

which is approached exponentially.
The size oftransverse fluctuationsof the adsorbing walk

is given by

l tr~dw ,L !5E
0

`

PL~x!xdx/Psurv~dw ,L !, ~A11!

where

E
0

`

PL~x!xdx5
2s2

pAp
exp~2 ȳ2!H ȳ

2
1

Ap

4
~2ȳ211!exp~ ȳ2!

3@12F~2 ȳ!#J . ~A12!

In the symmetric limitdw50:

l tr~dw50,L !5A8pL;L1/2. ~A13!

For dw.0 the transverse fluctuations in leading order a
independent ofL:

l tr~dw.0,L !5
2s2

dw
, ~A14!

while for dw,0, when there is a drift of the walk from th
wall the transverse fluctuations grow linearly withL:

l tr~dw,0,L !5dwL. ~A15!

The maximal value of the transverse fluctuations ltr
max(dw ,L)

for d<0 are in the same order of magnitude as their aver
values in Eqs.~A13! and~A15!. However ford.0 the maxi-
mal value is generally larger than the average one in
~A14!. In this casel tr

max(dw.0,L) is determined by arare
event, in which a large fluctuation of positive steps is fo
lowed by a drift process towards the average behavior. If
number of steps in the drift process isaL, where 0,a,1,
then

l tr
max~dw.0,L !5aLdw . ~A16!
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