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Random transverse Ising spin chain and random walks
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We study the critical and off-criticalGriffiths-McCoy) regions of the random transverse-field Ising spin
chain by analytical and numerical methods and by phenomenological scaling considerations. Here we extend
previous investigations to surface quantities and to the ferromagnetic phase. The surface magnetization of the
model is shown to be related to the surviving probability of an adsorbing walk and several critical exponents
are exactly calculated. Analyzing the structure of low-energy excitations we present a phenomenological
theory which explains both the scaling behavior at the critical point and the nature of Griffiths-McCoy singu-
larities in the off-critical regions. In the numerical part of the work we used the free-fermion representation of
the model and calculated the critical magnetization profiles, which are found to follow very accurately the
conformal predictions for different boundary conditions. In the off-critical regions we demonstrated that the
Griffiths-McCoy singularities are characterized by a single, varying exponent, the value of which is related
through duality in the paramagnetic and ferromagnetic ph&S€4.63-182608)03418-3

I. INTRODUCTION Here theoy, of are Pauli matrices at siteand theJ, ex-
change couplings and thie transverse fields are random

Magnetic systems with quenched disorder at very low owvariables with distributionsm(J) and p(h), respectively.
even vanishing temperature have attracted a lot of intere§the Hamiltonian in Eq(1.1) is closely related to the transfer
recently. In particular the quantum phase transition occurringnatrix of a classical two-dimensional layered Ising model,
in quantum Ising spin glasses in a transverse fiall ran-  which was introduced and studied by McCoy and Wu.
dom transverse Ising ferromagrfetsturned out to have a  In the following we briefly summarize the existing exact,
number of surprising features. For instance, the presence §Phjectured, and numerical results on the random transverse-
quenched disorder has more pronounced effects on quantuf#§!d Ising chain in Eq(1.1). The quantum control parameter
phase transitions than on those phase transitions, which afé the model is given by
driven by thermal fluctuations. For example, in the Griffiths
phase, which is at the disordered side of the critical point, the
susceptibility has an essential singularity in classical sys- — [In hlay=[In I]av

: = . 1.2

tems, whereas in a random quantum system the correspond- varfIn h]+varfin J]
ing singularity (Griffiths-McCoy singularity® is much

stronger, .'t IS 1n a power-law form. For §<0 the system is in the ordered phase with a nonvan-
Many interesting features of random quantum systems

can alreadv be seen in one-dimensional models. After thlshing average magnetization, whereas the redioi® cor-
. -ady : ’ : . ?esponds to the disordered phase. There is a phase transition
pioneering work by McCoy and Wuand later studies by

. in the system at=0 with rather special properties, which
Shankar and Murph§/F|shef has recently performed an ex- differs in several respects from the usual second-order phase
haustive study of the critical behavior of the random

. . . ; .7 transitions of pure systems. One of the most striking phe-
transverse-field Ising spin chain. He used a renormahzatlorhomena is that some physical quantities are not self-
group(RG) approach, which he claims becomes exact at the,eraging, which is due to very broad, logarithmic probabil-

critical point. The same type of method has later been use distributions. As a consequence ttymical value(which
for other 1d random quantum problerhand _recently SOME " is the value on an event with probability grend theaver-
exact results are obtained through a mapping of the randoye yajyeof such quantities is different. Thus the critical

XY model onto a Dirac equation in the continuum lirtfit. behavior of the system is primarily determined by rare

In the present paper we consider the prototype of randoriyents dominating the averaged values of various observ-
quantum systems the random transverse-field Ising chain deg,|eq.

fined by the Hamiltonian:

The average surface magnetization close to the critical
point vanishes as a power law,~ 6%, where

H=—> J|a'|xa'|x+1—§|: hiof. (1.

| Bs=1, 1.3
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is an exact result by McCdyThe average bulk magnetiza-  Throughout the paper we use two types of random distri-
tion is characterized by another exponghtwhich is con-  butions.(1) The binary distribution, in which the couplings
jectured by Fisher in his RG treatment: can take two valued and 1A with the probabilityp and
g=1-p, respectively, while the transverse field is constant:
B=2-r1, (1.9
wherer=(1+/5)/2 is the golden mean. The average spin-
spin correlation functionG(l)=[(o}0}, )]s involves the
average correlation length, which diverges at the critical
point as¢~| 8| ~“av. The RG result by Fishéiis p(h)=8(h—hy). 1.7)

Var= 2. (1.5

On the other hand, the typical correlations have a faster de-[he critical point is_given . by m—_q)l_n )\_:In .ho an_d %

cay, sincegy,~| 8]~ o with Vtyp=1-8 = \/p/_q for A<1. (2)_ The uniform distribution in WhI.Ch the
In a quantum system statistics and dynamics are inherqouplmgs and the fields have uniform distributions:

ently connected. Close to the critical point the relaxation

time t, is related to the correlation length gs- ¢, wherez

is the dynamical exponent. The random transverse-field Ising w(J) :r

spin chain is very strongly anisotropic at the critical point,

m(J)=ps(I—N)+qsI—-N"H),

1, for 0<J<1
0, otherwise

since according to the RG pictdrand to numerical results (1.8
In t,~ &2 (1.6 " {hgl, for 0<h<hy
p(h)= :
which corresponds ta=«. On the other hand, the relax- 0, otherwise,

ation time is related to the inverse of the energy-level spac-
ing at the bottom of the spectrutp~(AE) 1. Then, as a
consequence of E@1.6) some energylike quantitidspecific
heat, bulk, and surface susceptibilities, ebave an essential
singularity at the critical point, while the correlation function

and the critical point is alhy=1 and 5= .

The structure of the paper is the following. In Sec. Il we
present the free-fermionic description of our model together
2 . : with the way of calculation of several physical quantities in
of th? critical energy density has a stretched—gxponenhal de[his representation. In Sec. Il the surface magnetization and
cay, In contrast to _the usqal power-law beh_awor. several critical exponents are calculated exactly using a cor-

Leaving the crl_tlcal point toward_s the (.j'sordered_phaserespondence with an adsorbing walk problem. Phenomeno-
the rare ever)ts with strong corr.elatlons still play an Imloor'Iogical considerations and numerical estimates about the dis-
tant rol_e, until We_reach the reglqh> o ' where all trans_- tribution of low-energy excitations are compared in Sec. IV.
verse fields are bigger than the interactions. In the region Qmerical results for different critical and off-critical param-

<d<dg, which is called the Griffiths-McCoy phase the giorg are presented in Secs. V and VI, respectively. Our re-
magnetization is a singular function of the uniform longitu- sults are discussed in the final section.

dinal field Hy asmgpg~|Hx|'%, where the dynamical expo-

nentz varies with §. At the two borders of the Griffiths-

McCoy phase it behaves as- 1/26(1+ O(6))? as—0 and Il. FREE-FERMION REPRESENTATION
z=1 asé— g, respectively.

Some of the above-mentioned results have been numeri- We consider the random transverse-field Ising spin chain
cally checked and in addition various probability distribu- in Eq. (1.1) on a finite chain of lengti. with free or fixed
tions and scaling functions have been numericallypoundary conditions, i.e., witd, =0. The Hamiltonian in
determined? Our present study, which contains analytical EQ. (1.1) is mapped through a Jordan-Wigner transformation
and numerical investigations extends the previous work irand a following canonical transformatiohinto a free-
several respects. In the case of a limiting random distributioiermion model:
we obtain exact results on the surface magnetization expo-
nent x;=Bs/v and in particular the thermal exponent L
through a simple directed walk consideration. The mapping B n 1
of the problem of calculating various universal quantities for H & €a{ 7 9™ 5
the random transverse Ising chain onto the calculation of
statistical properties of appropriately defined random walks
is one of the main achievements of the present paper. Witwhere 7, and 7 are fermion creation and annihilation op-
its help we are also able to explain quantitatively many of theerators, respectively. The fermion energigsare obtained
exotic features of the Griffiths-McCoy region &wth sides  via the solution of an eigenvalue problem, which necessitates
of the transition. the diagonalization of a[2x 2L tridiagonal matrixT with

Moreover, we improved the accuracy of the numericalnonvanishing matrix elementsly_; 5=Tyi5_1=h;, i
estimates on the bulk magnetization exponent in @). =12, ... L and Ty 54+1=Trit15=J;, i=12, ... L
Furthermore we present results on the magnetization profiles 1. We denote the components of the eigenvectysas
in confined critical systems as well as about the probabilityV(2i —1)=—¢4(i) and Vy(2i)=yq(i), i=1,2, ... L,
distribution of several quantities. ie.,

(2.9



11 406

h, 0 J;
J; 0 h,
T= h, O

Ji-1 0 h

= Dy()
Wo(1)
— Dy(2)
: 2.2
W, (L—1)
(L)
(L)

One is confined to the,=0 part of the spectrurt

A. Magnetization
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Using |1)= 7, |0) the matrix element in Eq2.4) is evalu-
ated by Wick's theorem. Since foi#j (O|AjA;|0)
=(0|B;B,|0)=0 we obtain for the local magnetization

Hl Gll G12 G1|*1
H2 G21 G22 G2|71
mee=l s o @7
H G G Gy-1
where
H;=(0|7:A|[0)=D4(j),
ij=<0|BkA,-|0>=—§ To(kPy(j). (2.8

We note that the off-diagonal magnetization™® in Eqg.
(2.4) can be used to study the scaling behavior of the critical
magnetization through finite-size scaling.

Next we turn to consider the system with symmetry
breaking bc’s, when one of the boundary spins is fixed. Then
one should formally pubh; =0 or h_ =0. For instance, if we
fix the spin at sitel we puth_ =0, implying thato] now

Technically the calculation is more simple, when thecommutes with the Hamiltonian ar§f is a good quantum

boundary conditiortbc) does not break the symmetry of the humber. In the fermionic description the twofold degeneracy
Hamiltonian, therefore we start with a chain with two free of the energy levels, corresponding &=+1 and S

ends. As a consequence, in this case the ground-state expec-_1 js manifested by a zero energy moeg=0 in Eq.

tation value of the local magnetization opera{6foy|0)Te®

(2.1, with an eigenvector which satisfieg;(2i)= (i)

is zero for finite chains. Then the scaling behavior of the= j=12, ... L.'® Then the first excited staid) is de-
magnetization at the critical point is obtained from the generate with the ground std@) and the matrix element in

asymptotic behavior of th@maginary time-time correlation

function:
Gi(7)=(0lo}(7)1(0)[0)
=2 Kiloflo)Pexd ~ 7(Ei-E9)], (23

where|0) and|i) denote the ground state and fitle excited
state ofH in Eq. (2.1, with energiesE, and E;, respec-

Eq. (2.4) corresponds to thground-stateexpectation value
of the magnetization

mi*®e* = (0| o}|0), (2.9
which is formally given by the determinant in E®.7). The
surface magnetizatioms=m;= ¢4(1) can be computed in a
straightforward manner by simply solving the equatiov;
=0 with V4(2i)=¢4(i)=0 fori=1, ... L and using the
normalization conditior®; ¢(i)%= 1. This leads to the exact

tively. In the thermodynamic limit in the ordered phase offormula
the system the first excited state is asymptotically degenerate

with the ground state, thus the sum in E.3) is dominated
by the first term. In the large limit lim HocG|(r)=m|2, thus

the local magnetization is given by the off-diagonal matrix

element:

mj**=(1|7|0). (2.4

L-1

—1/2
1+|2

Al e

mg=

which has been derived in Ref. 16 in the thermodynamic
limit L—o. Note that with the boundary condition consid-
ered here we proved that ER.10 is also exact for any
finite system.

In the fermion representation the magnetization operator is Next we consider those boundary conditions, when both

expressed as

(T|X:AlBlAsz PP A|_1B|_1A| (25)

with

As% bo(1) (15 + 1), Bizg (D) (15 — 7).
(2.6

boundary spins are fixed. Then one should formally fput

=0 andh_=0. This situation is, however, more complicated
than the mixed bc, since it describes both paraliel() and
antiparallel & —) boundary conditions. To determine the
magnetization profiles in these cases we make use of the
duality properties of the quantum Ising model. First we de-
fine the dual Pauli operatots, ;/,,77, 1, as

(2.11

z _ X X Z__ X X
Ti+12=0i0+1, O~ Ti—12Ti+1/2»
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in terms of which the Hamiltonian in Eq1.1) is expressed which again have to be evaluated with the dual couplings

as h,«J,. Then them,” ™ profile is given by the determinant in
Eq. (2.15, where the matrix eIemen@ik are replaced by
Gjk-

H:_Z J|7'|Z+1/2_§|: h T 1275 172 (2.12

. . ) B. Susceptibility and autocorrelations
In the dual model formally the couplings and fields are in-

terchanged, thus the dual Hamiltonian has zero surface The local susceptibility, at sitel is defined through the
fields, sinceJo=J,=0 in Eq. (1.1). Then it can be easily local magnetizatiom, as
shown that the even sect@re., those states which contain
even number of fermionsof the free chain corresponds to sm
the (++) parallel boundary condition of the dual model, xi=lim—-, (2.18
whereas the odd sector of the free chain to the-) anti- Hﬁo‘sHl
parallel boundary condition.
To obtain the magnetization profile for fixed boundaryWhereHI

. " x is the strength of the local longitudinal field, which
spin conditions we use the expression

enters in the Hamiltonian in Eq1.1) asH,o{. x, can be
expressed as

Ti(+l/2=0'60'i . (T|Z, (213)
i - (i a7]0)|?
which can be obtained from Ed2.11), then express the v=2> '—, (2.19
product of 6”s by fermion operators through the relation T Ei—Eo

of=A;B; and evaluate the right-hand sittas) of Eq. (2.13

in the corresponding free-chain situation. For the parallelyhich for boundary spins is simply given by
spin boundary condition we take the free-chain vacuum ex-

pectation value:

% :22 M (2.20
m" " =(0| 7, 10) " " =(0|AgBoA1B; ... ABy|0)", VR e '
(2.19
which can be expressed through Wick’s theorem as Next we consider the dynamical correlations of the sys-
tem as a function of the imaginary time First, we note that
0 0 . 0 the correlations between surface spins can be obtained di-
- o~ ~ rectly from Eq.(2.3) as
G11 G12 e Gll
0 &, &, ... & Gl(r)zg |Dg(1)|%exp — Teg). (2.21)

Hereéik is the same as in Eq2.8), however it is calculated For bulk spins the matrix elemeit|o[|0) in Eq. (2.3 is

with the dual couplings, < J, . more complicated to evaluate, therefore one goes back to the
To obtain the magnetization profile in the antiparallel spinfirst equation of Eq(2.3) and considers the time evolution in

boundary condition(+—) one should take the expectation the Heisenberg picture:

value of the rhs of Eq(2.13 in the lowest state of the odd

sector of the free chain, which is the first excited state of the « «

Hamiltonian:|1) = 5, |0). Thus o(7)=exp(rH)oyexp(—7H)

=A B AL B - Al(7).
m’ " =(0] 7 1d0) "~ =(1|ABoALB; ... AB|L1)" B DB DA
(2.16 (2.22

To evaluate this expression by Wick’s theorem one should

notice that the statd1)=7;|0) can be considered the The general time and position-dependent correlation func-

+ ) tion
vacuum state of such a system, whereand »,; are inter-
changed, which formally means thét (k) — — (k) and
e1——€;. Then the expectation values in ER.8 are (o (T ot ) ={AL(T)B(7) - A(T)AB AL,
modified as (2.23
~ _ _ - . can then be evaluated by Wick’'s theorem as a product of
Gir=(1BeAIL) qzl Vol Pq()+ W1l Pa()), two-operator expectation values, which in turn is written into

(2.17  the compact form as a Pfaffian:
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[(A1(7)B1(7)) (Au(1)Ax(7)) (A(7)BaA7)) -+ (AUDA(T) (A(DA) - (AUDALL)
(Bi(1)Ay(7)) (Bi(7)Ba(7)) -+ (Bu(mA(7) (Bi(n)Ay) - (Bu(1Ai+n)
(of(n)of )= (A(7)Bo(7)) -+ (AADA(7) (AxDAY) - (AADALL)
<Bl+n71A|+n>
= +[delC;;]*? (2.24
|
whereCj; is an antisymmetric matri;; = —Cj;, with the  products has a simple structure. Considering a random real-

elements of the Pfaffiaf2.24) above the diagonal. At zero ization of the couplings the surface magnetization is zero,
temperature the elements of the Pfaffian are the following: whenever a product of the form offll_,J; 2, |
=12, ... Lis infinitel, i.e., the number of couplings ex-
. ceeds the number of "+ couplings in any of th¢1,l] inter-
<AJ(T)Ak>:§q: Pq(]) Pq(k)exp( — €q), vals. On the other hand, if F'zhegsurfaceymagr?etiz]ation has a
finite value, it could be of the forrmg=1/(n+1)*2, where
n=0,1,2, ... measures the number of intervals, which are
(A[(NBY =2 Pg())Wq(k)exp — req), characterized by having the same numbex @nd\ ~* cou-
q (2.25 plings. To have a more transparent picture we represent the
distribution of couplings by directed walks, which start at
, - ; _ zero and make theth steps upwardgfor a coupling J;
(Bi(m)Bw % Fall)¥alkjexp(=reg). =X\"1) or downwardgfor a couplingd;=X\). As illustrated
in Fig. 1 the surface magnetization corresponding to a ran-
dom sequence is nonzero, only if the representing walk does
not go below the “time” axis:® while the corresponding
. _ o surface magnetization is given as,=1/(n+1)¥2 where
whereas the equal-time contractions are given in ).  nown just counts the number of times the walk has touched

<BJ<T>AK>=—§ Wo(j)Dg(K)exp( - 7eg),

For the finite-temperature contractions see Ref. 17. thet axis fort>0.
Then the ratio of walks representing a sample with finite
lll. SURFACE MAGNETIZATION AND THE MAPPING surface magnetization is just the survival probability of the
TO ADSORBING WALKS walk Pg,, Which is given byPg,(L)<L~ %2 for walks

fsample&; of lengthL. In the thermodynamic limit this prob-

In this section we analyze the surface magnetization 0abilit vanishes, thus théypical realization of the chain
the RTIM (random transverse Ising moglelsing a mapping Y . &p ’
i.e., the event with probability one has zero surface magne-

to an adsorbing random-walk problem. In this way we obtain;~" . - . :
exact results for the critical exponenfis and v, as well as tization. This is certainly different from thaveragevalue,

o : ! . which is dominated by the rare events represented by surviv-
for the surface magnetization scaling dimensign These . . o
. . : . i ing walks with anm;=0(1). Consequently the average sur-
observations will then be used in the following section 102 ce maanetization of a critical chain of lendthis given b
identify the structure of the strongly coupled domains 9 9 y

(SCD’s), which are responsible for the low-energy excita- [my(L,5=0)],=AL Y2+ 0O(L %2, (3.2
tions in the system. On the other hand, one knows from finite-size scaling that

S
_ - s . . .
A. Surface magnetization and correlation length [m(L,6=0)]a~L ", wherexy,=pBs/v is the scaling di

o mension of the surface magnetization. Thus from 1)
The surface magnetization in EQ.10 represents per- \ye can read thexact resutt

haps the simplest order parameter of the transverse-field
Ising chain. Note that the scaling behavior of end-to-end cor-
relations

». £y - v .

C.=[{o o) ]av (3.1 o# —— R ——

°
is identical to that of the surface magnetization sifeas i=1234 .- L
well as mg involve only surface spin operators that have

ano[nzalous dlmenS|0n>(52. So, for instance,C (6=0)  iation and a random walk. The thick segments in the horizontal line
~L™%s andCLﬁw(5)~5 s, o , indicate strong §=\"1) bonds, thin segments weak bond§ (

In the following we determine its average behavior for the:)\)_ This bond configuration corresponds to a surviving walk
symmetric binary distribution, i.e., witp=q=1/2 in EQ. indicated by the broken line staying completely above the horizon-
(1.7). First we consider the system of a large, but finitetal line), implying a finite surface magnetization. Actually for this
length L at the critical point. In the limih—0 the surface example m=1/3"2 in the casex=0, since the random walk
magnetization in Eq(2.10, which is expressed as a sum of touches the horizontal line three tim@scluding the starting poiit

FIG. 1. Sketch of the correspondence between a bond configu-
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1 v=2. (3.7)
XrSnZE' (33)

This is an exact determination of the exponentWe ob-
while the prefactor in Eq.(3.2 is obtained asA tained it for a particular limitn— 0 for the binary distribu-
—0.643 196 1 from a numerical calculation. tion (1.7), which is a very broad distribution of couplings

In the following we argue that the exponent in E8.3) is and therefore essentially the limit in which Fisher's RG
the same far all values of the binary distribution. First we analysi$ becomes exact, to€um grano sali®ne might say
mention that the finite-size critical surface magnetizationNat here we presented a way to perform exact calculation by
[m)(L,0)]., is a monotonically decreasing function af using directly the fixed-point distribution occuring in this RG

S 1 av
<1: [mgl(L,O)]a\,<[m22(L,0)]a\, 0=\;<\,=<1 for any study.
value of L. Thus the corresponding exponents also satisfy
Xm(N ) =<x;(\,). However according to exact results the
value of x;, is the same, i.e., 1/2 for the homogeneous . )
model® (\=1) and for the extreme inhomogeneous model Here we summarize and extend the mapping between the
(A—0), thus the relation in Eq3.3 should hold for any Surface magnetization of the RTIM and the surviving prob-
parameters of the distribution. We note that this is the firs@Pility of the corresponding adsorbing random walk. First,
exact derivation of the, exponent, the value of which is in W€ consider again the extreme binary distribution of cou-
agreement with previously known exact and conjectured reP!ings in EqQ.(1.7) with ho=1, such that the control param-
sults in Eqs(1.3) and(1.5). eter in Eq.(1.2) is given by

Next we calculate the exponent from theS dependence “p 1
of the surface magnetization. In the scaling lirbit-1, || _ap =
<1 the surface magnetization can be written as 4pq In A

B. Relation between surface magnetization
and adsorbing random walks

(3.9

\ \ _ s Then, according to the considerations of the previous sec-
[m5(L, ) Jay=[mg(L,0) Jayms(SL™). (34 tion, the corresponding adsorbing walk has an asymmetric
. L~ ) . character: it makes steps with probabilitipsandg=1—p
Here the scaling functiomy(y), which depends on the ratio o anq towards the wall, respectively. The corresponding
of L and the correlation lengtl¥, can be expanded as control parametes,,=q—p in Eq. (A1) is proportional tod

my(y) =1+By+O(y?), so that one obtains for th&correc-  in Eq. (3.8). Our basic observation can be summarized as
tion to the surface magnetization:

o mg(8,L)~Pg il Sw,L), 6~6y. (3.9
[ms(l-v5):|av_I:ms(l-7o):|av°c oL”, (35)
] s ) ] ) At the critical pointfrom Eq. (A7) Pg,(OL)~L"7 and
with © =1/v—xp,. This exponent can also be determined in,,_ 15 is justx® , the surface magnetization scaling dimen-
the A—0 limit of the binary distribution. Now, slightly out-  gion of the RTIM.In the paramagnetic phasef the RTIM
side the critical point the products bfterms in the sum of  5— 5 and the corresponding walk has a drift towards the

Eq.(2.10 will contain a factor of (k4§ Zl_zl?LZI dinlead-  a4sorbing wall. The surviving probability in EGA8)
ing order of §. Then the surface magnetization of a coupling

d@stribution which is represented by a surviving walk is Psurd 8w>0L)~exp —L/&,),
given by
8
“ -2 b=y~ 5,2, (3.10
me=| 1+ >, (1+2l;6) (p—a)
= is characterized by a correlation length, which diverges as
&w~ 0~V with v=2. We note that the expression féy, in
Z I Eq.(3.10 agrees with the RTIM result by Fish&Finally, in
=(1+n) "= 5—0+0(6%, (3.6)  the ferromagnetic phasé<0 the corresponding walk drifts
(n+1) off the wall and the surviving probability has a finite limit as

wherel; gives the position of théth touching point of the L—ee:

walk with thet axis. Next we consider a typical surviving p—q

walk, which hasn=0(1) return pointgsince the probability Pou( 0<0L—0)=——~—34,. (3.11

of n returns decreases exponentigllgnd these points are P

situated a‘i:O(L_llz)- Consequently for a typllgal Surviving Thjis expression then corresponds to a finite average surface
walk the correction term in Eq(3.6) is O(LY%), which  magnetization of the RTIM, which linearly vanishes at the
should be multiplied by the surviving probability of critical point. Thus the surface magnetization exponent of the
Q(L__l/z)_- Since the surviving yvalks have a sharp probabilityRT|v s g,=1, in agreement with the exact results by
distribution we are left with the resultfms(L,5)]lay  McCoy® The finite-size corrections to the surviving prob-
—[m}(L,0)],=B&+0(6%), where the constant is given apility in Eq.(3.11) are exponential, according to EGA10)
from numerical calculations asB=0.270 563=17/20.

Comparing our result with that in E¢3.5 we get for the Poun <0,L) — Pgu 6<0L— ) ~exp —L/&,),
correlation length critical exponent (3.12
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with the correlation lengthé,,, as in Eq.(3.10. Conse- At the bulk critical point the characteristic lengthof
guently thev critical exponent is the same below and abovesurviving regions is of the order of the size of the system
the transition point, as it generally should be. thus the SCD extends over the volume of the system. The

These results obtained for the extreme binary distributiontransverse fluctuations of the couplings in the SCD are from
can be generalized for other random distributions, too. It isEq. (A13) asl,~ L', thus we obtain for the scaling relation
enough to notice that the surface magnetization in a samplef the energy gap at the critical point:
with nonsurviving walk character is exponentially vanishing
with the size of the system. Therefore the basic relation in €(5=0L)~exp —const L?), (4.9

Eqg. (3.9 remains valid. Then at the critical point the . . - . .
Por(5=0L)~L-"2is a consequence of the Gaussian na.l accordance with the existing numerical restitat this

ture of the random walk. Similarly, the relatios ~ 5\,7,2, point it is useful to point out the origin of the exponent 1/2

o accompanying the length scdlein Eq. (4.4): it is the fact
5w>.0 and PSU.”)( dw<0L) dw, 8, <0 follow from the that the sequence & /J; is random and uncorrelated, for a
scaling behavior of the random walks.

general sequence one would hdye-L* with o being the

wandering exponerthe scaling dimension of the transverse

IV. DISTRIBUTION OF THE LOW-ENERGY fluctuationg of the particular sequence under consideration.
EXCITATIONS For instance one could also consider relevant aperiodic se-

In the previous section we saw that the surface order i§luencesigenerated in a deterministic fashjpwhich have
connected to a coupling distribution, which can be repre€ither the same or different wandering exponents, leading
sented by a surviving walk. Sincgocal) order and small either to the same or a different scaling behavior of the en-
(vanishing excitation energies are always connected, we ca§rgy_scale at the critical point as the random chain studied
thus identify the local distribution of couplings, which results Neres _ __ o
in a strongly coupled domaifSCD). Note that a SCD is not _ In the paramagnetic phase the probability of finding a
simply a domain of strong bonds, but it generally has a muct$CD of sizel, which is localized at a given point is propor-
larger spatial exterf’ tional to exp(1/¢), cf. Eq. (3.10. Since the SCD can be

To estimate the excitation energyof an SCD we make located at any point of the chain, the actual probability is
use the exact result for the lowest gap(l) of an Ising ~Proportional to the length of the chain, thuB(l)
quantum chain of spins with free b& Since we are inter- ~Lexp(-1/§). The characteristic size of SCD's obtained
ested in a bond and field configuration that gives rise to affom the conditionP, (I)=0(1) is given by
exponentially small gap,; we can neglect the rhs of the
eigenvalue equation I~&InL, 6>0, (4.5

TV, = eV 4.2) which grows very slowly with the linear size of the system.
SRR ' The characteristic transverse fluctuations of such a walk is
cf. Eqg. (2.2 and derive approximate expressions for thegiven—according to Eq(Al6)—as l,~(q—p)la, with a
eigenfunctiongb, and¥,. With these one arrives at =0(1). Setting this expression into E(.3) we obtain the
I scaling relation

1
_ h,
€1(1)~mgms- h,Hl 3 (4.2 e(8>0,L)~L "%, (4.6

Heremg andrﬁS denote the finite-size surface magnetizationswhere the dynamical exponen{s)=2a/43 is a continuous

. . . — function of the control parametef. Our estimate qualita-
at both ends of the chain, as defined in E&10 (for mg b q

) ) . X tively agrees with Fisher's restfitthat close to the critical
simply replaceh; /J; by h, _j/J,_; in this equation If the point z(8) = 1/25.

sample has a low-energy excitation, then both end-surface
magnetizations are d.T)(_l_), consequ_ently the coupling dis- ¢ the scaling behavior of the probability distribution
tribution follows a surviving walk picture. The correspond- P_(1)~P_(In(e))~L. For a given large. the scaling com-
ing gap estimated from E¢4.2) is given by bination from Eq.(4.6) is Le'?, thus

-1
a~]1 ?Nexp{—ln'ln(J/h)}, 4.3 P(e)~e 1129, (4.7)

. The distribution function of the gap in E4.7) has already
wherel, measures the size of transverse fluctuations of ®een studied in Ref. 11 for periodic boundary conditions.
surviving walk of length andIn(J/h) is an average coupling. Here we considered free chains and investigated the accumu-
In the following we assume that the excitation energy oflated probability distribution
surface SCD’s are of the same order of magnitude as those
localized in the bulk of the system and have the same type of ne
coupling distributions. Thus we identify the SCD’s, both at Q(Ine)= f_xdyPL(y)- (4.8
the surface and in the volume of the system, as a realization
of couplings and fields with surviving walk character andAs seen in Fig. 2 the accumulated probability distribution for
having an excitation energy given in E.3). With this low energies is approximately a straight line on a log-log
prerequisite we are now ready to apply our theory for theplot and from the slope one can estimate( &) quite accu-
critical and off-critical regions of the RTIM of sites. rately.

The dynamical exponer#(d) is conveniently measured
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FIG. 3. The same as in the Fig. 2 in tleedered phase [
<1). The data do not scale with k/L, there are strong logarith-
mic corrections. A scaling with le; /[L/In(L)] is also poor(as can
be seen in the figuye most probably higher powers of Lo are
involved.

0.1 ¢

always weakly coupled domain@VCD'’s), which are the
counterparts of the SCD’s in the paramagnetic phase. The
characteristic size of a WCD ®(In L), and their presence
will reduce the size of the SCD’s, such that one expects
logarithmic corrections to the size of transverse fluctuations
l+. Indeed the numerical results on the accumulated gap dis-
tribution function in Fig. 3 can be interpreted with the pres-
ence of such corrections.

In the ferromagnetic phase many physical quantites-
nected autocorrelation function, susceptibility, gtre con-
nected with the distribution of the second gap. Unfortu-
nately, we cannot make an estimate éron the base of our
present approach. However, our model is self-dual, the dis-
tributions of the couplings and the fields transform to each
other in Eq.(2.12 for 6— — 8. Therefore, we assume that
the scaling behavior of; in the paramagnetic phase and that
of €, in the ferromagnetic phase are also related through
duality, thus

0.01 ¢

Q (|n£1)

0.001 ¢

(b)

01}

0.01

Q (|n£1)

0.001 t

0.0001

€x(8<0L)~L %9, 4.9

30 25 20 -15 -10 -5 0 Indeed, as seen in Fig. 4 the scaling relation in &) is
© In e satisfied, however with strong, logarithmic corrections.

FIG. 2. The integrated gap probability distributiéh (In €;) in
the disordered phasé$ 1) for different values oh. The dynami- V. CRITICAL PROPERTIES
cal exponent(h) is extracted from the expected asymptotic form A. Surface magnetization—canonical vs microcanonical
In Q,(In e))=1/z(h)(In €7)+const which is a straight line when us- ensemble

ing a logarithmic scale on thg axes. Thus ¥{(h)~0.82, 0.62 and o
0.40 forh=4.0, 2.0, and 1.5, respectively. The data for the uniform  The surface magnetization of the RTIM has already been

distribution averaged over 50 000 samples. Note that for large Studied in Sec. lll. Here we revisit this problem in order to
i.e., far away from the critical point, there is essentially no systemanswer the question, whether the values of the average quan-
size dependence, whereas closer to the critical point the asymptotiies and the corresponding critical exponents depend or not
slope is reached only for large enough system sizes. on the ensemble used in the calculations. Our present study
is motivated by a recent wotkin which finite-size scaling

In the ferromagnetic phase of the RTIM the size of themethods and their predictions for critical exponéhisave
SCD is of the order of the sample;-L and also the trans- been scrutinized for random systems.
verse fluctuations of the couplings dre~L. Consequently In our approach in Sec. lll the bond and field configura-
the energy of the first excitations scale exponentially with theions were taken completely random according to the corre-
size of the systeme~exp(—const). Here, however, one sponding distribution. We call this theanonicalensemble,
should take into account that—due to the duality relation insince only the ensemble average ofJjirand Inh; is held
Eqg. (2.12—in a strongly coupled environment there are fixed. One can also confine oneself on a subset of this en-
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size of transverse fluctuations,~1"2 if 1>1,~5,°.
Therefore a walk which has been survived upteteps with

a probability ofPg,~ I >~ — &, will not be adsorbed with
probability of O(1) in the following stepd . <I<L. From

this argument the microcanonical surface magnetization has
a linears dependence close to the critical point, therefore the
surface magnetization exponent

0.1

0.01

Q(|n€2)

0.001 F Bs(mec)=1, (5.2

is the same as in the canonical distribution EQ3).
s ¥ P We can easily estimate the finite-size corrections to the
20 15 10 5 0 surface magnetization in the ferromagnetic phase by noticing
In ey that the corrections to the surviving probability of the corre-
o ~ sponding walk are proportional to the probability that the
~ FIG. 4. The same as in Fig. 3 for the second lowest excitationwalk has a transverse fluctuation of the size of the diyift
i.e., Q. (Ine). One opserves that asymptotically (q(In e,) ~8,L, which is given by expt Bl t2,/L02)~eXp(—B’L53,).
=1/z(h)In e, +const, with 2(h=0.5)=0.62=2(h=2.0) as one  cynsequently the finite-size corrections to the surface mag-
would expect from duality, by whicla(h) =2(1/h). netization are given by exp(L/é), with €&~ & 2. Thus the
correlation length exponent in the ordered phase is

0.0001

semble, in which we fix the value of the product of all bonds
in.t-he chaﬁn and similarly thg product of.aII fieIdLs;;I'hen the »(mo=2, 6<0, (5.3
critical point of the system is exactly given By _; In J, _ . . .
=1 Inh;, (note that we study the surface magnetizationwhich agrees with the canonical result in E8.7). We note
in a chain with one fixed boundary condition such that therghat the above arguments about the surviving probability of
are exactly as many bonds as figldehis we call themicro-  random walks for6<0 essentially hold for the canonical
canonicalensemble. The motivation for the introduction of distribution, as a consequence the ferromagnetic phase of the
this ensemble can be found in Ref. 23: essentially it is a mor&TIM has the same type of description in the two ensembles.
restrictive way of fulfilling the criteriuniIn J],,=[In h],, for At the critical point of the model we use again the sym-
being at the critical point. metric binary distribution in Eq(1.7), such that the samples
The critical exponents of the canonical ensemble Eqshave the same number af and A ~* couplings. In the ex-
(3.3), (1.5), which agree with other exact and RG results, arelreme limitA —0, as in the canonical case, the critical point
then the canonical ones. surface magnetization can be determined exactly, through
We start to analyze the behavior of the surface magnetistudying the surviving probability of the corresponding ad-
zation in the paramagnetic phas§>(0) In the microca- sorbing random walk. To determine the microcanonical sur-
nonical ensemble the product of the couplings and that of thiiving probability first we note that from the canonical walks
fields are fixed, therefore the last term in the sum of Eqonly a fraction ofO(L ~*?) is microcanonical. Second, the
(2.10 is of IT;(h; /Jj)2~exp(2§]_), for each realizations. As microcanonical surviving walks have their end at the starting
a consequence the surface magnetization of the samples cd?ﬂinEB/SUCh returning surviving walks are of a fraction of
tains a prefactor exp{A6L), which is also present in the O(L 2) among the canonical walks. Thus the surviving
average value. It is easy to see that the leading finite-sizerobability of microcanonical walks g (mc)~L"",
dependence of the surface magnetizatiotypfcal samples therefore the microcanonical surface magnetization satisfies
is related to the above term and given by the scaling relation:

[Mg(L, 8> 0)Jyp(ME) ~exp( — ASL). (5.1) [my(L,6=0)](mo)~L "1, (5.9

Thus in the microcanonical ensemble there are no rare events The scaling combination betwedn and >0 is again
with O(1) surface magnetizations and therefore the scalingbtained by analyzing the expression in E816). The typi-
behavior of theaverageandtypical values are identical and cal number of return points of the surviving walks is again
for >0 we have the scaling combinatiai.. n=0(1), but nowl;=0(L), since the endpoint of the walk

In the canonical distribution, due to fluctuations in theis a return point. Consequently, the correction term in Eq.
product of the couplings, there are rare events voil) (3.6) for surviving walks isO(L), what should be multiplied
surface magnetizations and their fraction exp(s2L) in by the surviving probability to obtain the average@f1),
Eq. (3.10 governs the finite-size scaling behavior of tae  from which the scaling combinatioh s, §>0 follows, in
erage surface magnetization, yielding,,=2. On the other agreement with the previous determination below &q).
hand, thetypical behavior in the canonical ensemble is the To summarize, the average surface magnetization of the
same as in the microcanonical ensemble, see(kd), by = RTIM has anomalous scaling behavior in the microcanonical
which v,=1. ensemble: in Eq5.1) there is an exponentionally vanishing

In the ferromagnetic phas&€0) the fraction of realiza- prefactor exp{-.45L), which governs the scaling behavior
tions with finite surface magnetization can be estimated asf the surface magnetization in the paramagnetic phase. We
follows in the microcanonical ensemble. Aflex L steps the note that in scaling theory the different scaling behavior in
walk has an average drift of,= — 8,|, which exceeds the the low- and high-temperature phases is generally attributed
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FIG. 6. Scaling plot of the probability distributioR(In my) of
FIG. 5. Scaling plot of the surface magnetization in the canonithe syrface magnetization in the canonical enserftole and the
cal ensemblétop) and the microcanonicgbottom ensemble. Both  mijcrocanonical(bottom ensemble. Both data are for the uniform
data are for the binary distributiofwith A=0.1 averaged over (gjstribution averaged over 500 000 samples.
100 000 samplgsNote that in the microcanonical ensemble scaling
with &L is expected to hold fo6>0, butnotfor §<0, cf. Eq.(5.3. -
the canonical ensemblp(y) approaches a constant fgr
to the presence of a dangereous irrelevant scaling variable; 0 . Whereas for the microcanonical ensemble in Fig. 5
see Ref. 25. In Fig. 5 we show the scaling plots for the(bottom the scaling functions shows a power-law depen-
surface magnetization in the two ensembles obtained numerflence
cally by evaluating Eq(2.10 for the binary distribution.
Note that we expect similar results to hold for end-to-end
correlations[ (oo} )]ay, With the exponenks replaced by
2X (cf. Sec. ). ) )
Another reason for the difference in the scaling behavioMith a positveexponenta. For the average then follows
for >0 measured in the two ensembles is the fact that
several physical quantities, among those the surface magne-
tization, isnot self-averagingat the critical point. To illus- [me] :if dmp(In mg//L)
. . . ™ slav S
trate this property in Fig. 6 we have plotted the probability JL
distribution of the surface magnetization in the two ensem-
les. Both scale, as expected, as

p(y)~(—y)® for y—0_ (5.6

1
~= dm(|In mg/yL)2ecL=+a2 (57

JL

1[Inmg
P, (In my)= p(—) (5.9
: ° JL JL As we said abova=0 for the canonical ensemble, resulting
_ _ ~ ~in [mg]a 1/yL, anda=1 fits the data reasonably well in
the asymptotic form of the scaling functignfor the canoni-  case of the microcanonical ensemble, resulting] rim],,

cal ensemble was determined analyticlfgr particular dis- 1/ .
tributions of the fields and/or couplings it can even be calcu- Based on our observation on the surface magnetization we
lated exactly”® assume that for other non-self-averaging quantities the cor-

The average is determined by the rare events having gsponding critical behavior could be anomalous in the mi-
magnetization of ordeD(1), i.e., by the asymptotic behav- crocanonical ensemble. In the rest of the paper we restrict
ior of p(y) for y—0. From Fig. 5(top) we conclude that for ourselves to the canonical ensemble.
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B. Profiles of observables 2 3

A real system is always geometrically constrained and s
due to modified surface couplings its properties in the sur-
face region are generally different from those in the bulk. &

Close to the critical point this surface region, which has a = o
characteristic size of the correlation length, intrudes far into & I W  L=128
D

* i -0.1914
0.96"sin(mx cos(mx
(nx) ()

a
L=16 o
L=32 +

X

the system. At the very critical point the appropriate way to
describe the position-dependent physical quantities is to use
density profiles rather than bulk and surface observables. For s At
a number of universality classes much is known about the
spatially inhomogeneous behavior, in particular in two di-

mensions, where conformal invariance provides a powerful 2 s s s .
tool to study various geometriés. 0 0.2 0.4 0.6 0.8 1
In a critical system confined between two parallel plates, (@) /L
which are at a large, but finite distanteapart, the local 5 : : :
densities®(r) s_uch as the_z order parame'(magnetizatioh 0.97 * sin(nx/2)% / sin(rx)® 1%’
or energy density vary with the distantdrom one of the L=8 =
plates as a smooth function biL. According to the scaling . 15+ t: ;S :
theory by Fisher and de Genfigs . L=64 x
= L =128 s oF
((1)ap=L **Fap(I/L), 58 £ 1} =
wherexg is the bulk scaling dimension of the operatbr R .
while ab denotes the boundary conditions at the two plates. <u 05
In a d-dimensional system the scaling function in E§.8) '
has the asymptotic behavior:
Ak ! %0 o0z 04 06 06 1
Fap(l/L)=A] 1+ Bab(t) + E<1. (5.9 b) ' YIS '

Here the amplitude of the first correction term is universal, FIG. 7. Scaling plots of the magnetization profiles for nonsym-
the corresponding exponent is jugt=d the surface scaling metric boundary conditionsl (=1—0.5). Top: plus-minus £ —)
dimension of®. bc, the broken line is a fit to the for®.10 and(5.12 with A as a

In two dimensions conformal invariance gives further pre_ﬁt parameter. Bottom: free-fixe@-ﬁ-) bc., the broken line is a fit to
dictions on the profile: the form(5.10 and(5.11) with A as a fit parameter.

avoiding the contribution of regular terms. With symmetric
boundary conditions one obtains for the prdfile

(®(1))ap=

L [ |~ *e
;sin WE} Gab(lll—): (5.1@
where the scaling functio®,,(1/L) depends on the univer-
sality class of the model and on the type of the boundary X
condition. With symmetric boundary conditions the scaling <q)|q’(|)|0>°‘([)
function is constanG,,= A. For conformally invariant, non-

symmetric boundary conditions the scaling function has beefhich involves both the bulk and surface scaling dimensions.
predicted for several models. For the Ising model the mag- e numerically calculated average diagonal and off-
netization profiles with free-fixedf(+) and(+—) boundary  giagonal magnetization profilésee Sec. )l for the RTIM
conditions are predicted as are presented in Figs. 7 and 8 for the uniform distribution
Ref. 30 some data for the binary distribution have been pre-

¢ | X~ X
sin T , (5.13

S
G, =Alsin ll Xm7 (5.11) sented. Here we do not_ USE,, andxfn as fit para_meters, but
2L fix them to the theoretically predicted values in E¢k.4),
and (3.3). The only fit parameter is the nonuniversal prefador
which is found remarkably constant for the different bound-
l ary conditions. As one can see on Fig. 7 the data for different
G4-=Acos—, (5.12  lengthL collapses to scaling curves, which are very well

described by the scaling functions predicted by conformal

respectively. invariance. Thus we can conclude that not only the scaling
In two dimensions conformal invariance can also be usegrediction by Fisher and de GenAgin Eq. (5.9) is very

to predict the critical off-diagonal matrix-element profiles well satisfied for the RTIM, but the corrections to the appro-
(®|P(1)|0), where (®| denotes the lowest excited state priate conformal results are also very small, practically neg-
leading to a nonvanishing matrix elemdisiee Eq.(2.4)]. ligible. This is an unexpected result, since the RTIM is not
These off-diagonal profiles give information about the sur-conformally invariant, due to anisotropic scaling at the criti-
face and bulk critical behavior via finite-size scaling, while cal point Eq.(1.6).
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TABLE I. Numerical estimates for the bulk magnetization ex-
ponentx,,(L) for the binary distribution for various values af
5 Xm(L)
- L A=2 A=3 A=4
E_l 6 0.127071 0.162136 0.181770
5_' 8 0.142310 0.161044 0.169656
3, 10 0.157063 0.179177 0.189815
12 0.167197 0.195090 0.207268
14 0.173605 0.197072 0.206820
16 0.176458 0.196602 0.204265
08 02 o4 o6 os y 18 0.178444 0.195288 0.201673
(a) ' /e ' 20 0.179836 0.194391 0.199992
22 0.181044 0.194279 0.199270
1r —— 24 0.182175
08t
& Therefore we consider dynamical correlations on the same
S o6t 0.98"sin(x) 0570191 s_pin, which has a simpler gsymptot_ic behavior. First we con-
E LL =1g ; sider the bulk autocorrelation function
g‘_, 041 t:gi x G(1)=[{o(T) o) lav (5.19
0o | and recapitulate the scaling argument in Ref. 31.
The autocorrelation function, like thigocal) magnetiza-
0 . . . . tion, is not self-averaging at the critical point: its average
0 0.2 0.4 0.6 0.8 1 value is determined by theare eventswhich occur with a
(b) /L probability P, , andP, vanishes in the thermodynamic limit.

_ o _ In the random quantum systems the disorder is strictly cor-
FIG. 8. Top: scaling plot of the magnetization profile for sym- re|ated along the time axis, consequently in the rare events
metric (here: fixed boundary .condltlons..The broken line is a fit to with a local order, i.e., with a finite magnetization also the
t?ﬁf{;rrf(fﬁi%gjﬂfaa:f‘ W'ih_ A ?s a f'tt p?{gfpeteg B(;trt]on;: trl‘(e autocorrelations are nonvanishing. Under a scaling transfor-
P gonal mafrix element with free be. The broken mation, when lengths are rescaled &s /b, with b>1 the

line is a fit to the f 5.13. - Z .
ine is a fit to the form(5.13 probability of the rare events transforms Rs=b™*m, like

To close this section we present numerical results for thd&h€ local magnetization. As we said above the same s true
bulk magnetization scaling dimensiog, and compare it [0 the autocorrelation function
with Fisher's perhaps most str!king prediction in E(_CI|.4). G(In H=b~*G(In #/b"¥?) =0, (5.16
Here we have made effort to increase the numerical accu-
racy, therefore we worked with the binary distribution in Eq. where we have made use of the relation between relevant
(1.7) on chains with both ends fixed with length<24 and timet, and length¢ at the critical point in Eq(1.6). Taking
performed theexact averagef the local magnetization on now the length scale as=(In 7)?> we obtain
the central spin. From the finite-lattice magnetizations, which
scales agm(L,0)],,~L *m we have determinea,, by a

two-point fit, comparing systems with sizés and L—2.  pqr syrface spins in Eq$5.16), (5.17) the surface magneti-
From the finite-size exponents, presented in Table INor .+, scaling dimensior®, appears
m :

:_2' 3’, and 4 o.ne concludes that they are in agreement with Fig. 9 we present the numerical results for the critical
Fisher's result:xn=(3— \5)/4=0.191. Unfortunately the ik autocorrelation function obtained via evaluating the
numerical data in Table | show log-periodic oscillations, ptaffian Eq.(2.24. Note that we have chosénto be odd, so

which are a consequence of the energy scale introduced B4t | /2 denotes the central spin, representing the bulk be-
the binary distribution. Therefore one cannot use the accuratg,vior in a system with free bc. A plot @(r)~¥2m, with

squence—extrapolation methods to a_nalyzg the Iimiting bexm as in Eq.(5.14, versus Inr (or 7 on a logarithmic scale
havior of the series. Instead, from a simple linear fit one cary,id yield a straight line in the infinite system size limit
obtain the estimate according to Eq(5.17. As can be seen in Fig. 9 the data
agree well with this prediction. For the surface autocorrela-
tions G,(7)=[{o}(7)0o})]ay, evaluated according to Eq.
(2.21), which is much less involved than the computation of
a Pfaffian, a similar plot with the bulk magnetization expo-
C. Dynamical correlations nentx,, replaced by the surface magnetization exponent

The general time- and position-dependent correlations i9/vesS also an Excellent agreement with the prediction
Eq. (2.23 have a complicated structure at the critical point. G,(In ~(In 7)~%m,

G(7)~(In 7)~2m §=0. (5.17

Xm=0.190+0.003, (5.19

improving the accuracy of previous MC estimatés.
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nentially). For large systems the gap distribution is given by
Eq. (4.7) and with this the average autocorrelation function is
given by

G(7)~ fOOOP(e)eX[X —r€)de~ 7 129, (6.2)

[G() ]-1/2>(|.n

In a finite system of sizé& for long enough time, such that
7149 the decay in Eq(6.1) will change to aG(7)
~1/7 form, which is characteristic for isolated spins. It
means that in the above limit the system can be considered as
an effective single spin.
o1 1 1'0 160 10'00 10600 100'000 In the following we present a simple scaling theory which
| s explains the form of the asymptotic decay in E6.1). Here
in the Griffiths-McCoy phase we modify the scaling relation
FIG. 9. Bulk spin-spin autocorrelation functi@(7) Eq.(5.19  in Eq. (5.16 by two respects. First, the scaling combination
fpr v_arious system sizgand t_he uniform distribution The straight g changed tor/b? since the dynamical exponertsd) is
line is the prediction according to E¢5.17). finite in the off-critical region. Second, theare events
which are responsible for the Griffiths-McCoy singularities
To complete the results on critical dynamics we mentionare now samples with very low-energy gaps and their num-
the scaling behavior of the autocorrelation functionber is practically independent of the size of the system. Con-
[{(of(7)of)]a. We mention thatsf represents one part of sequently the rescaling prefactoris® and the scaling rela-
the local energy operator, the other part of which—tion is given by
alaf, ,—is related to it through duality. As shown in Ref. 31 .
this quantity at the critical point can be characterized by a G(7,1L)=b""G(7/b*b/L) &#0, 6.2

power-law asymptotic decay with novel critical exponents,,here the inverse size of the systerh 1¢ also included as a
which are different in the bulk and at the surface of the

scaling field. Now takingy= ' we obtain
system.
G(rAL)=7 G (L) §+0, (6.3
V1. OFF-CRITICAL PROPERTIES thus in the thermodynamic limit we recover the power-law

A surprising property of random quantum systems is thedecay in Eq.(6.1). The scaling functiorG(y) in Eq. (6.3
existence of Griffiths-McCoy singularities in the paramag-should behave a&(y)~y*~Z for largey, in this way one
netic side of the critical point. In the corresponding Griffiths- recovers the limiting % decay, as argued below E¢.1).
McCoy region the autocorrelation function decays as arhen the finite-size scaling behavior of the autocorrelation
power G(7)~ 7~ Y49 where the dynamical exponents)  function is of the form ofL? %, and after integrating
characterizes also the distribution of low-energy excitationsg(r,1/L) by 7 the same scaling behavior will appear in the
in Eqg. (4.7). As a consequence, the free energy is a nonandecal susceptibility:
lytic function of the magnetic field and the susceptibility
diverges in the whole region. xi(L)~L*" L, s#0. (6.4

According to the phenomenological thebtyin the
Griffiths-McCoy region the singularities of all physical quan-

. . . : B. Numerical calculation of the dynamical exponent
tities are entirely characterized by the dynamical exponent

z(8). Numerical calculatior$*? give support to this as- The phenomenological description of the Griffiths phase
sumption, although there are discrepancies between the vaiuggests that all Griffiths-McCoy singularities emerging in
ues ofz( ) obtained from different quantities. temperature, energy, time- or frequency-dependent quantities

Here we extend previous investigations in several reshould be parametrizable by a single dynamical expontent
spects. First, we consider also the surface properties, such &sd)- In this subsection we present the results on our numeri-
the surface autocorrelation function and the surface suscefal estimates foz(5) resulting from the calculation of the
tibility. Second, we investigate also tferromagnetic sidef  following quantities:
the critical point. In the 'neighborhood of the cr_itical point 0) distribution of low-energy excitations,

Fishef has already obtained some RG results in the ferro i) autocorrelation function on bulk and surface spins,
magnetic phase. Here we are going to check these resulim) distribution of surface susceptibilities.

numerically and to extend them for finit®<0.
The distribution functions for the energy gaps have already
been presented in Sec. IV. The same quantity for the surface
susceptibility in Eq.(2.20 has a similar form as the inverse

As already shown in Sec. IV the dynamical expor#) gap, as seen in Fig. 10. The only difference that for the
is conveniently measured from the probability distribution of susceptibility the matrix element in the denominator of Eq.
the energy gayin the ferromagnetic phase one considers thg2.20 select one special position of the SCD. As a conse-
second gap in a finite system, which does not vanish expaguence the corresponding probability distribution hasLno

A. Phenomenological scaling considerations
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FIG. 10. Integrated probability distribution of the zero-
frequency surface susceptibility for different system sizes in the
disordered phase &t=2.0. Note thatz(h), as determined from the .
slope of the straight line, turns out to be within the error margin of T‘.“

z(h) determined via the gap distributideee Fig. 2. S

N

3
dependence, as already discussed in Ref. 11 and can also be2
seen by comparing Eq&t.6) with (6.4). Thez(5) exponents ‘c’j\n
calculated from the surface susceptibility distribution agree ©
well with those obtained from the gap distribution. -

The average autocorrelation function is measured at two 0.01 %ﬁ
sites of the chain: on the central spin, giving an estimate for SE , , , , 5,
the bulk correlation function and on the surface spin. The 0.1 1 10 100 1000 10000
average bulk autocorrelation functions are drawn on a log- (b) T

log plot in Fig. 11 for several values @t>0. One can easily _ Ly «
notice an extended region of the curves, which are well ap- /G- 11. The bulk autocorrelation functi§ior ;(7) 7 5(0)) Jav
proximated by straight lines, the slope of which is connected 'Mmaginary time in the disordered phase1), calculated at a
- . central spini=L/2 with Eq. (2.23 via the Pfaffian method pre-
to the dynamical exponent through E§.1). Similar behav- . o i
. - sented in Sec. Il. The straight lines are fits to the expected power-
ior can be seen in Fig. 12, where the average surface autg- —1iz(h
; . ) L 99° Paw decayr— 1M
correlation functions are drawn. Our investigation on the dy-
namical exponent is completed by studying ttennected ] )
surface autocorrelation function in the ferromagnetic phase. Using the correspondence between the surface magnetiza-
As seen in Fig. 13 the scaling form in E¢.1) is well ~ tion and the adsorbing walks we have identified strongly
satisfied for this function, too. coupled domains in the system, where the couplings have a
The behavior of the dynamica| exponents calculated b}ﬁUrViVing walk Character, and estimated the distribution of
different methods are summarized in Fig. 14. First we notdOW-energy excitations both in the critical and off-critical
that the numerical estimates are very close to each other. THggions. This provides a comprehensive explanation of the
only exception is the data obtained from the bulk autocorremicroscopic origin of the Griffiths-McCoy singularities. It
lations. To explain the possible origin of this discrepancy wefurns out that most of the astonishing features of the critical
turn to Sec. VII. Thez(5) values well satisfy the two theo- 2aS Well as the off-criticalGriffiths-McCoy) properties can be
retical limits: lim;_..z(8)=1 and limy_o=1/26% Fur- simply explained via random-walk analogies. However, one
thermore the dynamical exponents show the duality relationPrediction by Fishef,namely, the exact value of the bulk
2(8)=2(-9). magnetization exponerng and its surprising relation to the
golden mean, still lacks aimple explanation in terms of
VIl. DISCUSSION universal properties of random walks.
In the numerical part of our work we have treated rela-
In this paper the critical and off-critical properties of the tively large (L<128) finite systems. At the critical point we
random transverse-field Ising spin chain are studied by andrave calculated the magnetization profiles for different
lytical and numerical methods and by phenomenologicaboundary conditions, which are found to follow accurately
scaling theory. The previously known exddRG?2 and nu-  the conformal predictions, although the system is not confor-
merical results3*3-2about the model have been extendedmally invariant. We have also increased the numerical accu-
and completed here in several directions. The scaling behavacy in the calculation of the bulk magnetization scaling di-
ior of the surface magnetization is obtained through a mapmension. In the off-critical regions we have determined the
ping to an adsorbing random walk and the critical exponentslynamical exponerz(s) from different physical quantities.
Bs, v, andx;, are calculated exactly. We have also shownThe obtained results give support to the scaling prediction
that the scaling behavior in the microcanonical ensemble ithat the Griffiths-McCoy singularities are characterized by
anomalous. the single parameter( 5). Here we note that the numerical
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(a) 18] = [In h|/2
Te FIG. 14. Summary of all estimates of the dynamical exponent
z(h) as a function of the distance from the critical poiat
=|In h|/2. The open circles are the estimates from the gap distribu-
z tion, as exemplified in Fig. 2, open triangles: surface susceptibility
N 0.1¢ distribution (cf. Fig. 10, full circles: surface autocorrelation func-
9‘_ tion (cf. Fig. 12, crosses: surface autocorrelation function in the
,.8 ordered phaséf. Fig. 13, open squares: bulk autocorrelation func-
‘é’- tion (cf. Fig. 11). Note that whereas all former estimates agree
A 0.01 ¢ within the error marginwhich is roughly the size of the symbols
the latter estimate, namely the one obtained via the bulk autocorre-
lation function, differs significantly from all others.
0.001 ) ' : ' : logarithmi rrections between the dynamical exponent
0.1 1 10 100 1000 10000 oga c corrections between the dynamical exponents.
(b) 1 This fact can then explain the differences in the finite-size

data. We have numerically studied the Griffiths-McCoy sin-
FIG. 12. The surface autocorrelation functigw’i(7)0%(0))]lay  gularities in the ferromagnetic phase, too. In this region the

in imaginary time in the disordered phaseX1), calculated via gecond gap of the Hamiltonian and tbennectedautocorre-
Eq. (2-2]2/- he straight lines are fits to the expected power-law|ation function scale with the dynamical exponent, which,
decayr . according to numerical results, satisfies the duality relation.

data show systematic differences, whg®) is calculated
from bulk or from surface quantities. A similar observation

has been made in Ref. 12, t0o. The possible origin of the ¢ s work has been supported by the Hungarian National
discrepancies is, that the SCD’s, which are responsible foRasearch Fund under Grants Nos. OTKA TO12830, OTKA
the Griffiths-McCoy singularities, have different environ- T0O23642, OTKA TO17485, and OTKA TO15786, and by
ments at the surface and in the volume of the system. Thefye Ministery of Education under Grant No. FKFP 0765/
from the argument leading to Eq¢.5), (4.6) one can obtain 1997 We are indebted to L. Turban for a critical reading of
the manuscript. Useful discussions with T. Nieuwenhuizen,
F. Pazmandi, G. Zimanyi, and A. P. Young are gratefully
acknowledged. H.R.’s work was supported by the Deutsche
ForschungsgemeinschafbFG) and he thanks the Aspen
Center for Physics, the International Center of Theoretical
Physics in Trieste, and the Research Institute for Solid State
Physics, Budapest, where part of this work has been com-
pleted, for kind hospitality.
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APPENDIX: ADSORBING RANDOM WALKS

Here we summarize the basic properties of one-
s . . . . dimensional random walks in the presence of an adsorbing
0.1 1 10 100 1000 10000 wall. For simplicity, first we consider a walker, which makes
T steps of unit lengths with probabilitigsandgq=1—p to the
FIG. 13. The connected part of the surface autocorrelation funcPOSitive and to the negative directions, respectively. Starting
tion [({((7)oX(0))]a=[(%(7)0%(0))—m?]y in imaginary at a distances>0 from an adsorbing wall we are interested
time in the ordered phaséh€1), calculated via Eq(2.21), but N the surviving probabilityPs,(Sy,L) afterL steps. Here
now substractind®,(1)|?. The straight lines are fits to the ex-
pected power-law decay 2", ow=9q—p (A1)

0.001 ¢

*
*
*
*
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measures the average drift of the walk in one step:&pr

<0 (6,>0) the walk has a drift toward@ff) the wall.

The probabilityW, (1), that the walker afteL steps is at
a position <L, can be easily obtained by the mirror

method®?

L!
W, (1) =p(L+DizgL=hr

[(L+D/2]'[(L—1)2]!
L!
_[(L+I)/2+s]![(L—|)/2_5]!)- (A2)

In the following we takes=1 and in the limitL>1, |>1 we
use the central limit theorem to write in the continuum ap-

proximationl —x andW,_(1)— P (x) as

O A G g
X)=—+ ——=exg —
- pL .\ 27Lo? 2L o2
with
x=(p—q)lL=—25,L, o?=4pq. (Ad)
The surviving probability is then given by
® 20?2 —
Psur\xéwJ—):JO PL(X)dX: pzTexq_y )
1y - _
X §+§\/;9XFW N1-D(—y)];,
(A5)
where
X Su\/ - A6
Y—\/ﬁ—— w\ 552 (AB)

and ®(z) = 2/\/m [ 3exp(—td)dt is the error functiorf®
In the following we evaluaté (S, ,L) in EQ. (A5) in
the different limits. In the symmetric casg,=0, p=1/2:

Peurd 8w=0.L)= ~L"2 (A7)

1
V8wl

11 419

Ew=—5- (A9)

Finally, for 8,<0, whenp<gq and the walk is drifted
from the wall the surviving probability has a finite limit:

Pl 8w <0L)=\/ 202_+\/ 20 v
, = \ exp — ——
suni mw pz'n'Ly p2aL Y 4y?
S 207
=—2y S— exp(—L/&y)énlL,
p pcmL

(A10)

which is approached exponentially.
The size oftransverse fluctuationsf the adsorbing walk
is given by

(S L) = f:PL<x>xdx/Pswmw,L>, (A11)

where

2

e 20 — y_ N — —
= ERVAY AN 2 2
Jo P (x)xdx p\/; exp—y ){2+ 7 (2y“+1)expy9)

><[1—q>(—y_)]]. (A12)
In the symmetric limits,,=0:
ly(8,=0L)=8mL~LY2 (A13)

For 6,>0 the transverse fluctuations in leading order are
independent of:

207
Itl‘( 5W>O!L): 5_1

w

(A14)

while for 6,<0, when there is a drift of the walk from the
wall the transverse fluctuations grow linearly with
l(Sw<OL)=d,L. (A15)

The maximal value of the transverse fluctuatioff§{s, L)

For 8,,>0, whenp<q and the walk has a drift towards the for 6<0 are in the same order of magnitude as their average
wall the surviving probability has an exponential decay asvalues in Egs(A13) and(A15). However for6>0 the maxi-

y— e

[ 242 — 1
Psund 64,>0,L) = pzﬂ_Lqu_y )4_y—2

~L Y2exp( —L/&,) &L, (A8)

with a correlation length

mal value is generally larger than the average one in Eq.
(A14). In this casel®{(8,>0L) is determined by aare
event in which a large fluctuation of positive steps is fol-
lowed by a drift process towards the average behavior. If the
number of steps in the drift processd4., where O<a<1,
then

1M 5,>0L)=aLs,. (A16)
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