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Application of a minimum-cost flow algorithm to the three-dimensional gauge-glass model
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We study the three-dimensional gauge glass model in the limit of strong screening by using a minimum-cost
flow algorithm, enabling us to obtaixactground states for systems of linear slze 48. By calculating the
domain-wall energy, we obtain the stiffness exponést—0.95+0.03, indicating the absence of a finite
temperature phase transition, and the thermal exponert.05+0.03. We discuss the sensitivity of the
ground state with respect to small perturbations of the disorder and determine the overlap length, which is
characterized by the chaos exponént3.9+0.2, implying strong chao$S0163-18208)51138-1

In high-temperature superconductors, which are strongly Most of the theoretical work so far has concentrated on
type Il, disorder plays an important role as a pinning mechaestablishing numerically the lower critical dimension of the
nism for vortices. Without disorder, as has been suggested hyauge glass model, both with and without screening of the
Abrikosov within mean-field theory, flux lines form a trian- interactions between vortices. Without screening, there is no
gular lattice. However, under the influence of an externafinite temperature transition to a vortex glass phase in two
current perpendicular to the field, the vortices will move gimensions~-® whereas in three dimensions there is evidence
since they experience a Lorentz force, and thus energy igy a finite T, as has been found by domain wall renormal-
dissipated destroying the superconducting state. It has begfyiion group analyse¢DWRG)"® and finite temperature

suggestetf that disorder in the form of point defects may \1onte Carlo simulation&2 though due to limited system
pin t_he vortices at random positions leading to a SUPETCONgi7 a5 and insufficient statistics the earlier DWRG stutfiés
ducting vortex glass _phase, where the phas_e of t_he_ Ord%rould not fully rule out that the lower critical dimension is
parameter is random in space, but frozen in time, similar tg -
: exactlyd=3.
spin glasses. Sufficiently close to the critical point ing effect
A simplified model commonly used to study the vortex utliciently close 1o ne critical point, screening efiects
glass is the gauge glass, which is believed to be in the sa come important, since the_ correlation lengtiuliverges
universality class and contains the necessary prerequisite@,Ore strongly than the screening lengtiand the two length
disorder and frustration, for glassy behavior. Within thisScales eventually become comparablhe effect of screen-
model, one neglects fluctuations in the amplitude of the ordeid Was investigated in Ref. 5 by a DWRG study and more
parameter and only considers the phase of the condensat&cently in Ref. 11 by means of a finite temperature Monte
The Hamiltonian is given by Carlo simulation, and the results indicate that screening is a
relevant perturbation, destroying the finite temperature tran-
1 1 ) sition in three dimensions, though the DWRG analysis could
H= _JGZ> coddi—d—Aj =N aj) T35 % (Vxa)s, only be performed for rather small system sizes<(4).
! (1) In the present paper we reinvestigate the gauge glass
model in the limit of strong screening by performing a
where ¢; is the phase of the order parameter on sigmdJ  DWRG analysis usingxactground states, which we obtain
is the interaction strength, henceforth seftel. The sumis via a minimum cost flow algorithm from combinatorial op-
over all pairs(i,j) of nearest neighbors on a simple cubic timization. This algorithm allows us to study systems with
lattice of sizeN=L3>. The quenched random vector poten-linear size up td. =48, which is considerably larger than the
tials A;; are drawn uniformly from the intervd0,27] and  system sizes in the previous studidsIn addition, we study
represent the effect of disorder and an external magnetithe sensitivity of the ground state configurations with respect
field. Screening of the interactions between vortices is incorto small parameter changes, thereby obtainingctieosex-
porated by the fluctuating vector potentia@g which are  ponent.
integrated over from—« to « under the gauge constraint  We make use of the vortex representation of the gauge
V-a=0, and\j denotes the screening length. The lim§  glass model, which is obtained from the Hamiltonian in Eq.
—0 corresponds to strong screening, whermggs:« is the (1) by making the Villain approximatiof?—**which replaces
limiting case without screening. The last term describes théhe exponentiated cosine term in the partition function by a
magnetic energy, and is the sum over all plaquettes of theum of periodic Gaussians, and then integrating out the spin
lattice, where the curl is given as the directed sum ofafje wave degrees of freedom. Thereby one obtains the vortex
around one plaquette. Hamiltoniar?
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1 o idea is to study the energyE necessary to flip a cluster on
Hy=-3 IE] (Ji=b)G(i—])(J;—hy), (2)  length scald_. For long length scalek, one expects that

defined on thedual lattice, which again is a simple cubic AE~LY, (6

lattice. TheJ; are three-component integer variables runningynere g is the stiffness exponent. The sign @how deter-
from —oo to o living on the links of the dual lattice and mines whether there is a finite temperature phase transition.
satisfy the divergence constrairf (J);=0 on every sitd.  |f g is positive, then the domain wall energy is increasing
The b; are magnetic fields which are constructed from thewith cluster size, and one concludes that the ground state is
quenched vector potentiafs; by a lattice curl, i.e., one ob- stable with respect to thermal fluctuations. Correspondingly,
tainsb; as 1(2m) times the directed sum of the vector poten-if ¢ is negative, the argument is that the ground state is
tials on the plaquette surrounding the link on the dual |attiCQJn5tab|e, since |arge cluster can be f||pped by arbitrar”y
b; lives on. By definition, the magnetic fields satisfy the di- small energy. Thus in this case, the transition temperature is
vergence free conditionV(- b);=0 on every site, since they zero.
stem from a lattice curl. The vortex interaction is given by  The usual way to determine the defect or domain wall
the lattice Green’s function energy is to measure the energy difference between ground
(22 1—exfik-(r—r )] states obtained for_periodic and antiperiodic bounc_JIary con-
G(i,j)=d— E 5 ! —. (3 qmons (bo), respectively. _For the model under consm!eratlon
L® 7o 22,_4[1—cogkp,)]+ X, in the vortex representatiof#), however, one has to incor-
orate a boundary term to mimic the effect of a change in
c3® This boundary term is rather inconvenient to imple-
ment in the minimum-cost flow algorithm we are using, so
we propose an alternative method to induce a domain wall or
elementary excitation. Note that the vortex Hamiltonian in
Eq. (4) with periodic bc and without the additional boundary
term corresponds to fluctuating boundary conditions in the
1 gauge glass modéf:??
HV:E E (J;—b;)2. (4) In the gauge glass one changes from periodic to antiperi-
' odic bc by addingr/L to the vector potentials in one spatial
We remark thaH,, is not trivial due to the divergence con- direction, e.g. Aj—Ajj+m/L. Such a shift of the vector
dition (V- J);=0. potential, however, has no effect on the Hamiltonian in the
Finding the ground state of the Hamiltonian in Hg)  VOrtex representationd), since the magnetic fields; are
subject to the constraintV(-J);=0 can be interpreted as a constructed from the vector potential by a lattice curl and
minimum-cost flow problein the language of combinatorial thus remain unchanged. Only the argument of the boundary

optimization. From this point of view, the problem can be t€rm changes, which can be compensated by forming one or
restated as several vortex loops with total arealL?/2. From this obser-

vation we derive our basic idea: First we consider the vortex
o Hamiltonian Eq.(4) with periodic bc and calculate the exact
Minimize Z(J):Ei ci(J) (3 ground state configuratiofd®}. The energyEq({J°}) of this
state is obtained viély, in Eq. (4). We then determine the
subject to the constrain¥(- J); =0, where the cost functions global flux f of this configuration in one spatial direction,
¢i(J3))=(J;—b;)?/2 have been defined. e.g., in thex direction
The algorithm we shall use is thseiccessive shortest path
algorithm**~1which solves the problem in polynomial time 1 «
in this specific case. For the implementation we made use of fx_[ Z I
the LEDA (Library of efficient data types and algorithjns
programming library® We were able to obtaiexactground ~ wheref, can be interpreted as a total winding number. Next,
states for system sizes uplte=48 on ordinary workstations. We gradually decrease all costs for a flow increment inxthe
The computation time increases approximately wifh and  direction [given by ci(Ji+1)—Cix(J;)] simultaneously,
one instance fot. =48 took about 2.5 hours Computer time which makes glObal flux in this direction energetically more
on a Sun Ultra2167 MH2) workstation. We remark that a favorable, whereas the costs for all topologically simply con-
similar algorithm has already been used to calculate grouniected loopsthose with winding number zero around the 3
states of the solid-on-solid model for a surface on a disortorus remain unchanged. We reduce the costs until we ob-
dered substrate, which also can be mapped on a minimurain a configuratio{J'} with global flux f,+ 1, which is an
cost flow problent’ elementary low energy excitation with length scéle We
We now present our results. First we address the questioplculate the energ, of this configuration again witl,
if the gauge glass model in the limit of strong screeningin Eg. (4) with the original cost functions in Ed5) [i.e.,
shows a finite temperature transition as presumably is th&,==,c;(J1)]. The domain wall energy is then given by
case without screening, i.e., we investigate the stability of th\E=E;—E,, which is always positive since the new state
ground state with respect to thermal fluctuations. We makégJ*} with flux f,+1 corresponds to an excited state.
use of the concept of domain wall renormalization, which In a small fraction &5%) of the samples, the flux
has been applied to spin glasses in the same cott@tte  changes discontinuously by more than one unit upon slowly

In the case we are interested in, the strong screening lim
No—0, G(i—]j) reduces toG(0)=0 for i=j and G(i,j)
=J(27\g)? for i #j with exponentially small correctiorfg.
Thus if we subtracd(2m\)? from the interaction and mea-
sure the energy in units af(27\,)?, one obtains the sim-
pler Hamiltonian
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FIG. 1. The domain wall energyAE],, in a log-log plot. The FIG. 2. Scaling plot of the overlap functioB s(L). The data

straight line is a fit td AE],,~L? with 6=—0.95-0.03. This im-  scale nicely with the scaling variables*. The chaos exponent is
plies a thermal exponent ef=1.05+0.03. The disorder average is given by/=3.9+0.2. The system sizes studied range fiom4 to
over 500 samples fdc =48, 1500 samples fdr=32, and for the L =32, where 5000 samples have been used Lfsr20, 2000
smaller sizes several thousand samples have been used. samples fol. =24 and 500 samples fdr=32.

decreasing the costs as described above. However, the resitor length scales larger than the overlap length, the domain
ing configuration still represents an elementary excitation oktructure changes. For spin glasses, the overlap length is
length scaleL and we can also use this configuration for given by°
calculating the energy.
We note that it is easy to see that in the vortexVillain) Yy ) R
representation of the pure classical three-dimensiofel L*~s& % with (=50, (10
model which is given b3H=EiJi2, the elementary low en-
ergy excitation is indeed given by a configuration with onewhere the result is obtained by equating the energy of a
additional flux line of lengt. winding once around the8  droplet excitationL? and the energy change caused by the
torus. The energy difference between the ground sthte ( perturbation which is proportional to%, whered; is the
=0) and the excited statef(=1) then simply iSAE~L, fractal dimension of the droplets.
which corresponds to the energy of a spin wave excitation To pursue a similar investigation in the gauge glass model
with minimum wave vector in the® XY model in the phase Wwe study the resulting changes in the ground state configu-
representation. ration when the random vector potentidg are perturbed
Figure 1 shows the domain wall eneryE vs L for L by a small amount. To be specific, we define new vector
<48 in a double logarithmic plot. One observes a straighpotentials byA{;=A;;+€;;, where ¢;; is randomly drawn

line behavior which can be nicely fitted by from the interval — &, 8]. We calculate the ground state for
, both realizations of the disord¢A;;} and{A;}, and define
AE~L" with 6=-0.95-0.03. (8 the distanced between the resulting ground state configura-

Thus we reestablish thai, =0 for the gauge glass model tions {J} and{J'}- by
in the strong screening limit, as has been found in Refs. 5
and 11. From the stiffness exponahthe thermal exponent 05:2 (Ji—J'i)z, (1D
v, which describes the divergence of the correlation length, [

e T )
can be calculated. F(.)TC Oitis ¢&~T " and b_y equafung Note that for small values ob s(L) the ground states are
the thermal energy with the energy of a low lying excitation

more correlated than for larger values.

on the length scale of the correlation length, it follows that : .
To determine the chaos exponent, we perform a scaling

1 plot of the data for the overlap functidbs(L). Guided by

= To 9) Eq. (10), we attempt a scaling plot with the scaling variable
L 5, where( is the chaos exponent. Such a plot is shown in

From this relation we obtain=1.05+0.03, which agrees Fig. 2, and one observes that the data scale nicely with
well with a result from a finite temperature Monte Carlo {=3.9+0.2. This relatively large value af implies strong
simulation for the same model by Wengel and Yodhgho  chaos, since in the limit of a vanishing perturbatiés-0,
were able to study system sizés<12 and found a zero the overlap length, which is proportional & **, increases
temperature phase transition with=1.05+0.1. slowly. The value off=3.9+0.2 is considerably larger than

Next we want to discuss the issue afaosin the gauge for instance the one for the two-dimensional Ising spin glass,
glass model. From spin glasses it is known, that infinitesimawhere{=0.95+=0.05 has been obtainé4*
changes of parameters like the temperature or the couplings Chaos cannot only be observed with respect to perturba-
can have quite a dramatic effect on the ground state or equiions of the disorder, but also with respect to small tempera-
librium configuration'®?? 1t is argued that a so-called over- ture change&® For a continuous bond distribution and low
lap lengthL* exists, which is a measure for the length scaletemperatures, the overlap length is expetted behave as
up to which the domain structure essentially remains unif,~T 2 for T.=0. The other relevant length scale is the
changed after an infinitesimal perturbation of a parametercorrelation lengthé~6~", and for the 2 Ising spin glass
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with v~2 and 2{~2, the exponents characterizing the two this we can draw two conclusion&) since it is clearly nega-
length scale. , and ¢ appear to be equaf,?*so one might  tive, there is no superconducting glass ph@sevortex glass
speculate that they are related. However for the gauge glaghase at nonvanishing temperature, afil the thermal cor-
model we find 2{~0.5 andv~1, i.e., the divergence of the relation length diverges only witli—0 asé;,~ T~ " with an
thermal correlation length is much stronger. It would be in-exponenty~ 1.05+0.03, which is in agreement with Refs. 5
teresting to study chaos with respect to temperature changegd 11. Finally, we studied the effect of a small perturbation
in the gauge glass explicitly. of the disorder on the ground state domain structure and
Summarizing, we studied the strongly screened gauggyund that the overlap length is characterized by the chaos
glass model in the vortex representation. Using a polynomiaéxponenzzg_gi 0.2. This is a pretty large value implying a

time minimum-cost flow algorithm we could deal with much fast destruction of ground state correlations by thermal fluc-
larger system sizes than considered before in the literaturg,ations.

We calculated theexactground states and also configura-

tions with a(global) low energy excitation. In this way we We thank U. Blasum, Y. Dinitz, and A. P. Young for very
could perform a finite size scaling analysis of the so-callednspiring discussions. This work was supported by the
domain wall energy and obtained a pretty accurate estimatBeutsche Forschungsgemeinsch@®FG) and was per-
for the stiffness exponent, that i¥=—0.95+0.03. From formed within the Sonderforschungsbere{&FB) 341.
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