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Application of a minimum-cost flow algorithm to the three-dimensional gauge-glass model
with screening
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We study the three-dimensional gauge glass model in the limit of strong screening by using a minimum-cost
flow algorithm, enabling us to obtainexactground states for systems of linear sizeL<48. By calculating the
domain-wall energy, we obtain the stiffness exponentu520.9560.03, indicating the absence of a finite
temperature phase transition, and the thermal exponentn51.0560.03. We discuss the sensitivity of the
ground state with respect to small perturbations of the disorder and determine the overlap length, which is
characterized by the chaos exponentz53.960.2, implying strong chaos.@S0163-1829~98!51138-1#
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In high-temperature superconductors, which are stron
type II, disorder plays an important role as a pinning mec
nism for vortices. Without disorder, as has been suggeste
Abrikosov within mean-field theory, flux lines form a trian
gular lattice. However, under the influence of an exter
current perpendicular to the field, the vortices will mo
since they experience a Lorentz force, and thus energ
dissipated destroying the superconducting state. It has b
suggested1,2 that disorder in the form of point defects ma
pin the vortices at random positions leading to a superc
ducting vortex glass phase, where the phase of the o
parameter is random in space, but frozen in time, simila
spin glasses.

A simplified model commonly used to study the vort
glass is the gauge glass, which is believed to be in the s
universality class and contains the necessary prerequis
disorder and frustration, for glassy behavior. Within th
model, one neglects fluctuations in the amplitude of the or
parameter and only considers the phase of the conden
The Hamiltonian is given by

H52J(
^ i , j &

cos~f i2f j2Ai j 2l0
21ai j !1

1

2 (
h

~¹3a!2,

~1!

wheref i is the phase of the order parameter on sitei andJ
is the interaction strength, henceforth set toJ51. The sum is
over all pairs^ i , j & of nearest neighbors on a simple cub
lattice of sizeN5L3. The quenched random vector pote
tials Ai j are drawn uniformly from the interval@0,2p# and
represent the effect of disorder and an external magn
field. Screening of the interactions between vortices is inc
porated by the fluctuating vector potentialsai j which are
integrated over from2` to ` under the gauge constrain
¹•a50, andl0 denotes the screening length. The limitl0
→0 corresponds to strong screening, whereasl0→` is the
limiting case without screening. The last term describes
magnetic energy, and is the sum over all plaquettes of
lattice, where the curl is given as the directed sum of theai j
around one plaquette.
PRB 580163-1829/98/58~14!/8873~4!/$15.00
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Most of the theoretical work so far has concentrated
establishing numerically the lower critical dimension of t
gauge glass model, both with and without screening of
interactions between vortices. Without screening, there is
finite temperature transition to a vortex glass phase in
dimensions,3–6 whereas in three dimensions there is eviden
for a finite Tc , as has been found by domain wall renorm
ization group analyses~DWRG!7,8 and finite temperature
Monte Carlo simulations,9,10 though due to limited system
sizes and insufficient statistics the earlier DWRG studies4,5,7

could not fully rule out that the lower critical dimension
exactlyd53.

Sufficiently close to the critical point, screening effec
become important, since the correlation lengthj diverges
more strongly than the screening lengthl and the two length
scales eventually become comparable.5 The effect of screen-
ing was investigated in Ref. 5 by a DWRG study and mo
recently in Ref. 11 by means of a finite temperature Mo
Carlo simulation, and the results indicate that screening
relevant perturbation, destroying the finite temperature tr
sition in three dimensions, though the DWRG analysis co
only be performed for rather small system sizes (L<4).

In the present paper we reinvestigate the gauge g
model in the limit of strong screening by performing
DWRG analysis usingexactground states, which we obtai
via a minimum cost flow algorithm from combinatorial op
timization. This algorithm allows us to study systems w
linear size up toL548, which is considerably larger than th
system sizes in the previous studies.5,11 In addition, we study
the sensitivity of the ground state configurations with resp
to small parameter changes, thereby obtaining thechaosex-
ponent.

We make use of the vortex representation of the ga
glass model, which is obtained from the Hamiltonian in E
~1! by making the Villain approximation,12–14which replaces
the exponentiated cosine term in the partition function b
sum of periodic Gaussians, and then integrating out the s
wave degrees of freedom. Thereby one obtains the vo
Hamiltonian3
R8873 © 1998 The American Physical Society
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HV52
1

2 (
i , j

~Ji2bi !G~ i 2 j !~Jj2bj !, ~2!

defined on thedual lattice, which again is a simple cubi
lattice. TheJi are three-component integer variables runn
from 2` to ` living on the links of the dual lattice and
satisfy the divergence constraint (¹•J) i50 on every sitei .
The bi are magnetic fields which are constructed from
quenched vector potentialsAi j by a lattice curl, i.e., one ob
tainsbi as 1/~2p! times the directed sum of the vector pote
tials on the plaquette surrounding the link on the dual latt
bi lives on. By definition, the magnetic fields satisfy the d
vergence free condition (¹•b) i50 on every site, since the
stem from a lattice curl. The vortex interaction is given
the lattice Green’s function

G~ i , j !5J
~2p!2

L3 (
kÞ0

12exp@ ik•~r i2r j !#

2(n51
d @12cos~kn!#1l0

22 . ~3!

In the case we are interested in, the strong screening l
l0→0, G( i 2 j ) reduces toG(0)50 for i 5 j and G( i , j )
5J(2pl0)2 for iÞ j with exponentially small corrections.11

Thus if we subtractJ(2pl0)2 from the interaction and mea
sure the energy in units ofJ(2pl0)2, one obtains the sim
pler Hamiltonian

HV5
1

2 (
i

~Ji2bi !
2. ~4!

We remark thatHV is not trivial due to the divergence con
dition (¹•J) i50.

Finding the ground state of the Hamiltonian in Eq.~4!
subject to the constraint (¹•J) i50 can be interpreted as
minimum-cost flow problemin the language of combinatoria
optimization. From this point of view, the problem can
restated as

Minimize z~J!5(
i

ci~Ji ! ~5!

subject to the constraint (¹•J) i50, where the cost function
ci(Ji)5(Ji2bi)

2/2 have been defined.
The algorithm we shall use is thesuccessive shortest pat

algorithm,15–17which solves the problem in polynomial tim
in this specific case. For the implementation we made us
the LEDA ~Library of efficient data types and algorithm!
programming library.18 We were able to obtainexactground
states for system sizes up toL548 on ordinary workstations
The computation time increases approximately withN2, and
one instance forL548 took about 2.5 hours computer tim
on a Sun Ultra2~167 MHz! workstation. We remark that a
similar algorithm has already been used to calculate gro
states of the solid-on-solid model for a surface on a dis
dered substrate, which also can be mapped on a minim
cost flow problem.17

We now present our results. First we address the ques
if the gauge glass model in the limit of strong screen
shows a finite temperature transition as presumably is
case without screening, i.e., we investigate the stability of
ground state with respect to thermal fluctuations. We m
use of the concept of domain wall renormalization, whi
has been applied to spin glasses in the same context.19 The
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idea is to study the energyDE necessary to flip a cluster o
length scaleL. For long length scalesL, one expects that

DE;Lu, ~6!

whereu is the stiffness exponent. The sign ofu now deter-
mines whether there is a finite temperature phase transi
If u is positive, then the domain wall energy is increasi
with cluster size, and one concludes that the ground sta
stable with respect to thermal fluctuations. Correspondin
if u is negative, the argument is that the ground state
unstable, since large cluster can be flipped by arbitra
small energy. Thus in this case, the transition temperatur
zero.

The usual way to determine the defect or domain w
energy is to measure the energy difference between gro
states obtained for periodic and antiperiodic boundary c
ditions ~bc!, respectively. For the model under considerati
in the vortex representation~4!, however, one has to incor
porate a boundary term to mimic the effect of a change
bc.3,5 This boundary term is rather inconvenient to impl
ment in the minimum-cost flow algorithm we are using,
we propose an alternative method to induce a domain wa
elementary excitation. Note that the vortex Hamiltonian
Eq. ~4! with periodic bc and without the additional bounda
term corresponds to fluctuating boundary conditions in
gauge glass model.20,21

In the gauge glass one changes from periodic to antip
odic bc by addingp/L to the vector potentials in one spati
direction, e.g.,Ai j

x→Ai j
x 1p/L. Such a shift of the vector

potential, however, has no effect on the Hamiltonian in
vortex representation~4!, since the magnetic fieldsbi are
constructed from the vector potential by a lattice curl a
thus remain unchanged. Only the argument of the bound
term changes, which can be compensated by forming on
several vortex loops with total area3,5 L2/2. From this obser-
vation we derive our basic idea: First we consider the vor
Hamiltonian Eq.~4! with periodic bc and calculate the exa
ground state configuration$J0%. The energyE0($J0%) of this
state is obtained viaHV in Eq. ~4!. We then determine the
global flux f of this configuration in one spatial direction
e.g., in thex direction

f x5
1

L (
i

Ji
x , ~7!

wheref x can be interpreted as a total winding number. Ne
we gradually decrease all costs for a flow increment in thx
direction @given by cix(Ji11)2cix(Ji)] simultaneously,
which makes global flux in this direction energetically mo
favorable, whereas the costs for all topologically simply co
nected loops~those with winding number zero around the 3d
torus! remain unchanged. We reduce the costs until we
tain a configuration$J1% with global flux f x11, which is an
elementary low energy excitation with length scaleL. We
calculate the energyE1 of this configuration again withHV
in Eq. ~4! with the original cost functions in Eq.~5! @i.e.,
E15( ici(Ji

1)]. The domain wall energy is then given b
DE5E12E0 , which is always positive since the new sta
$J1% with flux f x11 corresponds to an excited state.

In a small fraction ('5%) of the samples, the flux
changes discontinuously by more than one unit upon slo
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decreasing the costs as described above. However, the re
ing configuration still represents an elementary excitation
length scaleL and we can also use this configuration f
calculating the energy.

We note that it is easy to see that in the vortex~or Villain!
representation of the pure classical three-dimensionalXY
model which is given byH5( iJi

2 , the elementary low en
ergy excitation is indeed given by a configuration with o
additional flux line of lengthL winding once around the 3d
torus. The energy difference between the ground statef x
50) and the excited state (f x51) then simply isDE;L,
which corresponds to the energy of a spin wave excita
with minimum wave vector in the 3d XY model in the phase
representation.

Figure 1 shows the domain wall energyDE vs L for L
<48 in a double logarithmic plot. One observes a strai
line behavior which can be nicely fitted by

DE;Lu with u520.9560.03. ~8!

Thus we reestablish thatTc50 for the gauge glass mode
in the strong screening limit, as has been found in Refs
and 11. From the stiffness exponentu the thermal exponen
n, which describes the divergence of the correlation leng
can be calculated. ForTc50 it is j;T2n and by equating
the thermal energy with the energy of a low lying excitati
on the length scale of the correlation length, it follows th

n5
1

uuu
. ~9!

From this relation we obtainn51.0560.03, which agrees
well with a result from a finite temperature Monte Car
simulation for the same model by Wengel and Young,11 who
were able to study system sizesL<12 and found a zero
temperature phase transition withn51.0560.1.

Next we want to discuss the issue ofchaosin the gauge
glass model. From spin glasses it is known, that infinitesim
changes of parameters like the temperature or the coup
can have quite a dramatic effect on the ground state or e
librium configuration.19,22 It is argued that a so-called ove
lap lengthL* exists, which is a measure for the length sca
up to which the domain structure essentially remains
changed after an infinitesimal perturbation of a parame

FIG. 1. The domain wall energy@DE#av in a log-log plot. The
straight line is a fit to@DE#av;Lu with u520.9560.03. This im-
plies a thermal exponent ofn51.0560.03. The disorder average
over 500 samples forL548, 1500 samples forL532, and for the
smaller sizes several thousand samples have been used.
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For length scales larger than the overlap length, the dom
structure changes. For spin glasses, the overlap lengt
given by19

L* ;d21/z with z5
ds

2
2u, ~10!

where the result is obtained by equating the energy o
droplet excitationLu and the energy change caused by t
perturbation which is proportional toLds/2, whereds is the
fractal dimension of the droplets.

To pursue a similar investigation in the gauge glass mo
we study the resulting changes in the ground state confi
ration when the random vector potentialsAi j are perturbed
by a small amount. To be specific, we define new vec
potentials byAi j8 5Ai j 1e i j , where e i j is randomly drawn
from the interval@2d,d#. We calculate the ground state fo
both realizations of the disorder$Ai j % and $Ai j8 %, and define
the distanceD between the resulting ground state configu
tions $J% and$J8% by

Dd5(
i

~Ji2J8 i !
2. ~11!

Note that for small values ofDd(L) the ground states ar
more correlated than for larger values.

To determine the chaos exponent, we perform a sca
plot of the data for the overlap functionDd(L). Guided by
Eq. ~10!, we attempt a scaling plot with the scaling variab
Ld1/z, wherez is the chaos exponent. Such a plot is shown
Fig. 2, and one observes that the data scale nicely w
z53.960.2. This relatively large value ofz implies strong
chaos, since in the limit of a vanishing perturbationd→0,
the overlap length, which is proportional tod21/z, increases
slowly. The value ofz53.960.2 is considerably larger tha
for instance the one for the two-dimensional Ising spin gla
wherez50.9560.05 has been obtained.22,23

Chaos cannot only be observed with respect to pertu
tions of the disorder, but also with respect to small tempe
ture changes.19 For a continuous bond distribution and lo
temperatures, the overlap length is expected19 to behave as
Lth* ;T22/z for Tc50. The other relevant length scale is th
correlation lengthj;d2n, and for the 2d Ising spin glass

FIG. 2. Scaling plot of the overlap functionDd(L). The data
scale nicely with the scaling variableLd1/z. The chaos exponent is
given byz53.960.2. The system sizes studied range fromL54 to
L532, where 5000 samples have been used forL<20, 2000
samples forL524 and 500 samples forL532.
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with n'2 and 2/z'2, the exponents characterizing the tw
length scalesLth* andj appear to be equal,22–24so one might
speculate that they are related. However for the gauge g
model we find 2/z'0.5 andn'1, i.e., the divergence of th
thermal correlation length is much stronger. It would be
teresting to study chaos with respect to temperature cha
in the gauge glass explicitly.

Summarizing, we studied the strongly screened ga
glass model in the vortex representation. Using a polynom
time minimum-cost flow algorithm we could deal with muc
larger system sizes than considered before in the literat
We calculated theexact ground states and also configur
tions with a~global! low energy excitation. In this way we
could perform a finite size scaling analysis of the so-cal
domain wall energy and obtained a pretty accurate estim
for the stiffness exponent, that is,u520.9560.03. From
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this we can draw two conclusions:~a! since it is clearly nega-
tive, there is no superconducting glass phase~or vortex glass
phase! at nonvanishing temperature, and~b! the thermal cor-
relation length diverges only withT→0 asj th;T2n with an
exponentn;1.0560.03, which is in agreement with Refs.
and 11. Finally, we studied the effect of a small perturbat
of the disorder on the ground state domain structure
found that the overlap length is characterized by the ch
exponentz53.960.2. This is a pretty large value implying
fast destruction of ground state correlations by thermal fl
tuations.
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inspiring discussions. This work was supported by t
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