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We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical
properties by numerical methods and scaling considerations. We extend our previoy®hyskRev. B57,
11404 (1998] to new guantities, such as the nonlinear susceptibility, higher excitations, and the energy-
density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law
singularities and the corresponding critical exponents, which vary with the distance from the critical point, can
be related to the dynamical exponentthe latter being the positive root ¢{J/h)¥],,~=1. Particularly,
whereas the average spin autocorrelation function in imaginary time decf]aér)~ 7 Y%, the average
energy-density autocorrelations decay with another expondr®&g,(7)~ 7 2~ 12,
[S0163-182699)04217-4

I. INTRODUCTION correlated disordefequivalent to a one-dimensional random
quantum modéf therefore we call the Griffiths singularities
Quantum phase transitions occur at zero temperature by quantum systems Griffiths-McCoy singularities.

varying a parameter of the Hamiltonian, e.g., the strength of Many of the theoretical studies on random quantum sys-
a transverse field. Quenched, i.e., time-independent disordggms are related to random quantum ferromagraetd quan-
has generally a profound effect on the properties of the quartum  spin glasse$, which also have experimental
tum system not only at the critical point, but also in a wholerealizations. In higher =2 and d=3) dimensions one
region, which extends in both sides of the critical point. Ingenerally studies the distribution of tliemear and nonlinear
this so-called Griffiths phase the dynamical properties of thesusceptibilities, the asymptotic behavior of those can be re-
random quantum systems are exceptional: for example, thated to the dynamical exponen(s) by scaling consider-
(imaginary time-dependent average spin-spin correlationsations. According to numerical studies—in agreement with

decay algebraically these phenomenological theoriess) is found as a con-
tinuous function of the quantum control paramegemwhich
[Glaf7)~7 Y29, 1.2 appears to have a finite limiting value at the critical paint

=0 of spin glasse8,whereas it is diverging for random

where the dynamical exponer(s) is a continuous function ferromagnets.
of the quantum control parametér From here on we use  Many features of Griffiths-McCoy singularities can al-
[---]a to denote averaging over quenched disorder. Théeady be seen in one-dimensional systems, where many exact
physical origin of this type of singular behavior, as wasand conjectured results exist. In this paper we consider the
pointed out by Griffithé for classical systems, is the exis- Prototype of random quantum systems, the random
tence of clusters in the random system, which are mor&ransverse-field Ising mod¢RTIM) in one dimension, de-
strongly coupled than the average. The spins of such clusterined by the Hamiltonian
being locally in the “ordered phase,” behave coherently as a
giant spin and the corresponding relaxation time is very _ X X _ z
large. Thus in an infinite system there is (finite) time scale H= Z horoiey §|: hoy. (1.2
and, as a consequence, the autocorrelations decay algebra-
ically, as in Eq.(1.1).3 Hereo}, of are Pauli matrices at siteand theJ, exchange

Several physical quantities, which involve an integral ofcouplings and théy, transverse-fields are random variables
the autocorrelation functiofe.g., the static susceptibility —with distributions7(J) andp(h), respectively. Note that in
are singular not only at the critical point but also in a finite one dimension all the couplings and fields can be taken posi-
region of the paramagnetic phase. This phenomenon was firsve through a gauge transformation. The model in BR)
noticed by McCoy in a two-dimensional classical model withis in the ferromagneti¢paramagneticphase if the couplings
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in average are strongéweakej than the transverse fields. new exponents for small values of the gaps. As another ex-
As a convenient quantum control-parameter one can defineample we consider the connected transverse spin autocorre-
lation function G7(7)=((o{(0)o{(7))). In the two-
_ [Inh]a—[InJ]a (1.3 dimensional classical version of E(L.2), the McCoy-Wu
vafIinh]+vaflnJ]’ ' model, this function corresponds to the energy-density cor-
relation function in the direction where the disorder is corre-
lated. Therefore we adopt in the following this terminology

where vafx] denotes the variance and at the critical point

6=0. ) ) .
and callG;(7) the energy-density autocorrelation function.

The Hamiltonian in Eqg.(1.2) is closely related to the Si he i : le for th lati .
transfer matrix of a classical two-dimensional layered Ising>'"'c€ the Inverse time scale for these correlations is, as we

model, which was first introduced and partially solved bySh""II see, determined by the second gap, one expects that
McCoy and WLE Later the critical properties of the quantum @S0[G"Jad7) has an algebraic decay:

model was studied by Shankar and Murthgnd in great Ge e 1

detail by Fishet® Through a renormalization grouRG) [CZlak )~ 7" e, 1.5

transformation Fisher has obtained many new results oith an exponenty,. Finally one should mention that the
static quantities and equal time correlations, which arenonlinear susceptibility’s distribution is expected to be de-
claimed to be exact for large scales, i.e., in the vicinity of thescribed by a new varying exponent.
critical point. Many of Fisher's results have been checked |n this paper we extend previous numerical work and
numerically* and in addition new results have been obtainedstudy the scaling behavior of the abovementioned singular
about critical density profile¥, time-dependent critical quantities in the Griffiths phase. We present a phenomeno-
correlations.® and various probability distributions and scal- ogical scaling theory and we confront its predictions with
ing functions:™** Later, using simple expressions about theresults of numerical calculations, based on the free-fermion
surface magnetization and the energy gap several exact respresentation of the Hamiltonian in Ed..2). We show that
sults have been derived by making use of a mathematicahe physical quantities we studied are characterized by
analogy with surviving random walké,see also Ref. 15.  power-law singularities with varying critical exponents,
In the Griffiths phase, where the RG results are restrictegyhose values are connected to the dynamical exponent
to the immediate vicinity of the critical point, i.e., @&-0,  through scaling relations.
numerical investigations both on temperature-depengient Throughout the paper we use two types of random distri-
(specific heat, susceptibiliyand dynamical quantitié®pin-  butions. In the symmetric binary distribution the couplings

spin autocorrelations, distribution of the energy gap anctould take two values>1 and 1X with the same probabil-
susceptibility*“**have lead to the conclusion that the behav-ity, while the transverse-field is constant:

ior of all these quantities is a consequence of Griffiths-

McCoy singularities and can be characterized by a single 1 .

varying exponenk( ) in Eq.(1.1. Very recently an analyti- m(J)= 5[5(3_)\)+ 6(J—N"9)],

cal expregssion for(8) has been derivédby using an exact

mapping® between the Hamiltonian in Eq1.2) and the p(h)=8(h—hy). (1.6)

Fokker-Planck operator of a random walk in a random envi-

ronment. The dynamical exponent, which is given by theAt the critical pointhg=1, whereas in the Griffiths phase,

positive root of the equation 1<hg<A\, the dynamical exponent from E¢L.4) is deter-
=1, (1.4

(J)llz mined by the equation
h In\
h av hé/z: COS"( 7) . (17)

generally depends both ofiand on the distributionsr(J)
and p(J). However it becomes universal, i.e., distribution In the uniform distribution both the couplings and the fields
independent, in the vicinity of the critical point whexs) have rectangular distributions:
~1/(26), |6|<1, in accordance with the RG resulfsThe
numerical results obtained about different singular quantities 1 for 0<J<1,
in the Griffiths phase are all in agreement with the analytical m(J)= [ 0. otherwise
formula in Eq.(1.4) and the observed small deviations are ' ’
attributed to finite-size _qorrectioﬁ%.” _ B hsl, for O<h<hy,
The singular quantities studied so far in the Griffiths p(h):[ _ (1.9
phase are all related to the scaling properties of the lowest- 0, otherwise.

energy gap, Whic.h e);]EIQinst tthehobsetrvatiotr;] th‘"?‘t a|Si.r,;g|Ei'he critical point is also ahy=1, whereas the dynamical
varying exponent is sufficient to characterize the singularities o . .
of the different quantities. There are, however, other observ(::')(pcment is given by the solution of the equation
ables, which are expected to be singular too, but not con- zIn(1—z"2)=— Inh, (1.9
nected directly to the first gap. For example, one could con- ’

sider the distribution of the secoridr some highergap. For  where the Griffiths phase now extends te fy<ce.

similar reasons as for the first gap these higher excitations The structure of the paper is as follows. In Sec. Il we
are also expected to vanish in the thermodynamic limit angbresent the free fermion description of various dynamical

the corresponding probability distributions are described byguantities. Phenomenological and scaling considerations are
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given in Sec. lll and the numerical results are presented in |¢q(1)|2
Sec. IV. Finally, we close the paper with a discussion. X1=22, P (2.9
q q
Il. FREE FERMION DESCRIPTION OF DYNAMICAL Similarly, the local nonlinear susceptibility is defined by
QUANTITIES

53m|

We consider the random transverse-field Ising model in xM= lim 2.6
Eq. (1.2 on a finite chain of length. with free boundary ' hoSH? '
conditions. The Hamiltonian in Eq1.2) is mapped through
a Jordan-Wigner transformation and the following canonicabind can be expressed as
transformatiol’ into a free fermion model:

1
L nl X| S X
1 X =24[E (0lof[i) =—=ilofli)
H=2, fq( nanq—g) (2. ! T BB
q=1
1 1

in terms of then; () fermion creationannihilation) op- XETE <j|0'|x|k>ﬁ<k|0'f(|0>
erators. The energy of modeg is obtained through the so- =0 k=0
lution of an eigenvalue problem, which necessitates the di- (i|o7|0) 2 |<j|glx|o>|2
agonalization of a RXx2L tridiagonal matrix with > E_E > e [+ @7
nonvanishing matrix elementsTy 1 5=To 5 1=h;, i ' bomos =0
=12,...L and Ty a:1=Toi+12=3di, i=12,...L =1, ¢ gnould be noted that it isot the first sum on the right-hand

and denote the components of the eigenvectdgsas  gjge (RHS) of Eq. (2.7) that gives the leading contribution,
Vq(2i—=1)=—¢q(i) andVy(2i)=¢q(i), i=1,2,...L, i€,  gince at least one of the three energy differences most in-
0 h, volve a higher excitation({|o{|j)=0 fori=j). For surface
spinsl =1, Eq.(2.7) simplifies to

h, 0 J;
0 J 0 h 1)2¢q(1)%(1 1
. 2 XF.:24{2 ¢>€< >+¢q)< ) (___)
T= h, 0 pa (€pTeg)ep 1€ €&
. J, _ 1 2 1 2
L1 Y ¢p(1) D [ pq(1)] . 28
Jb-1+ 0 h P €p q €q
ho 0 Next we consider the energy-density correlation function at
sitel, G, defined by
_(Dq(l)
V(1) Gf(7)=(0|of(7)0{(0)|0)~ (0] a{(7)[0)(0| f(0)|0)
—®y(2) D
= 0|o?|0)|? exd — 7(E;— Eg)]. (2.9
vl 02 2, [(0lofl0) ~Eo
Vo(L—1) In the free-fermion representation it is given by
_q)q(l—)
VL) G (n)= 2 [0 dy(1) = (N o) exil = (et e,)],
We consider only the;=0 part of the spectrurf?. 7 (2.10
The local susceptibilityy, at sitel is defined through the '
local magnetizatiom, as which can be expressed for surface spins as
g 5m| €5~ € 2
= lm s @23 Gn=3 |16, ()| exd—rleste,)].
H,—0 | =, hl Y Y
whereH, is the strength of the local longitudinal field, which (2.13

enters the Hamiltoniafi.2) via an additional terni, o7 . x,

The spin-spin autocorrelation functi@) which is defined as
can be expressed as

Gy in Eq. (2.9 by replacingo{ by o, is generally compli-

(i070))2 cated and can be expressed in the form of Pfafffafi$An
=22, '—, (2.4  exception is the autocorrelation function for surface spins,
R =t = which is simply given by

where|0) and|i) denote the ground state and fitle excited
state ofH in Eq. (;.2) with energies, andE;, resp_ect|vely. Gy =D |qu(1)|2 exp( — 7eg). (2.12
For boundary spins one has the simple expression q



PRB 59 GRIFFITHS-McCOY SINGULARITIES IN THE RANDM . .. 11311

. PHENOMENOLOGICAL AND SCALING distribution is described by an exponeaft)=z/n, however,
CONSIDERATIONS the finite size corrections for these gaps are expected to in-

. . . e . crease rapidly with.
As described in the Introduction the Griffiths-McCoy sin- . . e
gularities in the paramagnetic phase are connected to the The scaling behavior of the probability distribution of the

presence of strongly coupled clusters, which are locally insusceptibilities can be obtained by noticing that both)fpr

| . . . .
the “ordered phase” and therefore the corresponding excita‘:’deIH the leading size dependence is connected with energy

tion energy is very small. For the RTIM the origin of these gaps in the numerators of Ec{§:4) and (2'7)’. re_spe_ctlvely.
clusters can be explained either through the analysis of th hen for the asymptotic behavior of the distribution of the
RG fixed-point distributiort which works only in the vicin- local susceptibility we have

ity of the critical point, or by using simple explicit expres- 1

sions for the excitation ener@y'* and estimate those IN[P(In x;)]=— —In x,+const, (3.8
through random walk arguments.Here we use a simple z

1 ’23 i . . . . . e
phenomenological approatfi**whose results are in agree- gimilar to the inverse gap. For the nonlinear susceptibility the

ment with the above microscopic methods. second term in the RHS of E.7) gives the singular con-
Consider the quantity?, (N) which measures the prob- iipution. so that

ability that in a chain ofL sites there is a cluster di<L
strongly coupled spins. SinceN consecutive strong

1
bonds can be found with exponentially small probability In[P(In X,“')] =— ﬁln X{"+ const, (3.9
~exp(—AN), whereas the cluster could be placed-dt dif- z
ferent sites we have ;
with
PL(N)~L exp(—AN). (3. 2M=3z, (3.10

The excitation energy of this sample corresponds to the ersince the asymptotic distribution is the same as that of the
ergy needed to flip all spins in the cluster, which is exponenthird power of the inverse gap. We note that the relation in
tially small in N: Eq. (3.10 corresponds to the phenomenological result in

Ref. 6.
€1~ exp(—BN). (3.2 The scaling behavior of the average spin autocorrelation

Combining Eq(3.1) with Eq. (3.2) we have for the probabil- function is given by
ity distribution of the first gap

G =|P M| exp(— 7€;)deg, (3.1

P.(In Gl)NLEi/Z, 3.3 [Gilad T) J L(e1)[My| p(—7ey)dey, (3.11)

for ;-0 and 12=A/B. Here, from the scaling combination Where the factor with the matrix element M, |~ 1/L, since

in Eq. (3.3 L~ e; Y~ 72, we can identifyz as the dynami- the probability that a low-energy cluster is localized at a
cal exponent. ! ' given sitel is inversely proportional to the length of the
Next, we consider the second gapwhich is connected chain. Then using Eq3.3) one arrives to the result in Eq.

to the existence of a second strongly connected cluster dft+D: thus establishing the relation between the decay expo-

N’<N spins, and its value corresponds to the energy needddent of the spin autocorrelation function and the dynamical

to flip all the spins in the second cluster simultaneously €XPonent.

consequently, For energy-density autocorrelations, according to Egs.

(2.10 and(2.11) the characteristic energy scalesisand the
€,~ exp(—BN'). (3.4  asymptotic behavior of the average energy-density autocor-
relation function is given by
The probability with which a cluster of siZd’ occurs, pro-
vided another cluster of siz&€l=N’ exists, is given by
PL(N")~L exp(—AN")=;_.PL(N). ForN’<L (or in the in-
finite system size limit. — ) this can be estimated as

[G?]a\XT)zf P|’_(62)|M?|2exq_762)d62 (312

Now we take the example of the surface autocorrelation
function in Eq.(2.1]) to show that the factor with the matrix

’ .| 2 _ 4

PLN)~ L exy —2AN']. @9 elementM¢|? is proportional toe3. The remaining factor in
Thus from Eqs(3.4) and (3.5 we have Eqg. (2.11) with the first components of the eigenvectors is
expected to scale asl18ue to similar reasons as for the spin

P! (In ) ~L2el? | (3.6)  autocorrelations, thufM F|2~L*%e§ and together with Eq.

_ , (3.6) one hasP| (&,)|MF|2~Lex* ™1, Before evaluating the

with 1/z"=2A/B, thus integral in Eq.(3.12 we note that for a fixed. the expres-

sion in Eq.(3.12 stays valid up tor~LZ? Therefore to ob-

z'=12/2. (3.7 a.(3.12 stay P

tain theL independent asymptotic behavior ithwe should

Note that the scaling combination on the RHS of By is  Instead ’varyL, so that according to Eq(3.6) take L
dimensionless, as it should be. Repeating the above argu-e, Y(**) and in this way we stay within the border of
ment for the third, or generally theth gap the corresponding validity of Eq. (3.12 for any . With this modification we
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FIG. 2. The estimates fordand 1%’ as a function ohg for the
uniform distribution. These values and the corresponding error bars
have been obtained from our analysis of the probability distribution
- of In g1 and Ine,, respectively, for two system sizéss exemplified
£ in Fig. 1). The full line for 1£ corresponds to the analytical result
Z (1.4), the broken line corresponds toz2ivhich we predict to be
identical to 12’.
distributions in Fig. 1 we have estimated the &hd 1%’

s 5 7 exponents for the two largest finite systeins64 andL
Iney;ine, =128 which are presented in Fig. 2 for different points of
o _ the Griffiths phase for the uniform distribution. As seen in
FIG. 1. Probability distribution of Iz, and Ine, for the uniform the figure thez exponent calculated from the first gap agrees
distribution ath,=2 (top) and the binary distributionX(=4) at o \vel| with the analytical results in EGL.9). For thez’

ho=2.5 (bottom. The straight lines are least square fits to the dataexponent, as calculated from the distribution of the second
for the largest system size, their slopes correspondzghdy and

1/z' (hg), respectively. They follow the predicted relatian(hg) gap the scaling result in Ecﬁ3.7). IS alsq well satisfied, al-
=2(hy)/2. though t_he errors of the nu_merlcal estimates are larger than
for the first gap. For the third gap, due to the even stronger
finite-size effects, we have not made a detailed investigation.
Extrapolated results &t,=2 are found to follow the scaling
resultz(®=z/3.
Next, we study distribution of the linear and nonlinear
Ne=2+ 7 (3.13  local susceptibilities at the surface spin. As demonstrated in
Fig. 3 both types of distributions satisfy the respective
where the relation in Eq(3.7) is used. We expect that the asymptotic relations in Eq$3.8) and(3.9), from which the
factor |[Mf|? has the same type of scaling behavior for anycritical exponentg and z" are calculated. The estimates are
position|, thus the relation in Eq3.13 stays valid both for  shown in Fig. 4 at different points of the Griffiths phase. As
bulk and surface spins. We note that the reasoning above Egeen in the figure the numerical results for the dynamical
(3.13 applies also for the spin autocorrelation function, in€xponentz are again in very good agreement with the ana-
which case in Eq(3.11), however, there is no explicit lytical results in Eq(1.9) and also the exponent of the non-
dependence. linear susceptibilityz™ follows the scaling relation in Eq.
In this way we have established a phenomenological scal3.10 fairly well.
ing theory which makes a connection between the unconven-

arrive to the result in Eq1.5 where the decay exponent
is related to the dynamical exponent as

tional exponents in Eq93.7), (3.10, and (3.13 and the T
dynamical exponent. In the next section we confront these = 0230 y] —— ]
relations with numerical results. s X1

& -0.72 Iny4

£ Ea‘ﬂﬂnu

IV. NUMERICAL RESULTS = efa
= a D”ﬂa?n;; o
In the numerical calculations we have considered RTIM § o P,

chains with up td_ =128 sites and the average is performed s 67
over several 10000 realizations, typically we considered = N
50 000 samples. For some cases, where the finite-size correc- o 2 4 8 I8 10 12 14
tions were strong, we also made runs wlitk 256, but with e M
somewhat less realizations. FIG. 3. Probability distribution of the linear and nonlinear sus-

We start by presenting results on the distribution of theceptipility In , and Iny!, respectively, for the uniform distribution
first and second gaps. As illustrated in Fig. 1, both for theat h,=3. The straight lines are least square fits to the data for the
uniform and the binary distributions, the asymptotic scalinglargest system size, their slopes correspond ta(h}j and
relations for the distribution of the first two gaps in E¢&3) 1/z"(h,), respectively. They follow the predicted relatiaf(h)
and (3.6) are satisfied. From the asymptotic slopes of the=3z(h,).



PRB 59 GRIFFITHS-McCOY SINGULARITIES IN THE RANDM . .. 11 313

08 | . .
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FIG. 4. The estimates for2and 1£" as a function oh, for the (!:IG. 6. The bulk energy-energy autocorrelation function
uniform distribution. These values and the corresponding error barkCLi2]ad 7) for the binary distribution X = 4) at different values for
have been obtained from our analysis of the probability distribution’o for L =128 as a function of I One observes the variation of
of In y; and |nX2|’ respectively, for two system sizéas exempli- th_e e_xponen_bye(ho) (identical to the slope of the straight line jits
fied in Fig. 3. The full line for 12 corresponds to the analytical With increasingho.
result(1.4), the broken line corresponds to 2/3vhich should be
identical with 12", P V- DISCUSSION

In this paper we have considered the random transverse-

Finally, we calculate the average energy-density autocorfield Ising spin chain and studied different consequences of
relation function. As seen in Fig. 3G®].(7) displays a the Griffiths-McCoy singularities in the paramagnetic phase.
linear region in a log-log plot, the size of which is increasingOur main conclusion is that all singular quantities can be
with L, but its slope, which is just the decay exponegthas  characterized by power-law singularities and the correspond-
only a weakL dependence. The slope of the curve and thusng varying critical exponents can be related to #(é) dy-
the corresponding decay exponenthas a variation with the namical exponent and, for energy-density autocorrelations,
parametet, as illustrated in Fig. 6. The estimateg, ex-  to the ,(0) critical point exponent. Since the exact value of
ponents at the critical pointiy=1, and in the Griffiths phase z(6) is known in Eqg.(1.4) and we expect that also the rela-
are presented in Fig. 7. As seen in this figure the variation ofion in Eq. (4.1 is valid, we have a complete analytical de-
ne 1S well described by the formpe(6)= 7.(0)+1/z(5).  scription of the Griffiths phase of the RTIM in one dimen-
This functional form corresponds to the scaling result in Egsion.

(3.13, if the critical point correlations decay with One interesting feature of our results concerns the distri-
bution of the higher excitations and the value of the corre-
76(0)=2. (4.1  sponding exponert™=z/n. Since the decay of dynamical

correlations of general, more complex operators are related

The numerical calculations with.=128 give a slighty to 1Z=n/z, we obtain a hierarchy of decay exponents
higher valuey(0)~ 2.2 12 However, the finite-size estimates Which could be simply expressed by those of a few primary
Repeating the calculation with=256 we obtainedy,(0)  ture of anomalous dimensions in two-dimensional conformal

5 . . .
~2.1. Thus we can conclude that the scaling relation in EqModels? Our knowledge about the higher excitations can

(3.13 is probably valid and then Eg4.1) is the exact value @IS0 be used to estimate the correction to scaling contribu-

of the decay exponent of the average critical energy-densit§ons- _ _ _
autocorrelation&? Much of the reasoning of our phenomenological scaling

considerations in Sec. Il stays valid for other random quan-

7
&1 L=128
A L=64
% o 241/z é
]
o |
| .
G | Q
| 3 - : ; *
| A
3
-2 0 2 4 6 8 10 12 0 I
Int 1 15 2 25 : )
hO

FIG. 5. The bulk energy-energy autocorrelation function
[G{ 2] ad ) for the binary distribution X =4) athy= 1.5 for differ- FIG. 7. The exponentp.(hy) for the binary distribution X
ent system sizes as a function ofdnThe slope of the straight line =4) as obtained from the analysis of the asymptotic decay of the
identifies the exponenge(hy) describing the asymptotic decay of bulk energy-energy autocorrelation functigiGf,].(7) in the
[G{2]al(7) in the infinite system size limit—c. The log-periodic  manner of Fig. 6. The full line is the analytical predictig(ho)
oscillations visible in the figure are due to the finite energy scale=2+1/z(hy) with z(hy) given by the exact formul&l.4) for the
present in the binary distribution. binary distribution withx =4.
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tum systems. Especially the scaling behavior of the higherandom walk we can use the relation in E§.7) to describe
gaps and the corresponding relation in E8.7) should be the distribution of the eigenvalues of the corresponding
valid even for higher dimensions and the same is true for thgokker-Planck operator. One can also define an analogous
distribution of the nonlinear susceptibility and the corre-quantity to the energy-density autocorrelation function in Eq.
sponding relation in Eq(3.10. (2.10 by considering connected persistence correlations,
In one dimension the universality class of the RTIM in- whose asymptotic decay is related to the distribution of the

volves several random systems including, among others, th§cond gap, as in Eq3.12. Research in this field is in
random quantum Potts chaifiFor these models one does progress.

not expect a universality of thg 6) exponent in the Griffiths
phase, although scaling relations such as the one if&EQg.

are very probably valid. It would be interesting to perform a ACKNOWLEDGMENTS
numerical study on the random quantum Potts model to
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