
PHYSICAL REVIEW B 1 MAY 1999-IVOLUME 59, NUMBER 17
Griffiths-McCoy singularities in the random transverse-field Ising spin chain
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We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical
properties by numerical methods and scaling considerations. We extend our previous work@Phys. Rev. B57,
11 404 ~1998!# to new quantities, such as the nonlinear susceptibility, higher excitations, and the energy-
density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law
singularities and the corresponding critical exponents, which vary with the distance from the critical point, can
be related to the dynamical exponentz, the latter being the positive root of@(J/h)1/z#av51. Particularly,
whereas the average spin autocorrelation function in imaginary time decays as@G#av(t);t21/z, the average
energy-density autocorrelations decay with another exponent as@Ge#av(t);t2221/z.
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I. INTRODUCTION

Quantum phase transitions occur at zero temperature
varying a parameter of the Hamiltonian, e.g., the strength
a transverse field. Quenched, i.e., time-independent diso
has generally a profound effect on the properties of the qu
tum system not only at the critical point, but also in a who
region, which extends in both sides of the critical point.
this so-called Griffiths phase the dynamical properties of
random quantum systems are exceptional: for example,
~imaginary! time-dependent average spin-spin correlatio
decay algebraically1

@G#av~t!;t21/z~d!, ~1.1!

where the dynamical exponentz(d) is a continuous function
of the quantum control parameterd. From here on we use
@•••#av to denote averaging over quenched disorder. T
physical origin of this type of singular behavior, as w
pointed out by Griffiths2 for classical systems, is the exis
tence of clusters in the random system, which are m
strongly coupled than the average. The spins of such clus
being locally in the ‘‘ordered phase,’’ behave coherently a
giant spin and the corresponding relaxation time is v
large. Thus in an infinite system there is no~finite! time scale
and, as a consequence, the autocorrelations decay alg
ically, as in Eq.~1.1!.3

Several physical quantities, which involve an integral
the autocorrelation function~e.g., the static susceptibility!
are singular not only at the critical point but also in a fin
region of the paramagnetic phase. This phenomenon was
noticed by McCoy in a two-dimensional classical model w
PRB 590163-1829/99/59~17!/11308~7!/$15.00
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correlated disorder~equivalent to a one-dimensional rando
quantum model!4 therefore we call the Griffiths singularitie
in quantum systems Griffiths-McCoy singularities.

Many of the theoretical studies on random quantum s
tems are related to random quantum ferromagnets5 and quan-
tum spin glasses,6 which also have experimenta
realizations.7 In higher (d52 and d53) dimensions one
generally studies the distribution of the~linear and nonlinear!
susceptibilities, the asymptotic behavior of those can be
lated to the dynamical exponentz(d) by scaling consider-
ations. According to numerical studies—in agreement w
these phenomenological theories—z(d) is found as a con-
tinuous function of the quantum control parameterd, which
appears to have a finite limiting value at the critical pointd
50 of spin glasses,6 whereas it is diverging for random
ferromagnets.5

Many features of Griffiths-McCoy singularities can a
ready be seen in one-dimensional systems, where many e
and conjectured results exist. In this paper we consider
prototype of random quantum systems, the rand
transverse-field Ising model~RTIM! in one dimension, de-
fined by the Hamiltonian

H52(
l

Jls l
xs l 11

x 2(
l

hls l
z . ~1.2!

Heres l
x , s l

z are Pauli matrices at sitel and theJl exchange
couplings and thehl transverse-fields are random variabl
with distributionsp(J) andr(h), respectively. Note that in
one dimension all the couplings and fields can be taken p
tive through a gauge transformation. The model in Eq.~1.2!
is in the ferromagnetic~paramagnetic! phase if the couplings
11 308 ©1999 The American Physical Society
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in average are stronger~weaker! than the transverse fields
As a convenient quantum control-parameter one can defi

d5
@ ln h#av2@ ln J#av

var@ ln h#1var@ ln J#
, ~1.3!

where var@x# denotes the variance and at the critical po
d50.

The Hamiltonian in Eq.~1.2! is closely related to the
transfer matrix of a classical two-dimensional layered Is
model, which was first introduced and partially solved
McCoy and Wu.8 Later the critical properties of the quantu
model was studied by Shankar and Murthy,9 and in great
detail by Fisher.10 Through a renormalization group~RG!
transformation Fisher has obtained many new results
static quantities and equal time correlations, which
claimed to be exact for large scales, i.e., in the vicinity of
critical point. Many of Fisher’s results have been check
numerically11 and in addition new results have been obtain
about critical density profiles,12 time-dependent critica
correlations,13 and various probability distributions and sca
ing functions.11,14 Later, using simple expressions about t
surface magnetization and the energy gap several exac
sults have been derived by making use of a mathema
analogy with surviving random walks,14 see also Ref. 15.

In the Griffiths phase, where the RG results are restric
to the immediate vicinity of the critical point, i.e., asd→0,
numerical investigations both on temperature-depende16

~specific heat, susceptibility! and dynamical quantities~spin-
spin autocorrelations, distribution of the energy gap a
susceptibility!14,11have lead to the conclusion that the beha
ior of all these quantities is a consequence of Griffith
McCoy singularities and can be characterized by a sin
varying exponentz(d) in Eq. ~1.1!. Very recently an analyti-
cal expression forz(d) has been derived17 by using an exact
mapping18 between the Hamiltonian in Eq.~1.2! and the
Fokker-Planck operator of a random walk in a random en
ronment. The dynamical exponent, which is given by
positive root of the equation

F S J

hD 1/zG
av

51, ~1.4!

generally depends both ond and on the distributionsp(J)
and r(J). However it becomes universal, i.e., distributio
independent, in the vicinity of the critical point whenz(d)
'1/(2d), udu!1, in accordance with the RG results.10 The
numerical results obtained about different singular quanti
in the Griffiths phase are all in agreement with the analyti
formula in Eq.~1.4! and the observed small deviations a
attributed to finite-size corrections.16,14

The singular quantities studied so far in the Griffit
phase are all related to the scaling properties of the low
energy gap, which explains the observation that a sin
varying exponent is sufficient to characterize the singulari
of the different quantities. There are, however, other obse
ables, which are expected to be singular too, but not c
nected directly to the first gap. For example, one could c
sider the distribution of the second~or some higher! gap. For
similar reasons as for the first gap these higher excitat
are also expected to vanish in the thermodynamic limit a
the corresponding probability distributions are described
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new exponents for small values of the gaps. As another
ample we consider the connected transverse spin autoc
lation function Gl

e(t)5^^s l
z(0)s l

z(t)&&. In the two-
dimensional classical version of Eq.~1.2!, the McCoy-Wu
model, this function corresponds to the energy-density c
relation function in the direction where the disorder is cor
lated. Therefore we adopt in the following this terminolog
and callGl

e(t) the energy-density autocorrelation functio
Since the inverse time scale for these correlations is, as
shall see, determined by the second gap, one expects
also @Ge#av(t) has an algebraic decay:

@Ge#av~t!;t2he, ~1.5!

with an exponenthe . Finally one should mention that th
nonlinear susceptibility’s distribution is expected to be d
scribed by a new varying exponent.

In this paper we extend previous numerical work a
study the scaling behavior of the abovementioned sing
quantities in the Griffiths phase. We present a phenome
logical scaling theory and we confront its predictions w
results of numerical calculations, based on the free-ferm
representation of the Hamiltonian in Eq.~1.2!. We show that
the physical quantities we studied are characterized
power-law singularities with varying critical exponent
whose values are connected to the dynamical expon
through scaling relations.

Throughout the paper we use two types of random dis
butions. In the symmetric binary distribution the couplin
could take two valuesl.1 and 1/l with the same probabil-
ity, while the transverse-field is constant:

p~J!5
1

2
@d~J2l!1d~J2l21!#,

r~h!5d~h2h0!. ~1.6!

At the critical pointh051, whereas in the Griffiths phase
1,h0,l, the dynamical exponent from Eq.~1.4! is deter-
mined by the equation

h0
1/z5 coshS ln l

z D . ~1.7!

In the uniform distribution both the couplings and the fiel
have rectangular distributions:

p~J!5H 1 for 0,J,1,

0, otherwise,

r~h!5H h0
21 , for 0,h,h0 ,

0, otherwise.
~1.8!

The critical point is also ath051, whereas the dynamica
exponent is given by the solution of the equation

z ln~12z22!52 ln h0 , ~1.9!

where the Griffiths phase now extends to 1,h0,`.
The structure of the paper is as follows. In Sec. II w

present the free fermion description of various dynami
quantities. Phenomenological and scaling considerations
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given in Sec. III and the numerical results are presente
Sec. IV. Finally, we close the paper with a discussion.

II. FREE FERMION DESCRIPTION OF DYNAMICAL
QUANTITIES

We consider the random transverse-field Ising mode
Eq. ~1.2! on a finite chain of lengthL with free boundary
conditions. The Hamiltonian in Eq.~1.2! is mapped through
a Jordan-Wigner transformation and the following canoni
transformation19 into a free fermion model:

H5 (
q51

L

eqS hq
1hq2

1

2D ~2.1!

in terms of thehq
1 (hq) fermion creation~annihilation! op-

erators. The energy of modeseq is obtained through the so
lution of an eigenvalue problem, which necessitates the
agonalization of a 2L32L tridiagonal matrix with
nonvanishing matrix elementsT2i 21,2i5T2i ,2i 215hi , i
51,2, . . . ,L and T2i ,2i 115T2i 11,2i5Ji , i 51,2, . . . ,L21,
and denote the components of the eigenvectorsVq as
Vq(2i 21)52fq( i ) andVq(2i )5cq( i ), i 51,2, . . . ,L, i.e.,

T5S 0 h1

h1 0 J1

0 J1 0 h2

h2 0 �

� � JL21

JL21 0 hL

hL 0

D ,

Vq5S 2Fq~1!

Cq~1!

2Fq~2!

A

Cq~L21!

2Fq~L !

Cq~L !

D . ~2.2!

We consider only theeq>0 part of the spectrum.20

The local susceptibilityx l at sitel is defined through the
local magnetizationml as

x l5 lim
Hl→0

dml

dHl
, ~2.3!

whereHl is the strength of the local longitudinal field, whic
enters the Hamiltonian~1.2! via an additional termHls l

x . x l

can be expressed as

x l52(
i

u^ i us l
xu0&u2

Ei2E0
, ~2.4!

whereu0& andu i & denote the ground state and thei th excited
state ofH in Eq. ~1.2! with energiesE0 andEi , respectively.
For boundary spins one has the simple expression
in

n

l

i-

x152(
q

ufq~1!u2

eq
. ~2.5!

Similarly, the local nonlinear susceptibility is defined by

x l
nl5 lim

Hl→0

d3ml

dHl
3 ~2.6!

and can be expressed as

x l
nl524H (

i , j ,k
^0us l

xu i &
1

Ei2E0
^ i us l

xu j &

3
1

Ej2E0
^ j us l

xuk&
1

Ek2E0
^kus l

xu0&

1(
i

S ^ i us l
xu0&

Ei2E0
D 2

(
j

u^ j us l
xu0&u2

Ej2E0
J . ~2.7!

It should be noted that it isnot the first sum on the right-hand
side ~RHS! of Eq. ~2.7! that gives the leading contribution
since at least one of the three energy differences most
volve a higher excitation (^ i us l

xu j &50 for i 5 j ). For surface
spinsl 51, Eq. ~2.7! simplifies to

x l
nl524H(

p,q

fp~1!2fq~1!2

~ep1eq!ep
S 1

ep
2

1

eq
D

2(
p

S fp~1!

ep
D 2

(
q

ufq~1!u2

eq
J . ~2.8!

Next we consider the energy-density correlation function
site l, Gl

e , defined by

Gl
e~t!5^0us l

z~t!s l
z~0!u0&2^0us l

z~t!u0&^0us l
z~0!u0&

5(
i .0

u^0us l
zu0&u2 exp@2t~Ei2E0!#. ~2.9!

In the free-fermion representation it is given by

Gl
e~t!5 (

d.g
ucd~ l !fg~ l !2cg~ l !fd~ l !u2 exp@2t~ed1eg!#,

~2.10!

which can be expressed for surface spins as

Gl
e~t!5 (

d.g
Fed2eg

h1
fd~1!fg~ l !G2

exp@2t~ed1eg!#.

~2.11!

The spin-spin autocorrelation functionGl which is defined as
Gl

e in Eq. ~2.9! by replacings l
z by s l

x , is generally compli-
cated and can be expressed in the form of Pfaffians.21,14 An
exception is the autocorrelation function for surface spi
which is simply given by

G1~t!5(
q

uFq~1!u2 exp~2teq!. ~2.12!
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III. PHENOMENOLOGICAL AND SCALING
CONSIDERATIONS

As described in the Introduction the Griffiths-McCoy si
gularities in the paramagnetic phase are connected to
presence of strongly coupled clusters, which are locally
the ‘‘ordered phase’’ and therefore the corresponding exc
tion energy is very small. For the RTIM the origin of the
clusters can be explained either through the analysis of
RG fixed-point distribution,10 which works only in the vicin-
ity of the critical point, or by using simple explicit expres
sions for the excitation energy22,14 and estimate those
through random walk arguments.14 Here we use a simple
phenomenological approach,1,6,23whose results are in agree
ment with the above microscopic methods.

Consider the quantityPL(N) which measures the prob
ability that in a chain ofL sites there is a cluster ofN!L
strongly coupled spins. SinceN consecutive strong
bonds can be found with exponentially small probabil
;exp(2AN), whereas the cluster could be placed at;L dif-
ferent sites we have

PL~N!;L exp~2AN!. ~3.1!

The excitation energy of this sample corresponds to the
ergy needed to flip all spins in the cluster, which is expon
tially small in N:

e1; exp~2BN!. ~3.2!

Combining Eq.~3.1! with Eq. ~3.2! we have for the probabil-
ity distribution of the first gap

PL~ ln e1!;Le1
1/z, ~3.3!

for e1→0 and 1/z5A/B. Here, from the scaling combinatio
in Eq. ~3.3!: L;e1

21/z;t1/z, we can identifyz as the dynami-
cal exponent.

Next, we consider the second gape2 which is connected
to the existence of a second strongly connected cluste
N8<N spins, and its value corresponds to the energy nee
to flip all the spins in the second cluster simultaneous
consequently,

e2; exp~2BN8!. ~3.4!

The probability with which a cluster of sizeN8 occurs, pro-
vided another cluster of sizeN>N8 exists, is given by
PL8(N8);L exp(2AN8)(N5N8

L PL(N). ForN8!L ~or in the in-
finite system size limitL→`) this can be estimated as

PL8~N8!;L2 exp@22AN8#. ~3.5!

Thus from Eqs.~3.4! and ~3.5! we have

PL8~ ln e2!;L2e2
1/z8 , ~3.6!

with 1/z852A/B, thus

z85z/2. ~3.7!

Note that the scaling combination on the RHS of Eq.~3.6! is
dimensionless, as it should be. Repeating the above a
ment for the third, or generally thenth gap the correspondin
he
n
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e

n-
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,

u-

distribution is described by an exponentz(n)5z/n, however,
the finite size corrections for these gaps are expected to
crease rapidly withn.

The scaling behavior of the probability distribution of th
susceptibilities can be obtained by noticing that both forx l

andx l
nl the leading size dependence is connected with ene

gaps in the numerators of Eqs.~2.4! and ~2.7!, respectively.
Then for the asymptotic behavior of the distribution of t
local susceptibility we have

ln@P~ ln x l !#52
1

z
ln x l1const, ~3.8!

similar to the inverse gap. For the nonlinear susceptibility
second term in the RHS of Eq.~2.7! gives the singular con-
tribution, so that

ln@P~ ln x l
nl!#52

1

znl
ln x l

nl1const, ~3.9!

with

znl53z, ~3.10!

since the asymptotic distribution is the same as that of
third power of the inverse gap. We note that the relation
Eq. ~3.10! corresponds to the phenomenological result
Ref. 6.

The scaling behavior of the average spin autocorrela
function is given by

@Gl #av~t!5E PL~e1!uMl u2 exp~2te1!de1 , ~3.11!

where the factor with the matrix element isuMl u2;1/L, since
the probability that a low-energy cluster is localized at
given site l is inversely proportional to the length of th
chain. Then using Eq.~3.3! one arrives to the result in Eq
~1.1!, thus establishing the relation between the decay ex
nent of the spin autocorrelation function and the dynami
exponent.

For energy-density autocorrelations, according to E
~2.10! and~2.11! the characteristic energy scale ise2 and the
asymptotic behavior of the average energy-density auto
relation function is given by

@Gl
e#av~t!5E PL8~e2!uMl

eu2 exp~2te2!de2 . ~3.12!

Now we take the example of the surface autocorrelat
function in Eq.~2.11! to show that the factor with the matri
elementuM1

eu2 is proportional toe2
2. The remaining factor in

Eq. ~2.11! with the first components of the eigenvectors
expected to scale as 1/L due to similar reasons as for the sp
autocorrelations, thusuMl

eu2;L21e2
2 and together with Eq.

~3.6! one hasPL8(e2)uMl
eu2;Le2

1/z811 . Before evaluating the
integral in Eq.~3.12! we note that for a fixedL the expres-
sion in Eq.~3.12! stays valid up tot;Lz. Therefore to ob-
tain theL independent asymptotic behavior int we should
instead vary L, so that according to Eq.~3.6! take L

;e2
21/(2z8) and in this way we stay within the border o

validity of Eq. ~3.12! for any t. With this modification we
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arrive to the result in Eq.~1.5! where the decay exponenthe
is related to the dynamical exponent as

he521
1

z
, ~3.13!

where the relation in Eq.~3.7! is used. We expect that th
factor uMl

eu2 has the same type of scaling behavior for a
position l, thus the relation in Eq.~3.13! stays valid both for
bulk and surface spins. We note that the reasoning above
~3.13! applies also for the spin autocorrelation function,
which case in Eq.~3.11!, however, there is no explicitL
dependence.

In this way we have established a phenomenological s
ing theory which makes a connection between the unconv
tional exponents in Eqs.~3.7!, ~3.10!, and ~3.13! and the
dynamical exponent. In the next section we confront th
relations with numerical results.

IV. NUMERICAL RESULTS

In the numerical calculations we have considered RT
chains with up toL5128 sites and the average is perform
over several 10 000 realizations, typically we conside
50 000 samples. For some cases, where the finite-size co
tions were strong, we also made runs withL5256, but with
somewhat less realizations.

We start by presenting results on the distribution of
first and second gaps. As illustrated in Fig. 1, both for
uniform and the binary distributions, the asymptotic scal
relations for the distribution of the first two gaps in Eqs.~3.3!
and ~3.6! are satisfied. From the asymptotic slopes of

FIG. 1. Probability distribution of ln«1 and ln«2 for the uniform
distribution ath052 ~top! and the binary distribution (l54) at
h052.5 ~bottom!. The straight lines are least square fits to the d
for the largest system size, their slopes correspond to 1/z(h0) and
1/z8(h0), respectively. They follow the predicted relationz8(h0)
5z(h0)/2.
q.

l-
n-

e
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e

distributions in Fig. 1 we have estimated the 1/z and 1/z8
exponents for the two largest finite systemsL564 andL
5128 which are presented in Fig. 2 for different points
the Griffiths phase for the uniform distribution. As seen
the figure thez exponent calculated from the first gap agre
very well with the analytical results in Eq.~1.9!. For thez8
exponent, as calculated from the distribution of the seco
gap the scaling result in Eq.~3.7! is also well satisfied, al-
though the errors of the numerical estimates are larger t
for the first gap. For the third gap, due to the even stron
finite-size effects, we have not made a detailed investigat
Extrapolated results ath052 are found to follow the scaling
resultz(3)5z/3.

Next, we study distribution of the linear and nonline
local susceptibilities at the surface spin. As demonstrate
Fig. 3 both types of distributions satisfy the respecti
asymptotic relations in Eqs.~3.8! and ~3.9!, from which the
critical exponentsz andznl are calculated. The estimates a
shown in Fig. 4 at different points of the Griffiths phase. A
seen in the figure the numerical results for the dynam
exponentz are again in very good agreement with the an
lytical results in Eq.~1.9! and also the exponent of the non
linear susceptibilityznl follows the scaling relation in Eq
~3.10! fairly well.

a

FIG. 2. The estimates for 1/z and 1/z8 as a function ofh0 for the
uniform distribution. These values and the corresponding error b
have been obtained from our analysis of the probability distribut
of ln «1 and ln«2, respectively, for two system sizes~as exemplified
in Fig. 1!. The full line for 1/z corresponds to the analytical resu
~1.4!, the broken line corresponds to 2/z, which we predict to be
identical to 1/z8.

FIG. 3. Probability distribution of the linear and nonlinear su
ceptibility ln x1 and lnx1

nl , respectively, for the uniform distribution
at h053. The straight lines are least square fits to the data for
largest system size, their slopes correspond to 1/z(h0) and
1/znl(h0), respectively. They follow the predicted relationznl(h0)
53z(h0).
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Finally, we calculate the average energy-density autoc
relation function. As seen in Fig. 5,@Ge#av(t) displays a
linear region in a log-log plot, the size of which is increasi
with L, but its slope, which is just the decay exponenthe has
only a weakL dependence. The slope of the curve and th
the corresponding decay exponenthe has a variation with the
parameterh0, as illustrated in Fig. 6. The estimatedhe ex-
ponents at the critical point,h051, and in the Griffiths phase
are presented in Fig. 7. As seen in this figure the variation
he is well described by the formhe(d)5he(0)11/z(d).
This functional form corresponds to the scaling result in E
~3.13!, if the critical point correlations decay with

he~0!52. ~4.1!

The numerical calculations withL5128 give a slightly
higher valuehe(0)'2.2.13 However, the finite-size estimate
show a slowly decreasinghe(0) with increasing system size
Repeating the calculation withL5256 we obtainedhe(0)
'2.1. Thus we can conclude that the scaling relation in
~3.13! is probably valid and then Eq.~4.1! is the exact value
of the decay exponent of the average critical energy-den
autocorrelations.24

FIG. 4. The estimates for 1/z and 1/znl as a function ofh0 for the
uniform distribution. These values and the corresponding error
have been obtained from our analysis of the probability distribut
of ln x1 and lnx1

nl , respectively, for two system sizes~as exempli-
fied in Fig. 3!. The full line for 1/z corresponds to the analytica
result ~1.4!, the broken line corresponds to 1/3z, which should be
identical with 1/znl.

FIG. 5. The bulk energy-energy autocorrelation functi
@GL/2

e # av(t) for the binary distribution (l54) ath051.5 for differ-
ent system sizes as a function of lnt. The slope of the straight line
identifies the exponenthe(h0) describing the asymptotic decay o
@GL/2

e #av(t) in the infinite system size limitL→`. The log-periodic
oscillations visible in the figure are due to the finite energy sc
present in the binary distribution.
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V. DISCUSSION

In this paper we have considered the random transve
field Ising spin chain and studied different consequences
the Griffiths-McCoy singularities in the paramagnetic pha
Our main conclusion is that all singular quantities can
characterized by power-law singularities and the correspo
ing varying critical exponents can be related to thez(d) dy-
namical exponent and, for energy-density autocorrelatio
to thehe(0) critical point exponent. Since the exact value
z(d) is known in Eq.~1.4! and we expect that also the rela
tion in Eq. ~4.1! is valid, we have a complete analytical d
scription of the Griffiths phase of the RTIM in one dime
sion.

One interesting feature of our results concerns the dis
bution of the higher excitations and the value of the cor
sponding exponentz(n)5z/n. Since the decay of dynamica
correlations of general, more complex operators are rela
to 1/z(n)5n/z, we obtain a hierarchy of decay exponen
which could be simply expressed by those of a few prim
operators. This feature is reminiscent of the towerlike str
ture of anomalous dimensions in two-dimensional conform
models.25 Our knowledge about the higher excitations c
also be used to estimate the correction to scaling contr
tions.

Much of the reasoning of our phenomenological scal
considerations in Sec. III stays valid for other random qu

rs
n

e

FIG. 6. The bulk energy-energy autocorrelation functi
@GL/2

e #av(t) for the binary distribution (l54) at different values for
h0 for L5128 as a function of lnt. One observes the variation o
the exponenthe(h0) ~identical to the slope of the straight line fits!
with increasingh0.

FIG. 7. The exponenthe(h0) for the binary distribution (l
54) as obtained from the analysis of the asymptotic decay of
bulk energy-energy autocorrelation function@GL/2

e #av(t) in the
manner of Fig. 6. The full line is the analytical predictionhe(h0)
5211/z(h0) with z(h0) given by the exact formula~1.4! for the
binary distribution withl54.
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tum systems. Especially the scaling behavior of the hig
gaps and the corresponding relation in Eq.~3.7! should be
valid even for higher dimensions and the same is true for
distribution of the nonlinear susceptibility and the corr
sponding relation in Eq.~3.10!.

In one dimension the universality class of the RTIM i
volves several random systems including, among others
random quantum Potts chain.26 For these models one doe
not expect a universality of thez(d) exponent in the Griffiths
phase, although scaling relations such as the one in Eq.~3.7!
are very probably valid. It would be interesting to perform
numerical study on the random quantum Potts mode
check the existing conjectures.

Another possible field where the present results could
applied is the problem of anomalous diffusion in a rand
environment.17,18,27 Making use of the exac
correspondence17,18between the Hamiltonian operator in E
~1.2! and the Fokker-Planck operator of the one-dimensio
y
of

n
la

-

ev
r,

h

r

e
-

he

o

e

al

random walk we can use the relation in Eq.~3.7! to describe
the distribution of the eigenvalues of the correspond
Fokker-Planck operator. One can also define an analog
quantity to the energy-density autocorrelation function in E
~2.10! by considering connected persistence correlatio
whose asymptotic decay is related to the distribution of
second gap, as in Eq.~3.12!. Research in this field is in
progress.
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20F. Iglói and L. Turban, Phys. Rev. Lett.77, 1206~1996!.
21J. Stolze, A. No¨ppert, and G. Mu¨ller, Phys. Rev. B52, 4319

~1995!.
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